Three identical resistors are connected in series to a battery. If the current of 12 A flows from the battery, how much current flows through any one of the resistors

Answers

Answer 1

Answer:

Current that flows through any one of the resistors has a value of 12 amperes.

Explanation:

When a group of resistors are connected in series, the same current flows through each resistor. According to the Ohm's Law, the circuit can be represented as follows:

[tex]V_{batt} = i\cdot (R_{1}+R_{2}+R_{3})[/tex]

[tex]i = \frac{V_{batt}}{R_{1}+R_{2}+R_{3}}[/tex]

Where:

[tex]V_{batt}[/tex] - Voltage of the battery, measured in volts.

[tex]R_{1}[/tex], [tex]R_{2}[/tex], [tex]R_{3}[/tex] - Electric resistance of the first, second and third resistors, measured in ohms.

[tex]i[/tex] - Current, measured in amperes.

If [tex]R_{1} = R_{2} = R_{3} = R[/tex], then:

[tex]i = \frac{V_{batt}}{3\cdot R}[/tex]

Current that flows through any one of the resistors has a value of 12 amperes.

Answer 2

The current flows via any of the resistors should have a value of 12 amperes.

Ohm law:

At the time When a group of resistors are linked in series, so there is a similar current flow via each resistor.

Here the circuit should be

vbatt = i.(R1 + R2+ R3)

i = Vbatt/R1 + R2 + R3

here

Vbatt means the voltage of the battery

R1,R2, and R3 means the resistance of the first, second and third resistors

I means the current

So, in the case when

R1 = R2 = R3 = R

So,

i = Vbatt/3.R

Learn more about current here: https://brainly.com/question/14956680


Related Questions

You would like to store 8.1 J of energy in the magnetic field of a solenoid. The solenoid has 620 circular turns of diameter 6.6 cm distributed uniformly along its 33 cm length.
A. How much current is needed?
_____________ A
B. What is the magnitude of the magnetic field inside the solenoid?
________________T
C. What is the energy density (energy/volume) inside the solenoid?
________________ kJ/m^3

Answers

Answer:

(a) The current needed is 56.92 A

(b) The magnitude of the magnetic field inside the solenoid is 0.134 T

(c) The energy density inside the solenoid is 7.144 kJ/m³

Explanation:

Given;

energy stored in the magnetic field of solenoid, E = 8.1 J

number of turns of the solenoid, N = 620 turns

diameter of the solenoid, D = 6.6 cm = 0.066 m

radius of the solenoid, r = D/2 = 0.033 m

length of the solenoid, L = 33 cm = 0.33 m

Inductance of the solenoid is given as;

[tex]L= \frac{\mu_o N^2 A}{l}[/tex]

where;

A is the area of the solenoid = πr² = π (0.033)² = 0.00342 m²

μ₀ is permeability of free space = 4π x 10⁻⁷ H/m

[tex]L= \frac{4\pi*10^{-7} *620^2 *0.00342}{0.33} \\\\L = 0.005 \ H[/tex]

(A). How much current needed

Energy stored in magnetic field of solenoid is given as;

[tex]E = \frac{1}{2} LI^2\\\\[/tex]

Where;

I is the current in the solenoid

[tex]E = \frac{1}{2} LI^2\\\\I^2 = \frac{2E}{L}\\\\I = \sqrt{\frac{2*8.1}{0.005}}\\\\ I = 56.92 \ A[/tex]

(B) The magnitude of the magnetic field inside the solenoid

B = μ₀nI

where;

n is number of turns per unit length

B = μ₀(N/L)I

B = (4π x 10⁻⁷)(620/0.33)(56.92)

B = 0.134 T

(C) The energy density (energy/volume) inside the solenoid

[tex]U_B = \frac{B^2}{2\mu_0} \\\\U_B = \frac{(0.134)^2}{2*4\pi*10^{-7}} \\\\U_B = 7143.54 \ J/m^3\\\\U_B = 7.144 \ kJ/m^3[/tex]

A charged particle moves into a region of uniform magnetic field B (pointing out of the page), goes through half a circle, and exits the region. The particle is either a proton or an electron. It spends 130 ns in the region. (a) What is the magnitude of B

Answers

The figure is missing, so i have attached it

Answer:

Magnitude of B = 0.252 T

Explanation:

From the image, considering the point at which it enters the field-filled region, the velocity vector is pointing downwards. The field points out of the page so that; (v→) × (B→) points leftward, points leftward which indeed seems to be the direction it is pushed. Therefore q > 0 and thus it's a proton.

