w=pv for p, how do you get the answer?​

Answers

Answer 1

Answer:

you need to have values for w and v

but u basically have to do

MOVE V TO THE OTHER SIDE

SO

W/V=P

Step-by-step explanation:

HOPE I HELPED

PLS MARK BRAINLIEST

DESPERATELY TRYING TO LEVEL UP

              ✌ -ZYLYNN JADE ARDENNE


Related Questions

Searches related to Searches related to A motorboat travels 135 kilometers in 3 hours going upstream. It travels 183 kilometers going downstream in the same amount of time. What is the rate of the boat in still water? what is the rate of the current?

Answers

Answer:

[tex]\large \boxed{\sf \text{The rate of the boat is } 53 \ km/h \text{, the rate of the current is }8\ km/h \ \ }[/tex]

Step-by-step explanation:

Hello, let's note v the rate of the boat and r the rate of the current. We can write the following

[tex]\dfrac{135}{v-r}=3=\dfrac{183}{v+r}[/tex]

It means that

[tex]135(v+r)=183(v-r)\\\\135 v + 135r=183v-183r\\\\\text{ *** We regroup the terms in v on the right and the ones in r to the left***}\\\\(135+183)r=(183-135)v\\\\318r=48v\\\\\text{ *** We divide by 48 both sides ***}\\\\\boxed{v = \dfrac{318}{48} \cdot r= \dfrac{159}{24} \cdot r}[/tex]

But we can as well use the second equation:

[tex]3(v+r)=183\\\\v+r=\dfrac{183}{3}=61\\\\\dfrac{159}{24}r+r=61\\\\\dfrac{159+24}{24}r=61\\\\\boxed{r = \dfrac{61*24}{183}=8}[/tex]

and then

[tex]\boxed{v=\dfrac{159*8}{24}=53}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

Find the coordinate vector [Bold x ]Subscript Upper B of x relative to the given basis BequalsStartSet Bold b 1 comma Bold b 2 comma Bold b 3 EndSet.

Answers

Answer:

3

Step-by-step explanation:

3

3. Write an equation of a line that is perpendicular to the line x – 2y = 8.

Answers

Answer:

y=0.5x+40

Step-by-step explanation:

Copy the  equation.

x-2y=8

Subtract x from both sides.

-2y=-x-8

Divide both sides by -2.

y=0.5x+4

Now we know the slope is 0.5.

Any line with a slope of 0.5 will be perpendiculr to the original line.

One that you can use is y=0.5x+40.

Is this equation linear or nonlinear?
y =x/2​

Answers

Answer:

linear

Step-by-step explanation:

assume that when adults with smartphones are randomly selected 15 use them in meetings or classes if 15 adult smartphones are randomly selected, find the probability that at least 4 of them use their smartphones

Answers

Answer:

The probability that at least 4 of them use their smartphones is 0.1773.

Step-by-step explanation:

We are given that when adults with smartphones are randomly selected 15% use them in meetings or classes.

Also, 15 adult smartphones are randomly selected.

Let X = Number of adults who use their smartphones

The above situation can be represented through the binomial distribution;

[tex]P(X = r) = \binom{n}{r}\times p^{r} \times (1-p)^{n-r} ; n = 0,1,2,3,.......[/tex]

where, n = number of trials (samples) taken = 15 adult smartphones

           r = number of success = at least 4

           p = probability of success which in our question is the % of adults

                 who use them in meetings or classes, i.e. 15%.

So, X ~ Binom(n = 15, p = 0.15)

Now, the probability that at least 4 of them use their smartphones is given by = P(X [tex]\geq[/tex] 4)

P(X [tex]\geq[/tex] 4) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3)

= [tex]1- \binom{15}{0}\times 0.15^{0} \times (1-0.15)^{15-0}-\binom{15}{1}\times 0.15^{1} \times (1-0.15)^{15-1}-\binom{15}{2}\times 0.15^{2} \times (1-0.15)^{15-2}-\binom{15}{3}\times 0.15^{3} \times (1-0.15)^{15-3}[/tex]

