Answer:
31 and -31
Step-by-step explanation:
The two numbers with a difference of 62 and whose product is a minimum are; 31 and -31
Let the two numbers be x and y.We are told that their difference is 62.
Thus; x - y = 62 ---(1)
We want their products to be minimum. Thus;f(x,y) = xy
From eq, making y the subject gives us;
y = x - 62
Thus;
f(x) = x(x - 62)
f(x) = x² - 62x
For the product to be minimum, let us find the derivative of f(x) and equate to zero. Thus;f'(x) = 2x - 62
At f'(x) = 0
2x - 62 = 0
2x = 62
x = 62/2
x = 31
Thus;
y = 31 - 62
y = -31
Read more at; https://brainly.com/question/9473957
Given: ∠N ≅ ∠S, line ℓ bisects at Q. Prove: ∆NQT ≅ ∆SQR Which reason justifies Step 2 in the proof? If two lines are parallel, then the corresponding angles formed are congruent. If two lines are parallel, then the alternate interior angles formed are congruent. Vertical angles are congruent. If two lines are parallel, then the same-side interior angles formed are congruent.
Answer:
Vertical angles are congruent.
Step-by-step explanation:
Vertical angles are opposite angles formed by intersecting lines, and are always congruent.
can someone EXPLAIN this to me? you don't have to answer the questions. They are for my college class. Last assignment! thank you..
A sample of bacteria is growing at an hourly rate of 10% compounded continuously. The sample began with 4 bacteria. How many bacteria will be in the sample after 18 hours?
Answer:
24
Step-by-step explanation:
The computation of the number of bacteria in the sample after 18 hours is shown below:
We assume the following things
P = 4 = beginning number of bacteria
rate = r = 0.1
Now
We applied the following formula
[tex]A = Pe^{rt}[/tex]
[tex]= 4\times e^{18\times0.1}[/tex]
[tex]=4e^{1.8}[/tex]
[tex]= 4\times6.049647464[/tex]
= 24
We simply applied the above formula to determine the number of bacteria after the 18 hours
There are 100 people in a wedding house, including children, men and women, and there are 100 pappadas to give with Sadya Te.
5 pappadam for males
3 pappadams for women
1/2 pappadam for children
Then there are how many children there are, how many men, how many women
Answer:
Two possible sets of answers.
5 men, 11 women and 42 children, or
10 men, 2 women and 88 children
Selamat Sadhya!
Step-by-step explanation:
M = number of men
W = number of women
100-M-W = number of children
Total number of pappadas
5M+3W+(100-M-W)/2 = 100
Solve for W
W = (100-9M)/5 .......................(1)
Examine equation (1).
In order to have W as a whole number, M must be multiple of 5
Therefore M = 5 or 10
If M = 5, W = (100-45)/5 = 11 and children = 100-5-11 = 84
If M = 10, W = (100-90)/5 = 2 and children = 100-10-2 = 88
A funeral director in Kumasi must assign 15 mourners to three limousines: 6 in the first limousine, 5 in the second limousine and 4 in the third. In how many ways can this be done?
Answer:
For me, ill say there are many ways it can be done.
First, u can pick at random. Or u can decide to do it boys and girls
Step-by-step explanation:
A statistical program is recommended.
The following observations are on stopping distance (ft) of a particular truck at 20 mph under specified experimental conditions.
32.1 30.9 31.6 30.4 31.0 31.9
The report states that under these conditions, the maximum allowable stopping distance is 30. A normal probability plot validates the assumption that stopping distance is normally distributed.
Required:
a. Does the data suggest that true average stopping distance exceeds this maximum value? Test the appropriate hypotheses using α= 0.01.
b. Calculate the test statistic and determine the P-value.
c. What can you conclude?
Answer:
We conclude that the true average stopping distance exceeds this maximum value.
Step-by-step explanation:
We are given the following observations that are on stopping distance (ft) of a particular truck at 20 mph under specified experimental conditions.;
X = 32.1, 30.9, 31.6, 30.4, 31.0, 31.9.