The equation for the period since it goes through half circle is;

T = 2t = 2πm/(e|B|)

Where;

m is mass of proton = 1.67 × 10^(-27) kg

e is electron charge = 1.60 x 10^(-19) Coulombs.

|B| is magnitude of magnetic field

t = 130 ns = 130 × 10^(-9) s

Making |B| the subject, we have;

|B| = πm/et

Thus, plugging in all relevant values, we have;

|B| = π(1.67 × 10^(-27))/(1.60 x 10^(-19) × 130 × 10^(-9)) = 0.252 T

The electron beam inside a television picture tube is 0.40 {\rm mm} in diameter and carries a current of 50 {\rm \mu A}. This electron beam impinges on the inside of the picture tube screen.
How many electrons strike the screen each second?
The electrons move with a velocity of 4.0\times10^7\;{\rm m/s}. What electric field strength is needed to accelerate electrons from rest to this velocity in a distance of 5.0 {\rm mm}?
Each electron transfers its kinetic energy to the picture tube screen upon impact. What is the power delivered to the screen by the electron beam? (Hint: What potential difference produced the field that accelerated electrons? This is an emf.)

Answers

Answer:

A.3.13x10^14 electrons

B.330A/m²

C.9.11x10^5N/C

D. 0.23W

.pls see attached file for explanations

A parallel–plate capacitor is initially charged by connecting it to a battery. The battery is then disconnected. If the distance between the plates is increased, what happens to the charge on the capacitor and the voltage across it?

a. The charge remains fixed and the voltage decreases.
b. The charge decreases and the voltage remains fixed.
c. The charge remains fixed and the voltage increases.
d. The charge decreases and the voltage increases.

Answers

Answer:

t the battery of potential difference  V be used to charge the capacitor of capacitance  C.

∴ the charge stored in the capacitor      q=CV

Now the battery is disconnected, so the the charge  of the capacitor becomes constant

i.e    q=constant     OR     CV=constant                .............(1)

Capacitance of parallel plate capacitor        C=  

d

Aϵ  

o

​  

 

​  

 

So if the distance between the plates is increased, then the capacitance will decrease which is compensated by the increase  in voltage across the capacitor according to equation (1).

Also the energy stored in the capacitor          E=  

2C

q  

2

 

​  

 

⟹E∝  

C

1

​  

                (∵q=constant)

Thus energy will increase due to the decrease in capacitance.

Explanation:

What do Equations 1 and 2 predict will happen to the single-slit diffraction pattern (intensity, fringe width, and fringe spacing) as the slit width is increased.

Equation 1:
Sinθ = mλ/ω

Equaiton 2:
I= Io [Sinθ (πωλ/πωλ/Rλ)

Answers

Answer:

the firtz agrees with the expression for the shape of the curve of diracion of a slit

Explanation:

The diffraction phenomenon is described by the expression

              a sin θ = m λ

where a is the width of the slit, t is the angle from the center of the slit, l is the wavelength and m is an integer that corresponds to the maximum diffraction.

the previous equation qualitatively describes the curve of the diffraction phenomenon the equation takes the form

             I = I₀ [(sin ππ a y / R λ) / π a y / Rλ]²

             I = I₀ ’[sin π a y /Rλ]²

             I₀ ’= I₀ / (π a y /Rλ)²

By reviewing the two expressions given

equation 1

 w sin θ = m λ

where w =a  w   is the slit width

we see that the firtz agrees with the expression for the shape of the curve of diracion of a slit

Equation 2

the squares are missing

A solenoid of 200 turns carrying a current of 2 A has a length of 25 cm. What is the magnitude of the magnetic field at the center of the solenoid?