= [tex]1- (1\times 1\times 0.85^{15})-(15\times 0.15^{1} \times 0.85^{14})-(105 \times 0.15^{2} \times 0.85^{13})-(455 \times 0.15^{3} \times 0.85^{12})[/tex]

= 0.1773

3x to the 2nd power +4y to the 2nd power x=2 y=1 z=-3

Answers

Answer:

Step-by-step explanation:

3(2)^2 + 4(1)^2

3(4) + 4

12+4= 16

Answer:

[tex]\huge\boxed{16}[/tex]

Step-by-step explanation:

[tex]3x^2+4y^2\ \text{for}\ x=2;\ y=1.\\\\\text{Substitute:}\\\\3(2)^2+4(1)^2=3(4)+4(1)=12+4=16\\\\\text{Used PEMDAS}[/tex]

A research study investigated differences between male and female students. Based on the study results, we can assume the population mean and standard deviation for the GPA of male students are µ = 3.5 and σ = 0.05. Suppose a random sample of 100 male students is selected and the GPA for each student is calculated. What is the probability that the random sample of 100 male students has a mean GPA greater than 3.42?

Answers

Answer: 0.0548

Step-by-step explanation:

Given, A research study investigated differences between male and female students. Based on the study results, we can assume the population mean and standard deviation for the GPA of male students are µ = 3.5 and σ = 0.05.

Let [tex]\overline{X}[/tex] represents the sample mean GPA for each student.

Then, the probability that the random sample of 100 male students has a mean GPA greater than 3.42:

[tex]P(\overline{X}>3.42)=P(\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}>\dfrac{3.42-3.5}{\dfrac{0.5}{\sqrt{100}}})\\\\=P(Z>\dfrac{-0.08}{\dfrac{0.5}{10}})\ \ \ [Z=\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=P(Z>1.6)\\\\=1-P(Z<1.6)\\\\=1-0.9452=0.0548[/tex]

hence, the required probability is 0.0548.

The total cost for my brother's bowling party was $140. It cost $50to reserve a bowling lane plus the cost of renting shoes for the 9 people attending.

Answers

$140 - $50 for the bowling lane = $90
$90 divide by the 9 people attending = $10 for bowling shoes for each person

Answer:

$10 to rent shoes for 9 people

Step-by-step explanation:

Total amount of the party = $140

A bowling lane = $50

$140 - $50 = $90

$90 divided by 9 = 10

$10 to rent shoes for 9 people

Find the directional derivative of the function at the given point in the direction of the vector v. f(x, y, z) = xey + yez + zex, (0, 0, 0), v = 4, 3, −1

Answers

Answer: 6 / √26

Step-by-step explanation:

Given that f(x, y, z) = xe^y + ye^z + ze^x

so first we compute the gradient vector at (0, 0, 0)

Δf ( x, y, z ) = [ e^y + ze^x,  xe^y + e^z,  ye^z + e^x ]

Δf ( 0, 0, 0 ) = [ e⁰ + 0(e)⁰, 0(e)⁰ + e⁰, 0(e)⁰ + e⁰ ] = [ 1+0 , 0+1, 0+1 ] = [ 1, 1, 1 ]

Now we were also given that  V = < 4, 3, -1 >

so ║v║ = √ ( 4² + 3² + (-1)² )

║v║ = √ ( 16 + 9 + 1 )

║v║ = √ 26

It must be noted that "v"  is not a unit vector but since ║v║ = √ 26, the unit vector in the direction of "V" is ⊆ = ( V / ║v║)

so

⊆ =  ( V / ║v║) = [ 4/√26, 3/√26, -1/√26 ]

therefore by equation   D⊆f ( x, y, z ) = Δf ( x, y, z ) × ⊆

D⊆f ( x, y, z ) = Δf ( 0, 0, 0 ) × ⊆ = [ 1, 1, 1 ] × [ 4/√26, 3/√26, -1/√26 ]

= ( 1×4 + 1×3 -1×1 ) / √26

= (4 + 3 - 1) / √26

= 6 / √26

A circle has a center at (4, -7) and a radius of 4 units. Write an equation of this circle.