Let [tex]\mu[/tex] = true average stopping distance
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex] 30 {means that the true average stopping distance exceeds this maximum value}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > 30 {means that the true average stopping distance exceeds this maximum value}
The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean stopping distance = [tex]\frac{\sum X}{n}[/tex] = 31.32 ft
s = sample standard deviation = [tex]\sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }[/tex] = 0.66 ft
n = sample size = 6
So, the test statistics = [tex]\frac{31.32-30}{\frac{0.66}{\sqrt{6} } }[/tex] ~ [tex]t_5[/tex]
= 4.898
The value of t-test statistics is 4.898.
Now, at 0.01 level of significance, the t table gives a critical value of 3.365 at 5 degrees of freedom for the right-tailed test.
Since the value of our test statistics is more than the critical value of t as 4.898 > 3.365, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region.
Therefore, we conclude that the true average stopping distance exceeds this maximum value.
Help ASAP!!!!
Find the cos(A). Reduce the ratio if necessary.
Answer:
[tex]\boxed{Cos A = 3/5}[/tex]
Step-by-step explanation:
Cos A = Adjacent/Hypotenuse
Where Adjacent = 30 and Hypotenuse = 50
Cos A = 30/50
Cos A = 3/5
Answer:
[tex]\boxed{\mathrm{cos(A) = \frac{3}{5} }}[/tex]
Step-by-step explanation:
[tex]\displaystyle \mathrm{cos(\theta) = \frac{adjacent}{hypotenuse} }[/tex]
The adjacent side to angle A is 30 units. The length of the hypotenuse of the triangle is 50 units.
[tex]\displaystyle \mathrm{cos(A) = \frac{30}{50} }[/tex]
The fraction can be simplified.
One positive number is 4 more than twice another. Their product is 198
Answer:
[tex]\large \boxed{\sf \ \ 9 \text{ and } 22 \ \ }[/tex]
Step-by-step explanation:
Hello,
We can write that, x being the second number
(4 + 2*x) *x = 198
Let's solve this equation.
[tex](4+2x)x=198\\\\4x+2x^2=198 \\\\\text{*** subtract 198 from both sides ***}\\\\2x^2+4x-198 = 0\\\\\text{*** The product of the zeroes is -198/2=-99=-11*9 and their sum is -4/2=-2 ***}\\\\2x^2+4x-198=2(x-9)(x+11)=0\\\\x=9 \ \ or \ \ x=-11[/tex]
We are looking for positive number so the solution is 9.
And the first number is 4 + 2 * 9 = 4 + 18 = 22
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer:
22 and 9
Step-by-step explanation:
Let the positive number be x.
Let the other number be y.
x = 2y + 4
xy = 198
Substitute x as 2y + 4 in the second equation.
(2y+4)y = 198
2y² + 4y = 198
2y² + 4y - 198 = 0
2(y-9)(y+11) = 0
y-9=0 or y+11=0
y=9
y=-11
The product is 198, so y is positive.
x(9)=198
x=22
1. What are foci? 2. What is the first step to take to write the equation of a hyperbola? 3. How do you represent parts of a hyperbola algebraically?
Answer: see below
Step-by-step explanation:
1) Foci is plural for Focus. Since a hyperbola has two focus points, they are referred to as foci. The foci is where the sum of the distances from any point on the curve to the foci is constant.
2) When determining the equation of a hyperbola you need the following:
a) does the hyperbola open up or to the right?
b) what is the center (h, k) of the hyperbola?
c) What is the slope of the asymptotes of the hyperbola?
3) The equation of a hyperbola is:
[tex]\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1\qquad or\qquad \dfrac{(y-k)^2}{b^2}-\dfrac{(x-h)^2}{a^2}=1[/tex]
(h, k) is the center of the hyperbola± b/a is the slope of the line of the asymptotesThe equation starts with the "x" if it opens to the right and "y" if it opens upThe vertices of a triangle are given in the columns of the matrix T= [0,4,0,0,0,5] If [-1,0,0,-1] is found to preform a transformation, what are the coordinates of the transformed triangle?