Answers

Answer:

Explanation:

For magnetic field in a solenoid , the formula is

B = μ₀ n I

Where n is number of turns per unit length and i is current

Putting the values

B = 4π x 10⁻⁷ x (200 / .25) x 2

= 2.00 x 10⁻³ T  

Which is true about refraction from one material into a second material with a greater index of refraction when the incident angle is, say, 30º? At the interface, the ray bends toward the normal.

Answers

Answer:

Explanation:

Refraction is defined as the bending of light rays as an incident ray pass from one medium to another. If the incident ray is passing from the media with low refractive index to a greater refractive index, the refracted ray tends to bend away from the normal.

Refractive index is the ratio of the sin of angle of incidence to the sine of angle of refraction.

n = sin i/sin r

For us to have a greater index of refraction, the denominator must be lesser than the numerator. This means that the angle of refraction must be smaller and if the angle of refraction must get smaller, this means that the refracted ray must bend towards the normal

You obtain a 100-W light bulb and a 50-W light bulb. Instead of connecting them in the normal way, you devise a circuit that places them in series across normal household voltage. If each one is an incandescent bulb of fixed resistance, which statement about these bulbs is correct?

Answers

Answer:

When they are connected in series

     The  50 W bulb glow more than the 100 W bulb

Explanation:

From the question we are told that

     The power rating  of the first bulb is [tex]P_1 = 100 \ W[/tex]

      The power rating of the second bulb is  [tex]P_2 = 50 \ W[/tex]

     

Generally the power rating of the first bulb is mathematically represented as

      [tex]P_1 = V^2 R[/tex]

Where  [tex]V[/tex] is the normal household voltage which is constant for both bulbs

  So  

        [tex]R_1 = \frac{V^2}{P_1 }[/tex]

substituting values

        [tex]R_1 = \frac{V^2}{100}[/tex]

Thus the resistance of the second bulb would be evaluated as

       [tex]R_2 = \frac{V^2}{50}[/tex]

From the above calculation we see that

        [tex]R_2 > R_1[/tex]

This power rating of the first bulb can also be represented mathematically as  

        [tex]P_ 1 = I^2_1 R_1[/tex]

This power rating of the first bulb can also be represented mathematically as    

       [tex]P_ 2 = I^2_2 R_2[/tex]

Now given that they are connected in series which implies that the same current flow through them so

       [tex]I_1^2 = I_2^2[/tex]

This means  that

       [tex]P \ \alpha \ R[/tex]

So  when they are connected in series

     [tex]P_2 > P_1[/tex]

This means that the 50 W bulb glows more than the 100 \ W bulb

15pts! brainliest to who answers!If Kyla picks up a grocery bag, using 10 N of force to lift it 1.5 m off the floor, how much work did Kyla do on the bag?

Answers

Explanation:

work = force x distance

w = 10 x 1.5 = 15Nm

The work done on the bag is the product of the force applied on it and the displacement of the bag. The work done to lift the bag up to 1.5 m by applying a force of 10 N is 15 J.

What is work done ?

When a force applied to an object make a displacement of  the body or stopes its motion, the force is said to be work done on the object. Thus, work done can be taken as the product of force and displacement.

Work done like force is a vector quantity thus characterized with magnitude and direction.  Work done is equivalent to the energy required to make the object displaced.

Given the force = 10 N

displacement = 1.5 m

work done  = force × displacement

w = 10 N × 1.5 m = 15 J.

Therefore, the work done on the car is 15 J.

Find more on work done:

brainly.com/question/30073908

#SPJ6

A toboggan is sliding down an icy slope. As it goes down, _________ does work on the toboggan and ends up converting __________ energy to _________ energy.

Answers

Answer:

As it goes down, weight does work on the toboggan and it ends up converting gravitational potential energy to kinetic energy.

1. weight

2. gravitational potential energy to kinetic energy.