Answers

Answer:

(x – 4)^2 + (y + 7)^2 = 16

Step-by-step explanation:

The formula of a circle is:

(x – h)^2 + (y – k)^2 = r^2

(h, k) represents the coordinates of the center of the circle

r represents the radius of the circle

If you plug in the given information, you get:

(x – 4)^2 + (y – (-7))^2 = 4^2

which simplifies into:

(x – 4)^2 + (y + 7)^2 = 16

A 4 foot wide painting should be centered on a 10 foot wide wall. How many feet (x) should be on each side of the painting?

Answers

Answer:

3 feet

Step-by-step explanation:

To find x, we can write the following equation:

x + 4 + x = 10

2x + 4 = 10

2x = 6

x = 3 feet

The surface area of a given cone is 1,885.7143 square inches. What is the slang height?

Answers

This question is not complete. This is because it lacks the appropriate diagram containing necessary information to solve this question.

Please find attached the appropriate diagram to solve for this question

Complete Question :

The surface area of a given cone is 1,885.7143 square inches. What is the slant height?

Answer:

25 inches

Step-by-step explanation:

In the diagram, we are given the following information

Height of the cone = 20 inches

Radius of the cone = 15 inches.

The formula for the slant height of a cone represented by l =

l² = r² + h²

l = √(r² + h²)

l = √(15² + 20²)

l = √(225 + 400)

l = √625

l = 25 inches

Therefore, the slant height of this cone = 25 inches

differentiate with respect to X
[tex] \sqrt{ \frac{cos2x}{1 +sin2x } } [/tex]

Answers

Power and chain rule (where the power rule kicks in because [tex]\sqrt x=x^{1/2}[/tex]):

[tex]\left(\sqrt{\dfrac{\cos(2x)}{1+\sin(2x)}}\right)'=\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'[/tex]

Simplify the leading term as

[tex]\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}[/tex]

Quotient rule:

[tex]\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'=\dfrac{(1+\sin(2x))(\cos(2x))'-\cos(2x)(1+\sin(2x))'}{(1+\sin(2x))^2}[/tex]

Chain rule:

[tex](\cos(2x))'=-\sin(2x)(2x)'=-2\sin(2x)[/tex]

[tex](1+\sin(2x))'=\cos(2x)(2x)'=2\cos(2x)[/tex]

Put everything together and simplify:

[tex]\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{(1+\sin(2x))(-2\sin(2x))-\cos(2x)(2\cos(2x))}{(1+\sin(2x))^2}[/tex]

[tex]=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2\sin^2(2x)-2\cos^2(2x)}{(1+\sin(2x))^2}[/tex]

[tex]=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2}{(1+\sin(2x))^2}[/tex]

[tex]=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac{\sin(2x)+1}{(1+\sin(2x))^2}[/tex]

[tex]=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac1{1+\sin(2x)}[/tex]

[tex]=-\dfrac1{\sqrt{\cos(2x)}}\dfrac1{\sqrt{1+\sin(2x)}}[/tex]

[tex]=\boxed{-\dfrac1{\sqrt{\cos(2x)(1+\sin(2x))}}}[/tex]

The sum of three consecutive even integers is 90. Find the Integers.

Answers

Answer:

  28, 30, 32

Step-by-step explanation:

Their average will be 90/3 = 30. That is the middle integer.

The three integers are 28, 30, 32.

_____

Comment on the working

It often works well to use the average value when working consecutive integer problems. The average of an odd number of consecutive integers is the middle one. The average of an even number of consecutive integers is halfway between the middle two.

There are 42 students in an elementary statistics class. On the basis of years of experience, the instructor knows that the time needed to grade a randomly chosen first examination paper is a random variable with an expected value of 5 min and a standard deviation of 6 min. (Give answers accurate to 3 decimal places.)
(a) If grading times are independent and the instructor begins grading at 6:50 P.M. and grades continuously, what is the (approximate) probability that he is through grading before the 11:00 P.M. TV news begins?
1
(b) If the sports report begins at 11:10, what is the probability that he misses part of the report if he waits until grading is done before turning on the TV?
2

Answers

Answer:

A) 0.99413

B) 0.00022

Step-by-step explanation:

A) First of all let's find the total grading time from 6:50 P.M to 11:00 P.M.:

Total grading time; X = 11:00 - 6:50 = 4hours 10minutes = 250 minutes

Now since we are given an expected value of 5 minutes, the mean grading time for the whole population would be:

μ = n*μ_s ample = 42 × 5 = 210 minutes

While the standard deviation for the population would be:

σ = √nσ_sample = √(42 × 6) = 15.8745 minutes

To find the z-score, we will use the formula;

z = (x - μ)/σ

Thus;

z = (250 - 210)/15.8745

z = 2.52

From the z-distribution table attached, we have;

P(Z < 2.52) ≈ 0.99413

B) solving this is almost the same as in A above, the only difference is an additional 10 minutes to the time.

Thus, total time is now 250 + 10 = 260 minutes

Similar to the z-formula in A above, we have;

z = (260 - 210)/15.8745

z = 3.15

P(Z > 3.15) = 0.00022

A catering service offers 11 appetizers, 12 main courses, and 8 desserts. A customer is to select 9 appetizers, 2 main courses, and 3 desserts for a banquet. In how many ways can this be done?

Answers

Answer:  203,280

Step-by-step explanation:

Given: A catering service offers 11 appetizers, 12 main courses, and 8 desserts.

Number of combinations of choosing r things out of n = [tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

A customer is to select 9 appetizers, 2 main courses, and 3 desserts for a banquet.

Total number of ways to do this: [tex]^{11}C_9\times ^{12}C_2\times^{8}C_3[/tex]

[tex]=\dfrac{11!}{9!2!}\times\dfrac{12!}{2!10!}\times\dfrac{8!}{3!5!}\\\\=\dfrac{11\times10}{2}\times\dfrac{12\times11}{2}\times\dfrac{8\times7\times6}{3\times2}\\\\= 203280[/tex]

hence , this can be done in 203,280 ways.

Someone please explain this!!!!

Answers

Answer:

23) x ≥ -140.

24) k > -9.

25) v ≥ 9.

26) m > 16.

Step-by-step explanation:

23) -14 ≤ [tex]\frac{x}{10}[/tex]

[tex]\frac{x}{10}[/tex] ≥ -14

x ≥ -140

Since it is a ≥ sign, you will put a shaded circle at -140, and the line will stretch infinitely to the right of the circle.

24) -20 < k - 11

k - 11 > -20

k > -9

Since it is a > sign, you will put a non-shaded circle at -9, and the line will stretch infinitely to the right of the circle.

25) -6v ≤ 54

6v ≥ 54

v ≥ 9

Since it is a ≥ sign, you will put a shaded circle at 9, and the line will stretch infinitely to the right of the circle.

26) 8 < [tex]\frac{m}{2}[/tex]

[tex]\frac{m}{2}[/tex] > 8

m > 16

Since it is a > sign, you will put a non-shaded circle at 16, and the line will stretch infinitely to the right of the circle.

Hope this helps!

Vector has x and y components of -8.80 cm and 18.0 cm, respectively; vector has x and y components of 12.2 cm and -6.80 cm, respectively. If - + 3 = 0, what are the components of ? x = cm y = cm

Answers

Question:

Vector A has x and y components of −8.80 cm  and 18.0 cm , respectively; vector B has x and  y components of 12.2 cm and −6.80 cm , respectively.  If A − B +3 C = 0, what are the components of C?

Answer:

x = ___ cm

y = ___ cm

Answer:

x = 7.0cm

y = -8.27cm

Step-by-step explanation:

For a vector F, with x and y components of a and b respectively, its unit vector representation is as follows;

F = ai + bj              [Where i and j are unit vectors in the x and y directions respectively]

Using this analogy, let's represent vectors A and B from the question in their unit vector notation.