Answer:
(0,0), (-4,0), (0,-5).
Step-by-step explanation:
Note: Matrices are not in proper format.
Consider the given matrix is
[tex]T=\begin{bmatrix}0&4&0\\0&0&5\end{bmatrix}[/tex]
It means vertices are (0,0), (4,0) and (0,5).
Transformation matrix is
[tex]A=\begin{bmatrix}-1&0\\0&-1\end{bmatrix}[/tex]
To find the coordinates of the transformed triangle multiply both matrices and calculate matrix AT.
[tex]AT=\begin{bmatrix}-1&0\\0&-1\end{bmatrix}\begin{bmatrix}0&4&0\\0&0&5\end{bmatrix}[/tex]
[tex]AT=\begin{bmatrix}\left(-1\right)\cdot \:0+0\cdot \:0&\left(-1\right)\cdot \:4+0\cdot \:0&\left(-1\right)\cdot \:0+0\cdot \:5\\ 0\cdot \:0+\left(-1\right)\cdot \:0&0\cdot \:4+\left(-1\right)\cdot \:0&0\cdot \:0+\left(-1\right)\cdot \:5\end{bmatrix}[/tex]
[tex]AT=\begin{bmatrix}0&-4&0\\ 0&0&-5\end{bmatrix}[/tex]
It means coordinates of the transformed triangle are (0,0), (-4,0), (0,-5).
Answer:
A
Step-by-step explanation:
E2020
Which equation represents an exponential function with an intitial value of 500? f(x) = 100(5)^x, f(x) = 100(x)^5, f(x) = 500(2)^x, f(x) = 500(x)^2
Answer:
f(x) = 500(2)^x
Step-by-step explanation:
Let's assume the initial x value is 0
500(0)^2 = 0
100(0)^5 = 0
500(2)^0 = 500
500(0)^2 = 0
Answer:
C
Step-by-step explanation:
Edge
The population mean annual salary for environmental compliance specialists is about $63 comma 500. A random sample of 31 specialists is drawn from this population. What is the probability that the mean salary of the sample is less than $60 comma 500? Assume sigmaequals$6 comma 200.4
Answer:
0.0035289
Step-by-step explanation:
From the question;
mean annual salary = $63,500
n = sample size = 31
Standard deviation = $6,200
Firstly, we calculate the z-score of $60,500
Mathematically;
z-score = x-mean/SD/√n = (60500-63500)/6200/√(31) = -2.6941
So we want to find the probability that P(z < -2.6941)
We can get this from the standard normal table
P( z < -2.6941) = 0.0035289
rewrite(6+3)9using the distributive property of multiplication over Addition
Write an equation of the line that passes through the point (5, -8) with slope 5
Answer:
y=5x-33
Step-by-step explanation:
We are given a point and a slope. Use the slope-intercept formula.
[tex]y-y_{1} =m(x-x_{1} )[/tex]
where (x1, y1) is a point on the line and m is the slope.
The slope is 5 and the point is (5,-8).
x1=5
y1= -8
m=5
[tex]y--8 =5(x-5 )[/tex]
We want to find the equation of the line, which is y=mx+b (m is the slope and b is the y-intercept). Therefore, we must get y by itself on one side of the equation.
[tex]y+8=5(x-5)[/tex]
First, distribute the 5 on the right side of the equation. Multiply each term inside the parentheses by 5.
[tex]y+8=(5*x)+(5*-5)[/tex]
[tex]y+8=5x-25[/tex]
Next, subtract 8 from both sides since it is being added on to y.
[tex]y+8-8=5x-25-8[/tex]
[tex]y=5x-25-8[/tex]
[tex]y=5x-33[/tex]
The equation of the line is: y=5x-33
Which of the following is 18x2/6x simplified?