Explanation:

As it goes down, weight does work on the toboggan and it ends up converting gravitational potential energy to kinetic energy.

work done by toboggan = weight × distance

W = mg and the distance is down the icy slope

By using law of conservation of energy, energy can neither be created nor destroyed, but can be conserve from one form to another in a closed system.

Toboggan converts gravitational potential energy (mgh) to kinetic energy(¹/₂mv²)

Suppose a space vehicle with a rest mass of 150 000 kg travels past the International Space Station at a constant speed of 2.6 x 108 m/s with respect to the I.S.S. When an observer on the I.S.S. measures the moving vehicle, her measurement of the space vehicle length is 25.0 m. Determine the relativistic mass of the space vehicle. Determine the length of the space vehicle as measured by an astronaut on the space vehicle.

Answers

Answer:

m = 300668.9 kg

L₀ = 12.47 m

Explanation:

The relativistic mass of the space vehicle is given by the following formula:

[tex]m = \frac{m_{0}}{\sqrt{1-\frac{v^{2} }{c^{2}} } }[/tex]

where,

m = relativistic mass = ?

m₀ = rest mass = 150000 kg

v = relative speed = 2.6 x 10⁸ m/s

c = speed of light = 3 x 10⁸ m/s

Therefore

[tex]m = \frac{150000kg}{\sqrt{1-\frac{(2.6 x 10^{8}m/s)^{2} }{(3 x 10^{8}m/s)^{2}} } }[/tex]

m = 300668.9 kg

Now, for rest length of vehicle:

L = L₀√(1 - v²/c²)

where,

L = Relative Length of Vehicle = 25 m

L₀ = Rest Length of Vehicle = ?

Therefore,

25 m = L₀√[1 - (2.6 x 10⁸ m/s)²/(3 x 10⁸ m/s)²]

L₀ = (25 m)(0.499)

L₀ = 12.47 m

The magnetic force per meter on a wire is measured to be only 45 %% of its maximum possible value. Calculate the angle between the wire and the magnetic field.

Answers

Answer:

27°

Explanation:

The force is proportional to the sine of the angle between the wire and the magnetic field. (See the ref.)

So theta = arcsin(0.45)

=27°

The angle between the wire and the magnetic field is 27°.

Calculation of the angle:

Since The magnetic force per meter on a wire is measured to be only 45 %

So here we know that The force should be proportional to the sine of the angle between the wire and the magnetic field

Therefore,

theta = arcsin(0.45)

=27°

Hence, The angle between the wire and the magnetic field is 27°.

Learn more about wire here: https://brainly.com/question/24733137

A Buchner funnel uses _______ when separating a(n) _______ by filtration.

Answers

Explanation:

A Buchner funnel uses perforatet glass plate when separating a(n) solide from liquid by filtration.

[tex]hope \: this \: helps[/tex]

A sinusoidal wave travels along a string. The time for a particular point to move from maximum displacement to zero is 0.17 s. What are the (a) period and (b) frequency? (c) The wavelength is 1.5 m; what is the wave speed?

Answers

Answer:

31

Explanation:

A small solid conductor with radius a is supported by insulating, nonmagnetic disks on the axis of a thin-walled tube with inner radius b. The inner andouter conductors carry equal currents i in oppositedirections.

Required:
a. Use Ampere's Law to find the magnetic field at any pointin the volume between the conductors.
b. Write the expression for the flux dΦB through anarrow strip of length l parallel to the axis , of width dr, at a distancer from the axis of the cableand lying in a plane containing the axis.
c. Integrate your expression from part B over the volumebetween the two conductors to find the total flux produced by acurrent i in the central conductor.
d. Use equation U=(1/2)LI2 to calculate the energy stored in the magnetic field for alength l of the cable.

