The number sequence that follows the rule of subtracting 15 starting from 105 is 105, 90, 75, 60, 45.
To obtain this sequence, we start with 105 and subtract 15 from it to get 90. Then we subtract 15 from 90 to get 75, and so on until we reach 45. Each term in the sequence is obtained by subtracting 15 from the previous term.
It is important to note that this is an arithmetic sequence with a common difference of -15. The formula for finding the nth term of an arithmetic sequence is: an = a1 + (n-1)d, where an is the nth term, a1 is the first term, and d is the common difference. Using this formula, we can find any term in the sequence by plugging in the appropriate values.
To know more about sequence refer here:
https://brainly.com/question/30262438#
#SPJ11
Karmen is buying a new car. For the car's exterior, she can choose from three colors-black, gray, or white. For the interior, she can choose between
belge and gray. She can also choose between a manual and an automatic transmission
if Karmen picks a car at random, what is the probability of picking a car that has a black exterior and a belge interior?
What is the probability of picking a car with a belge interior and an automatic transmission?
The probability of Karmen picking a car with a black exterior and a belge interior is
The probability of Karmen picking a car with a belge interior and an automatic transmission is
The probability of Karmen picking a car with a belge interior and an automatic transmission is 1/6
How to find the probability?To find the probability, we need to start by identifying the event or situation for which we want to calculate the probability.
Since Karmen has three choices for the exterior color, two choices for the interior color, and two choices for the transmission, the total number of possible car configurations is:
3 x 2 x 2 = 12
This means there are 12 different cars to choose from.
To find the probability of picking a car that has a black exterior and a belge interior, we need to determine how many cars meet these criteria. There is only one car that has a black exterior and a belge interior, so the probability of picking this car is:
1/12
Therefore, the probability of Karmen picking a car with a black exterior and a belge interior is 1/12.
To find the probability of picking a car with a belge interior and an automatic transmission, we need to determine how many cars meet these criteria. There are two cars that have a belge interior and an automatic transmission, so the probability of picking one of these cars is:
2/12
Simplifying this fraction gives:
1/6
Therefore, the probability of Karmen picking a car with a belge interior and an automatic transmission is 1/6.
Learn more about probability
brainly.com/question/11234923
#SPJ11
How many hours is 1,000,00 minutes
Answer:
16.6666 hours.
Step-by-step explanation:
This conversion of 1,000 minutes to hours has been calculated by multiplying 1,000 minutes by 0.0166 and the result is 16.6666 hours.
Answer:
16,666.67 hours
Step-by-step explanation:
A minute is a unit of time equal to 60 seconds.
Question 2. Enter the correct answer in the box.
The given equation, a = v²/r, solved for r is:
r = v²/a
Subject of formulae: Solving the equation for rFrom the question, we are to solve the given equation for r
From the given information,
The given equation is
a = v²/r
To solve the equation for r means we should isolate the variable r
Solving the equation for r
a = v²/r
Multiply both sides of the equation by r
a × r = v²/r × r
ar = v²
Divide both sides of the equation by a
ar/a = v²/a
r = v²/a
Hence, the equation solved for r is:
r = v²/a
Learn more on Subject of formulae here: https://brainly.com/question/19041791
https://brainly.com/question/24667938
#SPJ1
A triangle has angle measures of (x + 3)°, (5x – 8)°, and (2x + 1)°.
What is the measure of the smallest angle of the triangle in degrees?
A 47°
B 26°
C 107°
D 23°
Answer: B
Step-by-step explanation:
x + 3 + 5x - 8 + 2x + 1 = 180
8x - 4 = 180
8x = 184
x = 23
23 + 3 = 26, 5(23) - 8 = 107, 2(23) + 1 = 47
the smallest is 26
which graph represents the linear equation y= 1/2 x + 2
Answer:
The graph on the top right
Step-by-step explanation:
The slope-intercept form is y = mx + b
m = the slope
b = y-intercept
The equation is y = 1/2x + 2
The y-intercept in this equation is 2, meaning the graph has a point (0,2) on it. Looking at the options, the only graph that has a point (0,2) is the map on the top right, and that is the answer.