3x
9x
4x
x/3
Answer:
3x
Step-by-step explanation:
18 x^2 / 6x
Divide the numbers
18/6 =3
Then divide the variables
x^2 /x = x
The result is 3x
Answer:
3x
Step-by-step explanation:
18x^2/6x
x^2 / x is x
18x/6
18/6 is 3
it all simplifies into 3x
The product of 2 numbers is 918 one number is 37 less than the other what are the numbers
What is the measure of XYZ, given that yz and xy are tangent to ?
A.
212
B.
127
C.
106
D.
53
Answer:
D) 53 Degrees.
Step-by-step explanation:
Things we need to establish beforehand: We know that Lines OZ and OX are equal because they are both radii of the circle. We can make an Iscoceles traingle by drawing a line between ZX. We know angle YZO and angle YXO is a right angle because YZ and XY are tangent to the circle. The Arc angle is the same angle as angle ZOX.
1) Find angles OZX and OXZ. these will be 26.5, because 180-127 is 53, which is the sum of the two angles. the two angles are the same, so divide 53 by 2.
2) Find Angles XZY and ZXY. We know that YZO is a right angle, and both XZY and OZX make up this right angle so XZY + OZX = 90. OZX is 26.5, so 90-26.5=XZY. XZY = ZXY, so both angles equal 63.5.
3) Now that we have two angles of triangle XYZ, we can find angle XYZ. 180-(XZY+ZXY)=XYZ, so (180-(63.5+63.5)=53. Angle XYZ=53.
A bag contains two red marbles, four green ones, one lavender one, four yellows, and six orange marbles. HINT [See Example 7.] How many sets of four marbles include one of each color other than lavender
Answer:
192
Step-by-step explanation:
There are a total of 15 marbles . When the lavender is left out 14 remain.
Using combinations we find that each of the four color marbles can be chosen in the following way.
2C1*4C1*4C1*6C1= 2*4*4*6= 192
We select one of the two red marbles , one of the four green marbles, one of the four yellow marbles, one of the 6 orange marbles leaving the lavender out.. We apply combinations and then multiply to get the answer.
5-(m-4)= 2m+ 3 (m-1)
Answer: m= 2
Step-by-step explanation: First Expand the brackets! 5-m+4=2m+3m-3
Then Do the addition and subtraction in both sides!
9-m=5m-3
Then bring m to one side and the constants the other!
6m=12
Then solve for m where m=2
If you want you can check your answer bu substituting m as 2. 5-(2-4)=7 and 2(2) + 3(2-1) which also = 7.
Determine the value of X....... Please
Answer:
x is approximately 53°
Answer:52.64°
Step-by-step explanation:
opp=31
hyp=39
sin x° =[tex]\frac{opp}{hyp}[/tex]
sin x°=31/39
sin x°=0.7949
x=[tex]sin^{-1} (0.7949)\\[/tex]
x=52.64
Two hundred undergraduate students were randomly selected from a university that has 47,000 students in total. Systolic blood pressure was tested on the 200 students. The sample mean is 118.0 mmHg and the sample standard deviation is 11.0 mmHg. Please construct a 95% confidence interval for the population mean of students' systolic blood pressure. Which one of the following results is the closest to your answer? (Hint: use 1.96 as the critical z-value)
a. [110.5, 125.5]
b. [112.5, 123.5]
c. [114.5, 121.5]
d. [116.5, 119.5]
Answer:
The correct option is d
Step-by-step explanation:
From the question we are told that
The population size is [tex]N = 47000[/tex]
The sample size is [tex]n = 200[/tex]
The sample mean is [tex]\= x = 118.0 \ mmHg[/tex]
The standard deviation is [tex]\sigma = 11.0 \ mmHg[/tex]
Given that the confidence level is 95% then the level of significance can be calculated as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5 \%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from z-table , the value is [tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.05 }{2} } = 1.96[/tex]
The reason we are obtaining critical value of [tex]\frac{\alpha }{2}[/tex] instead of [tex]\alpha[/tex] is because
[tex]\alpha[/tex] represents the area under the normal curve where the confidence level interval ( [tex]1-\alpha[/tex]) did not cover which include both the left and right tail while
[tex]\frac{\alpha }{2}[/tex] is just the area of one tail which what we required to calculate the margin of error .