Answers

Answer:

Pls see attached file

Explanation:

A trash compactor can compress its contents to 0.350 times their original volume and 4 times denser than their original density. Neglecting the mass of air expelled, what factor is the old density of the rubbish

Answers

Answer:

2.8

Explanation:

Using p = m/v; (old density)

p' = m/v (new density)

=m/0.350 V

p'/p = (m/0.350V)/(m/v) = 1/0.350 = 2.86

It takes 144 J of work to move 1.9 C of charge from the negative plate to the positive plate of a parallel plate capacitor. What voltage difference exists between the plates

Answers

Answer:

151.58 V

Explanation:

From the question,

The work done in a circuit in moving a charge is given as,

W = 1/2QV..................... Equation 1

Where W = Work done in moving the charge, Q = The magnitude of charge, V = potential difference between the plates.

make V the subject of the equation

V = 2W/Q.................. Equation 2

Given: W = 144 J. Q = 1.9 C

Substitute into equation 2

V = 2(144)/1.9

V = 151.58 V

Unpolarized light of intensity I0 = 950 W/m2 is incident upon two polarizers. The first has its polarizing axis vertical, and the axis of the second is rotated θ = 65° from the vertical.

Required:
a. What is the intensity of the light after it passes through the first polarizer in W/m2?
b. What is the intensity of the light after it passes through the second polarizer in W/m2?

Answers

Answer:

Intensity of the light (first polarizer) (I₁) = 425 W/m²

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

Explanation:

Given:

Unpolarized light of intensity (I₀) = 950 W/m²

θ = 65°

Find:

a. Intensity of the light (first polarizer)

b. Intensity of the light (second polarizer)

Computation:

a. Intensity of the light (first polarizer)

Intensity of the light (first polarizer) (I₁) = I₀ / 2

Intensity of the light (first polarizer) (I₁) = 950 / 2

Intensity of the light (first polarizer) (I₁) = 425 W/m²

b. Intensity of the light (second polarizer)

Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ

Intensity of the light (second polarizer) (I₂) = (425)(0.1786)

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

g How many rpm would a 25 m diameter Ferris wheel need to travel if a 75 kg person were to experience an effective weight of 810 N at the lower-most point of the ride

Answers

Answer:

2.52 rpm

Explanation:

given that

diameter of the wheel, d = 25 m

Mass of the person, m = 75 kg

Weight experienced, N = 810 N

Since diameter is 25, radius then is 25/2 = 12.5 m

We all know that,

v = rw

Also, the passengers weight is equal to the centripetal acceleration, and thus

mg = mv²/r

Substitute for v, we have

mg = m/r * (rw)²

mg = mr²w²/r

g = rw²

If we make w the subject of formula, we have

w² = g/r

w = √(g/r)

mg = 810

75 * g = 810

g = 810 / 75

g = 1.08 m/s²

w = √(g/r)

w = √(1.08 / 12.5)

w = √0.0864

w = 0.294 rad/s

Since the question asked us in rpm, we convert to rpm

0.294 * (60 / 2π)

2.52 revolution per minute.

Suppose I am viewing light through a camera lens (i.e. a circular aperture). If I want a wider field of view I should _____ the diameter of the lens.

Answers

Answer:

Increase

Explanation:

Because For a given focal length, a lens with a larger front element will generally be faster. That is, it'll have a larger maximum aperture, allowing a shorter exposure time, But a larger aperture requires larger elements to maintain the same angle of view

Isaac drop ball from height og 2.0 m, and it bounces to a height of 1.5 m what is the speed before and after the ball bounce?

Answers

Explanation:

It is given that, Isaac drop ball from height of 2.0 m, and it bounces to a height of 1.5 m.

We need to find the speed before and after the ball bounce.

Let u is the initial speed of the ball when he dropped from height of 2 m. The conservation of energy holds here. So,

[tex]\dfrac{1}{2}mu^2=mgh\\\\u=\sqrt{2gh} \\\\u=\sqrt{2\times 9.8\times 2} \\\\u=6.26\ m/s[/tex]

Let v is the final speed when it bounces to a height of 1.5 m. So,

[tex]\dfrac{1}{2}mv^2=mgh\\\\v=\sqrt{2gh} \\\\v=\sqrt{2\times 9.8\times 1.5} \\\\v=5.42\ m/s[/tex]

So, the speed before and after the ball bounce is 6.26 m/s and 5.42 m/s respectively.