Hillsdale Orchard grows Fuji apples and Gala apples. There are 160 Fuji apple trees and 120 Gala apple trees in the orchard.
Hillsdale Orchard's owners decide to plant 30 new Gala apple trees. Complete the ratio table (click for help) to find the number of new Fuji apple trees the owners should plant if they want to maintain the same ratio of Fuji apple trees to Gala apple trees
To maintain the same ratio of Fuji apple trees to Gala apple trees, the owners of Hillsdale Orchard should: plant 12 new Fuji apple trees when they plant 30 new Gala apple trees.
To find the number of new Fuji apple trees that the owners of Hillsdale Orchard should plant to maintain the same ratio of Fuji apple trees to Gala apple trees, we need to use a ratio table.
First, we need to determine the ratio of Fuji apple trees to Gala apple trees before the new trees are planted. Let's assume that there are currently 40 Fuji apple trees and 100 Gala apple trees. The ratio of Fuji apple trees to Gala apple trees is therefore 40:100, which can be simplified to 2:5.
Next, we need to use this ratio to determine the number of new Fuji apple trees that need to be planted. Since the owners are planting 30 new Gala apple trees, we can use the ratio of 2:5 to find the corresponding number of new Fuji apple trees.
To do this, we need to divide the number of new Gala apple trees by the denominator of the ratio (which represents the number of units of the ratio). In this case, the denominator is 5.
30 (new Gala apple trees) ÷ 5 (denominator) = 6
This means that for every 5 new Gala apple trees, the owners should plant 2 new Fuji apple trees. Therefore, the owners should plant 12 new Fuji apple trees (2 trees for every 5 new Gala apple trees, multiplied by the 30 new Gala apple trees being planted).
In summary, to maintain the same ratio of Fuji apple trees to Gala apple trees, the owners of Hillsdale Orchard should plant 12 new Fuji apple trees when they plant 30 new Gala apple trees.
To know more about ratio, refer here:
https://brainly.com/question/29775587#
#SPJ11
The unit in a volume are always ________.
Answer:
The unit in a volume are always cubic meter
Step-by-step explanation:
Chain of Thought Reasoning: Volume is a three dimensional space, which is measured in three dimensions (length, width, and depth). The SI unit for length is meters, so the SI unit for volume is cubic meters (m^3). I hope this helps you
Mark makes a pattern that starts with 5 and uses the rule "subtract 1, and then multiply by 3. " Which expression can be used to find the third number in Markâs pattern?
A. 5â1â3â1â3
B. 3(5â1)+3(5â1)
C. 3[3(5)â1]
D. 3[3(5â1)â1]
Choose one correct answer
The expression that can be used to find the third number in Mark's pattern is 3[3(5) - 1]. The correct option is C.
In Mark's pattern, the rule is to subtract 1 from the previous number and then multiply the result by 3.
Starting with 5 as the first number, we can apply this rule step by step to find the subsequent numbers.
First step: Subtract 1 from 5, giving us 4.
Second step: Multiply 4 by 3, which equals 12.
So, the second number in Mark's pattern is 12.
Now, to find the third number, we apply the same rule.
First step: Subtract 1 from 12, giving us 11.
Second step: Multiply 11 by 3, which equals 33.
Therefore, the third number in Mark's pattern is 33.
Option C, 3[3(5) - 1], correctly represents this calculation, where 5 is subtracted by 1, multiplied by 3, and then multiplied by 3 again.
To know more about Mark's pattern , refer here :
https://brainly.com/question/27421554#
#SPJ11
Given the height of the cone is 12 m, find the slant height of the cone
a) 5m
b) 13 m
c) 17m
d) 11m
The slant height of the cone is approximately 5 meters.