A has an x-component of -8.80cm and y-component of 18.0cm

B has an x-component of 12.2cm and y-component of -6.80cm,

In unit vector notation, these become;

A = -8.80i + 18.0j

B = 12.2 i + (-6.80)j = 12.2i - 6.80j

Also, there is a third vector C. Let the x and y components of C be a and b respectively. Therefore,

C = ai + bj

Now,

A - B + 3C = 0                [substitute the vectors]

=> [-8.80i + 18.0j] - [12.2 i -6.80j] + [3(ai + bj)] =  0        [open brackets]

=> -8.80i + 18.0j - 12.2 i + 6.80j + 3(ai + bj) =  0

=> -8.80i + 18.0j - 12.2 i + 6.80j + 3ai + 3bj =  0

=> -8.80i + 18.0j - 12.2 i + 6.80j + 3ai + 3bj =  0  [collect like terms and solve]

=> -8.80i  - 12.2 i  + 3ai + 6.80j + 18.0j + 3bj =  0

=> -21.0 i  + 3ai + 24.8j + 3bj =  0       [re-arrange]

=> 3ai + 3bj = 21.0i - 24.8j

Comparing both sides shows that;

3a = 21.0  -------------(i)

3b = -24.8    -----------(ii)

From equation (i)

3a = 21.0

a = 21.0 / 3 = 7.0

From equation (ii)

3b = -24.8

b = -24.8 / 3

b = -8.27

Therefore, the x-component and y-component of vector B which are a and b, are 7.0cm and -8.27cm respectively.

please answer this correctly
How far apart are the gift shop and the science lab
Please answer this correctly without making mistakes

Answers

The answer is 86.4 km

Explanation:

The graph shows the gift shop is to the east of the science lab, and, between the gift shop and the science lab it is the art supply. Besides this, the description of the graph provides the distance between the art supply and the science lab, which is 40.0, as well as, the distance between the art supply and the gift shop, which is 46.4 kilometers.

In this context, it is possible to calculate the distance from the science lab to the gift shop by adding the partial distances, considering the art supply as a middle point in the map. This means the distance from the lab to the gift shop = 40.0 km (distance from the lab to the art supply) + 46.4 km (distance from the art supply to the gift shop) = 86.4 km.

INTEGERS YES OR NO 74 3.49 - 4/7 (the - is suupose to be inbetween both numbers, not just the 4 is negative) -148.29 - 8/1

Answers

Answer:

The integers are the numbers such that:

- The distance between consecutive integers is always of 1 unit and the integer numbers only have zeros after the decimal point, such that the set is: Z = {..., 0, 1, 2, 3, 4, ......}

74) No digits after the decimal point, so this is an integer.

3.49) we have digits after the decimal point, so this is not an integer.

4/7) 4 is smaller than 7, so 4/7 is smaller than one and larger than zero,

one and zero are consecutive integer numbers, so 4/7 can not be an integer number.

You also can solve the division and find that the quotient has digits after the decimal point.

148.29) This number has digits after the decimal point, so this is not an integer number.

8/1) here we have 8 divided by one, we know that:

8/1 = 8

8 has no digits after the decimal point, so this is an integer.

How do I use intercepts to graph 3y= - 5x - 30

Answers

Answer:

y-intercept is (0,-10) and x-intercept is (-6,0).  Connect them by a straight line to graph the given equation.

Step-by-step explanation:

The given equation of line is

[tex]3y=-5x-30[/tex]

For x=0,

[tex]3y=-5(0)-30[/tex]

[tex]3y=-30[/tex]

[tex]y=-10[/tex]

So, y-intercept is at point (0,-10).

For y=0,

[tex]3(0)=-5x-30[/tex]

[tex]0=-5x-30[/tex]

[tex]5x=-30[/tex]

[tex]x=-6[/tex]

So, x-intercept is at point (-6,0).

Now, plot the point (0,-10) and (-6,0) on a coordinate plane and connect them by a straight line to graph the given line as shown below.

Please HELP best answer will receive a BRAINLIEST. Given the probability density function f ( x ) = 1/3 over the interval [ 4 , 7 ] , find the expected value, the mean, the variance and the standard deviation.