A negatively charged object is located in a region of space where the electric field is uniform and points due north. The object may move a set distance d to the north, east, or south. Write the three possible movements by the change in electric potential energy (Ue) of the object.

Answers

Answer:

the three possible movements by the change in electric potential energy (Ue) of the object are NORTH EAST SOUTH

Explanation:

This is because When the object moves south, the force is in the direction of the displacement, and positive work is done with decreasing electric potential energy.

The opposite is true if the particle moves north—that is, negative work is done with increasing electric potential energy.

No work is done and the electric potential energy is constant if the motion is perpendicular to the electric field.

An aluminum cup of mass 150 g contains 800 g of water in thermal equilibrium at 80.0°C. The combination of cup and water is cooled uniformly so that the temperature decreases by 1.50°C per minute. At what rate is energy being removed by heat? Express your answer in watts.

Answers

Answer:

Heat Flow Rate : ( About ) 87 W

Explanation:

The heat flowing out of the system each minute, will be represented by the following equation,

Q( cup ) + Q( water ) = m( cup ) [tex]*[/tex] c( al ) [tex]*[/tex] ΔT + m( w ) [tex]*[/tex] c( w ) [tex]*[/tex] ΔT

So as you can see, the mass of the aluminum cup is 150 grams. For convenience, let us convert that into kilograms,

150 grams = .15 kilograms - respectively let us convert the mass of water to kilograms,

800 grams = .8 kilograms

Now remember that the specific heat of aluminum is 900 J / kg [tex]*[/tex] K, and the specific heat of water = 4186 J / kg [tex]*[/tex] K. Therefore let us solve for " the heat flowing out of the system per minute, "

Q( cup ) + Q( water ) = .15 [tex]*[/tex] ( 900 J / kg [tex]*[/tex] K )  [tex]*[/tex] 1.5 + .8 [tex]*[/tex] ( 4186 J / kg [tex]*[/tex] K ) [tex]*[/tex] 1.5,

Q( cup ) + Q( water ) = 5225.7 Joules

And the heat flow rate should be Joules per minute,

5225.7 Joules / 60 seconds = ( About ) 87 W

When a 20.0-ohm resistor is connected across the terminals of a 12.0-V battery, the voltage across the terminals of the battery falls by 0.300 V. What is the internal resistance of this battery

Answers

Answer:

The  internal resistance is  [tex]r = 0.5 \ \Omega[/tex]

Explanation:

From the question we are told that the resistance of

   The  resistance of the resistor is  [tex]R = 20.0\ \Omega[/tex]

    The  voltage is [tex]V = 12.0 \ V[/tex]

     The magnitude of the voltage fall is  [tex]e = 0.300\ V[/tex]

Generally the current flowing through the terminal due to the voltage of the battery  is  mathematically represented as

        [tex]I = \frac{V}{R}[/tex]

substituting values

        [tex]I = \frac{12.0 }{20 }[/tex]

       [tex]I = 0.6 \ A[/tex]

The internal resistance of the battery is mathematically represented as

      [tex]r = \frac{e}{I}[/tex]

substituting values

     [tex]r = \frac{0.300}{ 0.6 }[/tex]

    [tex]r = 0.5 \ \Omega[/tex]

The internal resistance of the battery is 0.5 ohms.

To calculate the internal resistance of the battery, we use the formula below

Formula:

(V/R)r = V'............. Equation 1

Where:

V = Voltage across the terminal of the batteryR = Resistance connected across the batteryr = internal resistance of the batteryV' = voltage drop of the battery.

Make r the subject of the equation

r = V'R/V............ Equation 2

From the question,

Given:

V = 12 VR = 20 ohmsV' = 0.3 V

Substitute these values into equation 2

r = (0.3×20)/12r = 6/12r = 0.5 ohms.

Hence, The internal resistance of the battery is 0.5 ohms.