We can use the Pythagorean theorem to find the slant height of the cone.
The slant height, denoted by l, the height h and the radius r form a right triangle where l is the hypotenuse:
[tex]l^2 = h^2 + r^2[/tex]
In this case, we are given the height h as 12 m, but we are not given the radius r.
However, we know that the slant height is the distance from the apex of the cone to any point on its circular base.
So, we can draw a line from the apex of the cone to the center of its circular base, which will be perpendicular to the base, and we can use this line as the height of a right triangle that also includes the radius r of the circular base.
Then, we can use the Pythagorean theorem to find the slant height l.
The radius r is half the diameter of the circular base, so we need to find the diameter of the base.
Since we are not given the diameter directly, we need to find it using the height h and the slant height l.
To do this, we can draw a cross section of the cone that includes its circular base and its height, and then draw a line from the apex of the cone to a point on the base that is perpendicular to the diameter of the base.
This line will be the height of a right triangle that also includes the radius r of the base and half the diameter of the base.
Then, we can use the Pythagorean theorem to find the diameter of the base.We have:
[tex]l^2 = h^2 + r^2r = sqrt(l^2 - h^2)d/2 = sqrt(l^2 - r^2)d^2/4 = l^2 - r^2d^2 = 4(l^2 - r^2)[/tex]
Substituting the expression for r that we found above, we get:
[tex]d^2 = 4(l^2 - (l^2 - h^2))d^2 = 4h^2d = 2h[/tex]
Now we can substitute this expression for d into the formula for the volume of a cone:
[tex]V = (1/3) * pi * r^2 * hV = (1/3) * pi * ((2h)/2)^2 * hV = (1/3) * pi * h^2 * 4V = (4/3) * pi * h^3[/tex]
We can solve this formula for h:
[tex]h = (3V)/(4*pi)^(1/3)[/tex]
Substituting the given volume of the cone, which we will assume is in cubic meters:
[tex]V = (1/3) * pi * r^2 * h = (1/3) * pi * r^2 * 12V = 16pih = (3(16pi))/(4*pi)^(1/3)[/tex]
h = 4.819 m
Now we can find the slant height using the Pythagorean theorem:
[tex]l^2 = h^2 + r^2l^2 = (4.819)^2 + ((2(4.819))/2)^2l^2 = 23.187l = 4.815[/tex] [tex]m[/tex]
To know more about slant height refer here
https://brainly.com/question/21820107#
#SPJ11
How much money did Susan earn per hour
Answer:
$9.50
Step-by-step explanation:
Divide the total earnings by total hours.
1. If a 20 inch pizza costs $13, how many square inches of pizza do you
for 1 dollar? In other words, what is the unit rate per one dollar?
Answer:
I think you get 0.65 inches of pizza for 1 dollar
Step-by-step explanation:
$13 divided by 20 inches = 0.65
Mr. Larson, a math teacher, assigned his students a project to do in pairs. He recorded the
grade each pair earned.
Math project grades
92 77 97 70 96 75
73
84
71
87
80
86
100
95
Which box plot represents the data?
Math project grades
50
60
70
80
90
100
Math project grades
50
60
70
80
90
100
The box plot that would represent the data recorded by Mr. Larson would be B. Second box plot.
How to find the box plot ?To find the correct box plot of the data recorded by Mr. Larson, the math teacher, first order the grades from lowest to highest :
70, 71, 73, 75, 77, 80, 84, 86, 87, 92, 95, 96, 97, 100
There are 14 grades which means that the median position would be the 7th and 8th grades average :
= ( 84 + 86 ) / 2
= 170 / 2
= 85
The position of Q3 would be:
= ( n + 1 ) x 75 %
= ( 14 + 1 ) x 75 %
= 11 th position which is 95
The correct box plot is therefore the second box plot which shows the Q3 as 95.
Find out more on box plots at https://brainly.com/question/27849170
#SPJ1
Does this situation involve descriptive statistics or inferential statistics?