Answers

Answer:

[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]

[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]

Now we can find the second moment with this formula:

[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]

[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]

And the variance for this case would be:

[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]

And the standard deviation is:

[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]

Step-by-step explanation:

For this case we have the following probability density function

[tex] f(x)= \frac{1}{3}, 4 \leq x \leq 7[/tex]

And for this case we can find the expected value with this formula:

[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]

[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]

Now we can find the second moment with this formula:

[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]

[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]

And the variance for this case would be:

[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]

And the standard deviation is:

[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]

(3/4) URGENT!! PLEASE HELP! -50 POINTS- WILL MARK BRAINLEST ASAP AND 5 STARS IF CORRECT!!! please no wrong answers for the points.

Answers

Answer:

D

Step-by-step explanation:

The graph above is your graph.

As x increase, y decreases

As x decrease, y increases.

However, there is a small portion of the graph where both x and y were positive.

But I'm guessing it should be D.

Answer:

D

Step-by-step explanation:

[tex]f(x)=-x^3+2x^2-x+3[/tex]

As the highest power is 3, it is odd, as [tex]x[/tex] approaches to [tex]-\infty[/tex] [tex]y[/tex] approaches to [tex]\infty[/tex]

First, we have [tex]x \rightarrow-\infty[/tex], [tex]y \rightarrow \infty[/tex]

Plotting the graph, you can easily conclude the answer to the question.

And as [tex]x \rightarrow \infty[/tex], [tex]y \rightarrow -\infty[/tex]


Find the value of n such that 540n is perfect cube.​

Answers

Answer:

1.35

Step-by-step explanation:

next cube above 540 is 729

to get to 729: 729 / 540 = 1.35

n = 1.35

Which, if any, of the following proofs are correct demonstrations of the validity of this argument? A ⊃ (B ⊃ C) B ⊃ (~C ⊃ ~A) Proof 1 (1) A ⊃ (B ⊃ C) /B ⊃ (~C ⊃ ~A) Premise/Conclusion (2) (A • B) ⊃ C 1 Exp (3) (B • A) ⊃ C 2 Com (4) B ⊃ (A ⊃ C) 3 Exp (5) B ⊃ (~C ⊃ ~A) 4 Contra Proof 2 (1) A ⊃ (B ⊃ C) /B ⊃ (~C ⊃ ~A) Premise/Conclusion (2) B Assumption (3) A Assumption (4) B ⊃ C 1, 3 MP (5) C 2, 4 MP (6) A ⊃ C 3–5 CP (7) B ⊃ (A ⊃ C) 2–6 CP (8) B ⊃ (~C ⊃ ~A) 7 Contra

Answers

Answer

Step-by-step explanation:

Answer:

See the argument below

Step-by-step explanation:

I will give the argument in symbolic form, using rules of inference.

First, let's conclude c.

(1)⇒a  by simplification of conjunction

a⇒¬(¬a) by double negation

¬(¬a)∧(2)⇒¬(¬c) by Modus tollens

¬(¬c)⇒c by double negation

Now, the premise (5) is equivalent to ¬d∧¬h which is one of De Morgan's laws. From simplification, we conclude ¬h. We also concluded c before, then by adjunction, we conclude c∧¬h.

An alternative approach to De Morgan's law is the following:

By contradiction proof, assume h is true.

h⇒d∨h by addition

(5)∧(d∨h)⇒¬(d∨h)∧(d∨h), a contradiction. Hence we conclude ¬h.  

A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s, how fast is the boat approaching the dock when it is 4 m from the dock

Answers

Answer:

-1.031 m/s or  [tex]\frac{-\sqrt{17} }{4}[/tex]

Step-by-step explanation:

We take the length of the rope from the dock to the bow of the boat as y.

We take x be the horizontal  distance from the dock to the boat.

We know that the rate of change of the rope length is [tex]\frac{dy}{dt}[/tex] = -1 m/s

We need to find the rate of change of the horizontal  distance from the dock to the boat =  [tex]\frac{dx}{dt}[/tex] = ?

for x = 4

Applying Pythagorean Theorem we have

[tex]1^{2} +x^{2} =y^{2}[/tex]    .... equ 1

solving, where x = 4, we have

[tex]1^{2} +4^{2} =y^{2}[/tex]

[tex]y^{2} = 17[/tex]

[tex]y = \sqrt{17}[/tex]

Differentiating equ 1 implicitly with respect to t, we have

[tex]2x\frac{dx}{dt} = 2y\frac{dy}{dt}[/tex]

substituting values of

x = 4

y = [tex]\sqrt{17}[/tex]

[tex]\frac{dy}{dt}[/tex] = -1

into the equation, we get

[tex]2(4)\frac{dx}{dt} = 2(\sqrt{17} )(-1)[/tex]

[tex]\frac{dx}{dt} = \frac{-\sqrt{17} }{4}[/tex] = -1.031 m/s

A car was sold at a 12% discount, which amounts to $1800. How much would the car sell for after the discount?