Learn more about internal resistance here: https://brainly.com/question/14883923

Suppose a 225 kg motorcycle is heading toward a hill at a speed of 29 m/s. The two wheels weigh 12 kg each and are each annular rings with an inner radius of 0.280 m and an outer radius of 0.330 m. How high can it coast up the hill, if you neglect friction in m?
a) m = 180 kg
b) v = 29 m/s
c) h = 32 m

Answers

Answer:

It can coast uphill 6.2m

Explanation:

See attached file pls

A block with a mass of 0.28 kg is attached to a horizontal spring. The block is pulled back from its equilibrium position until the spring exerts a force of 1.0 N on the block. When the block is released, it oscillates with a frequency of 1.2 Hz. How far was the block pulled back before being released?

Answers

Answer:

Explanation:

For spring

[tex]n=\sqrt{\frac{k}{m} }[/tex]

where n is frequency of oscillation and k is force constant and m is mass

Putting the values

[tex]1.2=\sqrt{\frac{k}{.28} }[/tex]

k = .4032 N/m

F= k x

where F is force , k is force constant and x is extension

Putting the given values

1 = .4032 x

x = 2.48 m

wrench is to Hammer as ​

Answers

Answer:

Pencil is to pen

Step by step explanation:

They are similar items, as they are both tools, but are different as to how they function.

A centrifugal pump is operating at a flow rate of 1 m3/s and a head of 20 m. If the specific weight of water is 9800 N/m3 and the pump efficiency is 85%, the power required by the pump is most nearly:

Answers

Answer:

The power required by the pump is nearly 230.588 kW

Explanation:

Flow rate of the pump Q = 1 m^3/s

the head flow H = 20 m

specific weight of water γ = 9800 N/m^3

efficiency of the pump η = 85%

First note that specific gravity of water is the product of the density of water and acceleration due to gravity.

γ = ρg

where ρ is density. For water its value is 1000 kg/m^3

g is the acceleration due to gravity = 9.81 m/s^2

The power to lift this water at this rate will be gotten from the equation

P = ρgQH

but ρg = γ

therefore,

P = γQH

imputing values, we'll have

P = 9800 x 1 x 20 = 196000 W

But the centrifugal pump that will be used will only be able to lift this amount of water after the efficiency factor has been considered. The power of pump needed must be greater than this power.

we can say that

196000 W is 85% of the power of the pump power needed, therefore

196000 = 85% of [tex]P_{p}[/tex]

where [tex]P_{p}[/tex] is the power of the pump needed

85% = 0.85

196000 = 0.85[tex]P_{p}[/tex]

[tex]P_{p}[/tex] = 196000/0.85 = 230588.24 W

Pump power = 230.588 kW

A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 2.60 cm thick flat piece of crown glass and back to air again. The beam strikes the glass at a 28.0° incident angle.
A) At what angles do the two colors emerge?
B) By what distance are the red and blue separated when they emerge?

Answers

Answer:

A: 28°

B. 1x10^-3M

Explanation:

See attached file

Electric charge is distributed over the disk x2 + y2 ≤ 4 so that the charge density at (x, y) is rho(x, y) = 2x + 2y + 2x2 + 2y2 (measured in coulombs per square meter). Find the total charge on the disk.

Answers

Answer:

the total charge on the disk 256pi Coulombs

Explanation:

Pls see attached file

Other Questions
For what value of x does 5^x-2 not equal zero?a. all except 2b. all except 0c. all except -4d. all except -2e. all real numbers Please help!!!How can paintings, illustrations, and other visual art add new meaning to a story? Business level strategy addresses two related issues: what businesses should a corporation compete in and how can these businesses be managed so that they create synergy. John wants to nail a thumbtack on his circular board, pictured below. If the thumbtack is equally likely to be placed anywhere on the board, what is the probability that the thumbtack will be placed on the inner circle? Use 3.14 for , and round your answer to the nearest whole percent. A. 51% B. 55% C. 57% D. 60% You stand near the edge of a swimming pooland observe through the water an object lying on the bottom of thepool. Which of the following statements correctly describes whatyou see? a. The apparent depth of the object is less than thereal depth.b. The apparent depth of the object is greater thanthe real depth.c. There is no difference between the apparent depth and the actual depth of the object. Which scenario goes with the vocabulary word descansar? Mara se rompe el brazo. Gustavo trabaja en la oficina 17 horas cada da. Laura lava la herida con agua y jabn. Felipe mira la temperatura de la frente. in the time machine pls help me to find this1/author2/plot3/character sketch4/your opinion about the book5/conclusion The biomass B(t) of a fishery is the total mass of the members of the fish population at time t. It is the product of the number of individuals N(t) in the population and the average mass M(t) of a fish at time t. In the case of guppies, breeding occurs continually. Suppose that at time t = 5 weeks the population is 824 guppies and is growing at a rate of 50 guppies per week, while the average mass is 1.3 g and is increasing at a rate of 0.14 g/week. At what rate is the biomass increasing when t = 5? (Round your answer to one decimal place.) B'(5) = g/week y4=7(x6) find the x and y intercepts Apollo sexually assaulted Creusa, who gave birth to a son in a cave. Creusa then left her son in the cave and married Xuthus. However, she was unable to have children with him. She consulted with the Oracle of Delphi, who told her that the first boy she and Xuthus met would be their heir. They found the boy, Ion, who became their heir. Why did Creusa plot to kill Ion? A. because he had a lot of money B. because he helped in the temple C. because she had abandoned her son D. because she was pregnant with a son of her own 9. A 4-way stop sign means:Traffic from all four directions must stop.STOP There are four stop signs at the intersection.The first vehicle to reach the intersection should move forward first.4-WAYAll of the above..... What is the solution set of x for the given equation? x^2/3-x^1/3+4=6 A. -2, -1 B. 2, -1 C. -8, -1 D. 8, -1 E. 2, 8 f: x 5 3x. (a) Find f(1). (b) Find f 1(x). the length of a rectangular plot of land exceeds the width by 7 m if the area pf the plot is 198 m square what is the length Select all the correct answers. What were two goals of European imperialists? How many odd 2 digit positive odd integers geater than 50 are there? What did socialism become more popular in Europe during the 19th century?Group of answer choicesa.Women and children were paid much more for the same work, leading male workers to seek change.b.The lower working classes were not able to find jobs in Europe's new industrial economy.c.There was a huge gap in wealth between factory owners and the people who worked in their factories.d.Workers were eager for a government that gave them more representation in Parliament.Which French philosopher helped lay the groundwork for the socialist movement by urging people to build planned communities that were based on the shared ownership of land, resources, and profits?Group of answer choicesa.Charles Fourierb.Karl Marxc. Claude Henri de Saint-Simond. Mary WollstonecraftIn today's European nations, workers are protected from exploitation by organizations that bargain with business owners on behalf of their workers. European workers living in the 19th century lacked this kind of support. What are these organizations called?Group of answer choicesa.voting blocksb.gangsc.unionsd.utopiasAccording to members of Europe's socialist movements, what role should governments play in the way businesses are operated?Group of answer choicesa.They believed that government should impose higher taxes on those businesses who abuse workers.b.They believed that government should guarantee that profits are shared more equally between owners and workers.c.They believed that all businesses should be owned by the government for the good of society.d.They believed in a hands-off approach to governments involvement with business. Which of the following statements about stages of nuclear burning (i.e., first-stage hydrogen burning, second-stage helium burning, etc.) in a massive star is not true? A) As each stage ends, the core shrinks further. B) Each successive stage of fusion requires higher temperatures than the previous stages. C) Each successive stage lasts for approximately the same amount of time. D) Each successive stage creates an element with a higher atomic weight. Please answer this in two minutes 3.01)Which statement best describes the area of the triangle shown below?9It is one-half the area of a rectangle of length 4 units and width 2 units.It is twice the area of a rectangle of length 4 units and width 2 units.O It is one-half the area of a square of side length 4 units.Ont is twice the area of a square of side length 4 units.