Out of 25 students in the class, 40% are male.
descriptive statistics
inferential statistics
Out of 25 students in the class, 40% are male is: Descriptive statistics.
Descriptive statistics is the process of summarizing and organizing data from a sample or population in order to provide an overview of the main characteristics. In this case, the data provided tells us that out of 25 students in the class, 40% are male.
This information is a summary of the gender distribution within this specific class, rather than making any predictions or generalizations about a larger population.
In contrast, inferential statistics is the process of using data from a sample to make predictions or draw conclusions about a larger population. If we were given data about a sample of classes and asked to estimate the proportion of male students in all classes, that would be an example of inferential statistics.
To summarize, the situation you provided, which states that out of 25 students in the class, 40% are male, is an example of descriptive statistics as it only provides a summary of the data for that specific class.
To know more about Descriptive statistics, refer here:
https://brainly.com/question/30764358#
#SPJ11
Learn with an example
or
Watc
4) Graph this line using intercepts:
3x + y = -6
Answer:
Step-by-step explanation:
3x+y = -6
y=-3x-6
The Y-intercept is -6, therefore there is one point (0,-6)
Now go 3 down and one right, so there is your second point (1,-9)
Consider the isosceles trapezoid in the figure shown.
If PQ 6.5 cm and SR 12 cm, what is the value of x?
4cm
5.25cm
9.25cm
11.25cm
Answer:
(1/2)(6.5 + 12) = x + 4
(1/2)(18.5) = x + 4
9.25 = x + 4
x = 5.25 cm
A downward opening parabola with vertex (-5,2) and a vertical compression of 0. 5
The equation of the downward opening parabola with the given vertex and vertical compression is y = 0.5(x + 5)^2 + 2
The equation of a downward opening parabola with vertex (h, k) and vertical compression a is given by:
y = a(x - h)^2 + k
In this case, the vertex is (-5, 2) and the vertical compression is 0.5. Therefore, we have:
h = -5
k = 2
a = 0.5
Substituting these values into the equation above, we get:
y = 0.5(x + 5)^2 + 2
This is the equation of the downward opening parabola with the given vertex and vertical compression.
To know more about vertical compression, visit:
https://brainly.com/question/28968436#
#SPJ11
When viewed from a distance of 32 feet from its base the top of the flagpole can be seen from the ground at an angle of elevation of 39° what is the height of the flagpole
The height of the flagpole is approximately 23.7 feet.
We can use the tangent function to solve this problem. Let's call the height of the flagpole "h". From the ground, we have a right triangle with the flagpole height as the opposite side, the distance to the flagpole as the adjacent side, and the angle of elevation as the angle opposite the flagpole height.
Using the tangent function, we can write:
tan(39°) = h/32
Solving for h, we get:
h = 32 * tan(39°)
h ≈ 23.7 feet
Therefore, the height of the flagpole is approximately 23.7 feet when viewed from a distance of 32 feet at an angle of elevation of 39°.
For more questions like Flagpole click the link below:
https://brainly.com/question/31296662
#SPJ11
Zelda has 8 rabbits with which to start an animal farm. If the rabbit population doubles each month, in how many months will the rabbit population be 5,800?
In a case whereby Zelda has 8 rabbits with which to start an animal farm. If the rabbit population doubles each month, the number of months that the rabbit population will be 5,800 is 9.5 months.
How can the the number of months?In order to calculatre the month then we can use the expression y = abⁿ
a = starting number ( 8 rabbits)
b = rate of change = (2)
n = number of months that we need to calculate
y = rabbit population = 5800
The we can substitute to have
5800 = 8 × 2ⁿ
5800 / 8 = 2ⁿ
725 = 2ⁿ
n = 9.5 months.
Learn more about population at:
https://brainly.com/question/25630111
#SPJ1
300 high school students were asked how many hours of tv they watch per day. the mean was 2 hours, with a standard deviation of 0. 5. using a 90% confidence level, calculate the maximum error of estimate.