Answers

Answer:

1584$

Step-by-step explanation:

Original price is 1800$ (100%)

Discount percent: 12%

=> The price after discount is 100 - 12 = 88% of original price

=> The price after discount is 1800 x 88% = 1800 x 88/100 = 1584$

Answer:

13200

Step-by-step explanation:

12% - 1800

100% - x

X = (1800x100)/12 = 15000 - original price

15000-1800 = original price - discount = 13200 price after discount

Yesterday at 1:00 P.M., Maria’s train was 42 miles north of Gull’s Beach, traveling north at an average speed of 90 mph. At the same time on the adjacent track, Elena’s train was 6 miles north of Gull’s Beach, traveling north at an average speed of 101 mph. To the nearest hundredth of an hour, after how much time will the trains meet up? 0.23 hours 0.31 hours 3.27 hours 4.36 hours

Answers

Answer:b

Step-by-step explanation:

Answer:

3.27 hours

Step-by-step explanation:

Calculate the difference in speed and distance between the trains.

The relative speed:

101 - 90 = 11 mph

Difference in distance:

42 - 6 = 36 miles

[tex]time=\frac{distance}{speed}[/tex]

[tex]t=\frac{36}{11}[/tex]

[tex]t = 3.27[/tex]

The Box-and-Whisker plot shows the average temperatures in, atlanta, georgia, in march. which statement about the temperatures in atlanta must be true? A. about half the days in march had average temperatures above 60 degrees. B. about half the days in march had average temperatures either below 60 or above 73 degrees C. the coldest day in march was 51 D. the hottest day in march was 84

Answers

Answer:

"B. about half the days in march had average temperatures either below 60 or above 73 degrees"

Step-by-step explanation:

To answer this question, note that a box plot is usually divided into quartiles, each representing approximately 25% each.

In the box plot above,

*about 25% (Q1) represents days with temperature of 60° and below. This is about ¼ of the days in March.

*About 25% (Q2) represents days with temperature between 61° and 68°. That's about ¼ of the days in March

*About 25% (Q3) represents days with temperature between 70° and 73°. That's about ¼ of the days in March

*About 25% (Q4) represents days with temperature between 74° and 82°. That's about ¼ of the days in March

*Coldest day in March has a temperature of 54°

*Hottest day in March is 82°

From the options given, the only statement that is true is "B. about half the days in march had average temperatures either below 60 or above 73 degrees"

¼ of the Days in March has temperatures below 60° (Q1), while ¼ of the days in March has temperatures above 73° (Q4). Therefore, ¼+¼ = ½ of the days in March having average temperatures either below 60 or above 73 degrees.

Answer:

b

Step-by-step explanation:

About half of the days in March had average temperatures either below 60 or above 73 degrees.

State sales tax S S is directly proportional to retail price p p . An item that sells for 142 142 dollars has a sales tax of 12.32 12.32 dollars. Find a mathematical model that gives the amount of sales tax S S in terms of the retail price p p .

Answers

Answer: [tex]S=0.087p[/tex] .

Step-by-step explanation:

Equation for direct proportion:

y=kx

, where x= independent variable ,

y=dependent variable.

k= proportionality constant

Here, State sales tax S  is directly proportional to retail price p.

Also, dependent variable= S,  independent variable =p

Required equation: S= kp

Put S= 12.32 and x= 142

[tex]S=12.32=k(142)\\\\\Rightarrow\ k=\dfrac{12.32}{142}\approx0.087[/tex]

Hence, the required equation is [tex]S=0.087p[/tex] .