NOTE: We can also obtain the value using critical value calculator (math dot armstrong dot edu)
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } *\frac{\sigma }{ \sqrt{n} }[/tex]
substituting values
[tex]E = 1.96 *\frac{11.0 }{ \sqrt{200} }[/tex]
[tex]E = 1.5245[/tex]
The 95% confidence level interval is mathematically represented as
[tex]\= x - E < \mu < \= x + E[/tex]
substituting values
[tex]118.0 - 1.5245 < \mu < 118.0 + 1.5245[/tex]
[tex]116.5< \mu < 119.5[/tex]
[tex][116.5 , 119.5][/tex]
If possible, find A − B.
Answer:
-2 7
-1 -6
Step-by-step explanation:
I used a calculator.
Fake Question: Should Ujalakhan01 be a moderator? (If you could answer I'd appreciate it haha.)
Real Question: Simplify [tex](a^5*a^4)+(b^2*b^3)-(c^7*c^6)[/tex]
Answer:
[tex]a^9 + b^ 5 + c^{13}[/tex]
Step-by-step explanation:
[tex](a^5 \times a^4)+(b^2 \times b^3) + (c^7 \times c^6)[/tex]
When bases are same and it is multiplication, then add the exponents.
[tex](a^{5+4})+(b^{2+3})+(c^{7+6})[/tex]
[tex](a^9)+(b^ 5) + (c^{13})[/tex]
Apply rule : [tex](a^b)=a^b[/tex]
[tex]a^9 + b^ 5 + c^{13}[/tex]
Answer:
[tex]a^9+b^5-c^{13[/tex]
Step-by-step explanation:
[tex](a^5*a^4) + (b^2*b^3)-(c^7*c^6)[/tex]
When bases are same, powers are to be added.
=> [tex](a^{5+4})+(b^{2+3})-(c^{7+6})[/tex]
=> [tex]a^9+b^5-c^{13[/tex]
Pls help!! Thank you sooooo much if you help me on this, pls show proof
Answer:
√468 = 6√13
Step-by-step explanation:
ABCDEF is a regular hexagon of side length 6.
A'B'C'D'E'F' is the reflection of ABCDEF across BC.
The line FE' is the line from F to E'. It is also the hypotenuse of the right triangle FEE'. FE = 6, and EE' = 4a, where a is the apothem of the hexagon.
To find the apothem, draw the 30-60-90 triangle formed by the apothem and the radius (essentially 1/12th of the hexagon).
Using properties of a 30-60-90 triangle:
a = (6/2)√3
a = 3√3
4a = 12√3
Using Pythagorean theorem:
x² = (6)² + (12√3)²
x² = 36 + 432
x = √468
x = 6√13
The perimeter of the rectangle below is 132 units.
Answer:
The answer is 29 unit.
Step-by-step explanation:
Here,
given that,
DC (l) =4z+1
CD (b)=5z+2
perimeter (p)= 132
now,
perimeter of rectangle (p) is= 2(l+b)
or, 132 = 2×{(4z+1)+(5z+2)}
or, 132= 2×(9z+3)
or, 132= 18z+6
or, 18z=132-6
or, z=126/18
or, z= 7.
therefore, 4z+1=4×7+1=29
5z+2= 5×7+2=37.
As our question is about to find AB,
DC = AB. (as opposite side of rectangle is equal).
so, the valueof AB is 29unit.
Hope it helps...