0. 27%
5. 66%
7. 43%
4. 75%
The maximum error of estimate is 4.75%.
To calculate the maximum error of estimate for the given problem, we will use the formula for margin of error:
Margin of Error = Z-score * (Standard Deviation / √n)
Where:
- Z-score corresponds to the 90% confidence level, which is 1.645
- Standard Deviation is 0.5 hours
- n is the sample size, which is 300 students
Margin of Error = 1.645 * (0.5 / √300) ≈ 0.0475
To express this as a percentage, multiply by 100:
0.0475 * 100 ≈ 4.75%
Thus, the maximum error of estimate with a 90% confidence level is 4.75%.
Learn more about margin of error here: https://brainly.com/question/29328438
#SPJ11
Use the drop down to answer the question about converting 0. 64 to a fraction.
How many repeating digits are in 0. 64 ?
What value is multiplied on both sides of the equals sign?
What fraction represents 0. 64 ?
The fraction value of 0.64 is 16/25 using the greatest common factor method to represent. There are no repeating digits in value.
The given decimal value = 0.64
There are no repeating numbers in the given decimal number 0.64.
To convert the given number into a fraction, we need to multiply the value with 10 on both sides to move the decimal point two places to the right.
0.64 × 100/100 = 64/100
Now simply this value by dividing both the numerator and denominator with the greatest common factor of both values. The greatest common factor is 4.
64/100 = 16/25
Therefore, we can represent the fraction value of 0.64 as 16/25.
To learn more about Fraction
https://brainly.com/question/29766013
#SPJ4
Find the area of the composite figure to the nearest hundredth.
55 mm
32. 5 mm
12. 5 mm
12. 5 mm
The area of the composite figure is approximately 2447.43 square millimeters to the nearest hundredth.
To find the area of the composite figure, we need to divide it into simpler shapes and then find their areas separately. The composite figure is made up of a rectangle and two semicircles.
First, let's find the area of the rectangle. The length of the rectangle is 55 mm and the width is 32.5 mm, so the area of the rectangle is:
[tex]$$A_{rect} = length \times width = 55 \text{ mm} \times 32.5 \text{ mm} = 1787.5 \text{ mm}^2$$[/tex]
Next, let's find the area of each semicircle. The diameter of each semicircle is equal to the width of the rectangle, which is 32.5 mm. Therefore, the radius of each semicircle is:
[tex]$$r =[/tex] [tex]\frac{32.5 \text{ mm}}{2} = 16.25 \text{ mm}$$[/tex]
The formula for the area of a semicircle is:
[tex]$$A_{semicircle} = \frac{1}{2} \pi r^2$$[/tex]
So, the area of each semicircle is:
[tex]$$A_{semicircle} = \frac{1}{2} \pi (16.25 \text{ mm})^2 \approx 329.97 \text{ mm}^2$$[/tex]
To find the total area of the composite figure, we add the area of the rectangle to the area of the two semicircles.
[tex]$$A_{total} = A_{rect} + 2 \times A_{semicircle} \approx 2447.43 \text{ mm}^2$$[/tex]
Therefore, the area of the composite figure is approximately 2447.43 square millimeters to the nearest hundredth.
To learn more about composite figure refer here:
https://brainly.com/question/27234680
#SPJ11
Your doing practice 6
Answer:
A ∪ B = {1, 2, 3, 4, 5, 6, 7, 9}
Step-by-step explanation:
We can find the union of two sets by including all of the numbers in both sets, but without repeating any numbers.
For example:
if A = {1, 2, 3, 4, 5} and B = {4, 5, 6, 7, 8},
then A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}
We can apply this concept to the problem at hand, but first we need to represent set A as a list of numbers:
They all have to be odd numbers between 0 and 10.