Other Questions
The volume of a cylinder varies jointly with the base (area) and the height. The volume is 40 inches^3 when the base (area) is 6 inches^2 and the height is 20 inches. Find the volume of the cylinder (after finding the variation constant) when the base (area) is 8 inches^2 and the height is 12 inches. Solve the following system of equations. Express your answer as an ordered pair in the format (a,b). 3x+4y=17 -4x-7y=-18 A 50 g ball of clay traveling at speed v0 hits and sticks to a 1.0 kg brick sitting at rest on a frictionless surface.Required:a What is the speed of the block after the collision?b. What percentage of the ball's initial energy is "lost"? An imperialist country using direct rule in an African colony would most likelyenact which policy?A. Allowing local leaders to serve as political officialsB. Offering equal rights to all colonized citizensC. Forcing conquered people obey European lawsD. Removing its military forces from the colony Use cylindrical shells to find the volume of the solid generated when the region enclosed by the given curves is revolved about the y-axis. y=x, x=1, y=0 What does the pH of a solution have to be in order to be a base? PLEASSE HELPIf a line crosses the y-axis at (0, 1) and has a slope of 4/5, what is the equation of the line?A 4y - 5x=5B.y - 4x = 5C. 5y + 4x = 5D. 5y - 4x = 5 An airline company advertises that 100% of their flights are on time after checking 5 flights from yesterday and finding that these 5 were on time.a) What is population of interest?b) What is the sample?c) Was this a representative sample? Explain.d) How should the company determine the percentage of their flights that are on time? Explain please -- Find the measure of angle A to the nearest degree. a. 26 b. 27 c. 63 The author describes altruism as A. helping others out of moral obligation. B. putting yourself in risky situations for others. C. acting with a selfless concern for others. D. disregarding your own safety. Consider the expression 8 4 / 2. One student says the answer is 2 and another says it is 6. Which student is correct? Explain what went wrong with the student who made a mistake. In a wire with a 1.05 mm2 cross-sectional area, 7.931020 electrons flow past any point during 3.97 s. What is the current ???? in the wire? You are fixing a transformer for a toy truck that uses an 8.0-V emf to run it. The primary coil of the transformer is broken; the secondary coil has 40 turns. The primary coil is connected to a 120-V wall outlet.(a) How many turns should you have in the primary coil?(b) If you then connect this primary coil to a 240-V source, what emf would be across the secondary coil?Comments: The relevant equation is N1/N2 = V1/V2 where N is the number of turns and V is the voltage. I'm just not sure how to get the voltage of the secondary coil using emf. 6th grade math, help me please:) I toss an unfair coin 12 times. This coin is 65% likely to show up heads. Calculate the probability of the following. a. 11 heads: b. 2 or more heads: c. 7 heads: d. 9 tails: e. 8 or less heads: Rachel used 2/3 of a string to tie some books together. She used 1/3 of the remaining string for his art project. She had 30cm of the string left. What was the orignal length of string. Express your ans in meter. Candy draws a square design with a side length of x inches for the window at the pet shop. She takes the design to the printer and asks for a sign that has an area of 16x2 40x + 25 square inches. A line has slope 2/3 and y intercept -2. Which answer is the equation of the line? (Applicable answer gets brainliest) community is located in the desert, near an area with high winds. There is very little rainfall or clouds and no large rivers nearby. The people want to build a power plant that will not pollute. They are choosing among solar, biomass, or hydroelectric power. Write one to two sentences about each of these energy sources. Describe whether each energy source would meet their goals and whether it is a good energy source for their area. What is the exact solution to the system of equations shown on the graph? A.) (-1 3/5, 4 1/5) / [tex]\left(-1\:\frac{3}{5},4\:\frac{1}{5}\right)[/tex] B.) (-1 1/5, 4 3/5) / [tex]\left(-1\:\frac{1}{5},4\:\frac{3}{5}\right)[/tex] C.) (-1 5/6, 6 2/3) / [tex]\left(-1\:\frac{5}{6},6\:\frac{2}{3}\right)[/tex] D.) (-1 1/5, 4 5/6) / [tex]\left(-1\:\frac{1}{5},\:4\frac{5}{6}\right)[/tex]