Express the following as an expression: subtract y form 5 A 5y B 5-y C y-5 D y / 5
Answer:
5 - yStep-by-step explanation:
Given the statement "subtract y from 5", we are to express the statement mathematically. Expressing mathematically is as shown;
5 - y
Since we are removing the value of a variable y from 5, the variable we are subtracting will come last in the expression. For example say, we want to subtract 5 from 10, since we are taking out 5 from 10, the value of 5 will come last in the expression i.e 10 - 5 not 5 - 10.
According to the statement in question, we can see that we are to subtract y from 5, therefore y will come last in our expression and will be expressed as 5 - y
evaluate the following when x=3
[tex]y = - 3 \times 4^{x} [/tex]
evaluate the following when x=-2
[tex]f(x) = 6 \times ( \frac{1}{3} )^{x} [/tex]
evaluate the following when x=4
[tex]f(x) = \frac{1}{4}\times {2}^{x} [/tex]
(help me with this please)
Answer:
y=-192
Step-by-step explanation:
Find the area of the shaded region.
Answer:
The answer would be 27π
Step-by-step explanation:
the area is 36pi and the shaded region is 3/4 of the circle, as a 90 degree angle is 1/4 of a 360 degree circle. 3/4 of 36pi is 27pi
Answer:
27π
Step-by-step explanation:
Imagine that this circle was complete. As you can see, only 3 / 4th of the circle remains, with respect to this whole circle. This is not an assumption, though it does appear so. The portion missing forms a right angle with the radii, and thus by definition, that portion is a quarter of a circle.
________
The simplest approach is to assume this circle to be complete, and solve for that area - provided the radii being 6 inches. Afterward we can take 3 / 4th of this area, solving for the area of the shaded region. After all, this circle is 3 / 4ths of our " complete circle. "
Area of an Imaginary " Complete Circle " = π[tex]r^2[/tex] = π[tex](6)^2[/tex] = 36π,
Area of Shaded Region ( 3 / 4th of the " Complete Circle " ) = [tex]\frac{3}{4}[/tex]( 36π ) = 27π
27π is the exact area of the shaded region. If you want an approximated area, take π as 3.14, or a similar quantity to that.
The ratio of the legs of a trapezoid is 1:2, and the sum of the angles adjacent to the bigger base is 120°. Find the angle measures of the given trapezoid.
Answer:
The angle measures of the trapezoid consists of two angles of 60º adjacent to the bigger base and two angles of 120º adjacent to the smaller base.
Step-by-step explanation:
A trapezoid is a quadrilateral that is symmetrical and whose bases are of different length and in every quadrilateral the sum of internal angles is equal to 360º. The bigger base has the pair of adjacent angles of least measure, whereas the smaller base has the pair of adjancent angles of greatest measure.
Since the sum of the angles adjacent to bigger base is 120º, the value of each adjacent angle ([tex]\alpha[/tex]) is obtained under the consideration of symmetry:
[tex]2\cdot \alpha = 120^{\circ}[/tex]
[tex]\alpha = 60^{\circ}[/tex]
The sum of the angles adjacent to smaller base is: ([tex]\alpha = 60^{\circ}[/tex])
[tex]2\cdot \alpha + 2\cdot \beta = 360^{\circ}[/tex]
[tex]2\cdot \beta = 360^{\circ} - 2\cdot \alpha[/tex]
[tex]\beta = 180^{\circ}-\alpha[/tex]
[tex]\beta = 180^{\circ} - 60^{\circ}[/tex]
[tex]\beta = 120^{\circ}[/tex]
The angle measures of the trapezoid consists of two angles of 60º adjacent to the bigger base and two angles of 120º adjacent to the smaller base.
¿Cuál es la fórmula para calcular el área de cualquier triangulo?
¡Hola! ¡Ojalá esto ayude!
--------------------------------------------------------------------------------------------------------
La fórmula para calcular el área de cualquier triángulo es:
base multiplicada por la altura y dividida por dos.
||
||
||
\/
Bh / 2.