[tex]\implies A[/tex] = {1, 3, 5, 7, 9}
We are given that B = {2, 3, 4, 5, 6}. So, to find the union of A and B, we can combine both sets of numbers and get rid of copies:
A ∪ B = {1, 2, 3, 4, 5, 6, 7, 9}
A dealer made lost of 10% by selling an article for 81,000 naira. How much should he have sold it to make a profit of 15%
The dealer should have sold the article for 103,500 naira to make a profit of 15%.
Let C be the cost price of the composition. According to the problem, the dealer vended the composition at a loss of 10, so he entered 90 of the cost price. thus, 90 of C is equal to 81,000 naira.
C = 81,000
C = 81,000/0.9
C = 90,000
So, the cost price of the composition is 90,000 naira.
Now, let's find out the selling price needed to make a profit of 15 Let S be the needed selling price to make a profit of 15. We know that profit chance is equal to( profit/ cost price) × 100.
Thus,(15/100) × 90,000 =
S- 90,000 , 500
= S- 90,000
S = 90,000 13,500
S = 103,500
Learn more about profit at
https://brainly.com/question/30949131
#SPJ4
Angle pair: exterior. Solve for x
Answer:
11
Step-by-step explanation:
Because of the parallel lines 5x=6x-11, so x=11.
Step-by-step explanation:
this is the answer being alternate exterior angles
Why do you think that credit cards tend to be the entry point for establishing credit for so many consumers?
I believe credit cards tend to be the entry point for establishing credit for so many consumers because they provide an easy and accessible way for individuals to begin building their credit history. Credit card companies report to credit bureaus on a regular basis, which helps establish a credit score and credit history.
Additionally, credit cards offer a convenient way for individuals to make purchases and build their credit at the same time. However, it is important for individuals to use their credit cards responsibly and make timely payments in order to maintain good credit standing.
To know more about think refer here
https://brainly.com/question/3368793#
#SPJ11
Is Figure A'B'C'D' a reflection of Figure ABCD? Explain.
Trapezoid A B C D graphed in Quadrant 1 of a coordinate plane with vertices A, 2, 2, B, 4, 4, C, 8, 4, and D, 10, 2. Trapezoid A prime B prime C prime D prime graphed in Quadrant 4 of a coordinate plane with vertices A prime, 2, negative 4, B prime, 4, negative 6, C prime, 8, negative 6, and D prime, 10, negative 4. The horizontal line y equals negative 1 is graphed and is equidistant between the bases of the trapezoids.
Yes; it is a reflection over the x-axis.
Yes; it is a reflection over the y-axis.
Yes; it is a reflection over line y = –1.
No; it is not a reflection.
Where the above is given, it is correct to state that "Yes; it is a reflection over line y = –1." (Option C)
What is reflection in math?A reflection is referred to as a flip in geometry. A reflection is the shape's mirror image. The line of reflection is formed when an image reflects through a line. A figure is said to mirror another figure when every point in one figure is equidistant from every point in another figure.
Note that in the above prompt, Since the horiztonal line y = -1 is equidistant between the bases of the trapezoids, ABCD and A'B'C'D and the corresponding coordinates are therefore equidistant from the line.
Hence Option C is correct.
Learn more about Reflection:
https://brainly.com/question/28969632
#SPJ1
A direct variation includes the points (2,
–
10) and (n,5). Find n.
Write and solve a direct variation equation to find the answer.
Solving a direct variation equation to find n gives n = -1
Writing and solving a direct variation equation to find nFrom the question, we have the following parameters that can be used in our computation:
A direct variation includes the points (2, –10) and (n,5).
This means that
(2, –10) = (n,5)
Express as an equation
So, we have
-2/10 = n/5
Multiply both sides of the equation by 5
So, we have the following representation
n = -2/10 * 5
Evaluate the product
n = -1
Hence, the value of n in the equation is -1
Read mroe about variation at
https://brainly.com/question/23754141
#SPJ1
Intelligence Quotient (IQ) scores are often reported to be normally distributed with μ=100. 0 and σ=15. 0. A random sample of 45 people is taken. Step 1 of 2 : What is the probability of a random person on the street having an IQ score of less than 96? Round your answer to 4 decimal places, if necessary
We are given that IQ scores are normally distributed with mean μ = 100 and standard deviation σ = 15. We want to find the probability of a random person on the street having an IQ score of less than 96.
To do this, we need to standardize the IQ score using the z-score formula:
z = (x - μ) / σ
where x is the IQ score we're interested in, μ is the mean IQ score, and σ is the standard deviation of IQ scores.
Plugging in the given values, we get:
z = (96 - 100) / 15 = -0.267
Now, we look up the probability of getting a z-score less than -0.267 in a standard normal distribution table or using a calculator. The probability is approximately 0.3944.
Therefore, the probability of a random person on the street having an IQ score of less than 96 is 0.3944 (rounded to 4 decimal places).
To know more about IQ refer here
https://brainly.com/question/29035691#
#SPJ11
Consider the geometric series 1 - x/3 - x^2/9 - x^3/27......
What is the common ratio of the series and for what values of x will the series converge? Determine the function f representing the sum of the series.
The function f representing the sum of the series for x in the interval (-3, 3). Hi! The given geometric series is 1 - x/3 - x^2/9 - x^3/27...
The common ratio of the series is obtained by dividing a term by its preceding term. Let's consider the first two terms:
(-x/3) / 1 = -x/3
Therefore, the common ratio (r) of the series is -x/3.
For a geometric series to converge, the absolute value of the common ratio must be less than 1, i.e., |r| < 1. In this case:
|-x/3| < 1
To find the values of x for which the series converges, we need to solve the inequality:
-1 < x/3 < 1
Multiplying all sides by 3, we get:
-3 < x < 3
So, the series converges for x in the interval (-3, 3).
Now, let's determine the function f representing the sum of the series. For a converging geometric series, the sum S can be calculated using the formula:
S = a / (1 - r)
where a is the first term and r is the common ratio. In this case, a = 1 and r = -x/3. Therefore:
f(x) = 1 / (1 - (-x/3))
f(x) = 1 / (1 + x/3)
This is the function f representing the sum of the series for x in the interval (-3, 3).
Learn more about series here:
brainly.com/question/30098029
#SPJ11
using known taylor series find the first 4 nonzero terms of thetaylor series for the function f(t)=e^(t)cos(t) about 0
The first four nonzero terms are 1 + t - (t^2)/2 - (t^3)/3 + (t^4)/8
To find the first 4 nonzero terms of the Taylor series for the function f(t) = e^(t)cos(t) about 0,
we can use the known Taylor series for e^(t) and cos(t).
Taylor series:
The Taylor series for e^(t) is:
e^(t) = 1 + t + (t^2)/2! + (t^3)/3! + ...
And the Taylor series for cos(t) is:
cos(t) = 1 - (t^2)/2! + (t^4)/4! - (t^6)/6! + ...
To find the Taylor series for f(t) = e^(t)cos(t), we can multiply these two series together using the distributive property of multiplication. We get:
f(t) = (1 + t + (t^2)/2! + (t^3)/3! + ...) * (1 - (t^2)/2! + (t^4)/4! - (t^6)/6! + ...)
Expanding this out, we get:
f(t) = 1 + t - (t^2)/2 - (t^3)/3 + (t^4)/8 + (t^5)/15 - (t^6)/72 - ...
The first 4 nonzero terms of this series are:
f(t) = 1 + t - (t^2)/2 - (t^3)/3 + (t^4)/8 + ...
So, the first 4 nonzero terms of the Taylor series for f(t) = e^(t)cos(t) about 0 are:
1 + t - (t^2)/2 - (t^3)/3 + (t^4)/8
To know more about Taylor series:
https://brainly.com/question/29733106
#SPJ11