Answer:
10
Step-by-step explanation:
Surface area is the sum of the areas of all faces (or surfaces) on a 3D shape. A cuboid has 6 rectangular faces. To find the surface area of a cuboid, add the areas of all 6 faces.
600 / 6 = 100
10 x 10 = 100
The measure of angle D is 55°, the measure of angle E is 85°, and
the measure of angle F is 10x. What is the value of x?
[tex]x = 4[/tex]
55+85=140
180-140=40
10x=40
divide by ten on each side
x=4
1. write an equvialent expression: -1/2 (-2x + 4y)
2. Factor to write an equivalent expression: 26a - 10.
Answer:
1) x-2y 2) 2(13a-5)
Step-by-step explanation:
1) -1/2(-2x+4y)=2/2x-4/2y=x-2y
2) 26a-10=2(13a-5)
1.32 Factory defective rate. A factory quality control manager decides to investigate the percentage of defective items produced each day. Within a given work week (Monday through Friday) the percentage of defective items produced was 2%, 1.4%, 4%, 3%, 2.2%. (a) Calculate the mean for these data. (b) Calculate the standard deviation for these data, showing each step in detail.
Answer:
a) the mean percentage of defective item produced is 2.52 %
b) the standard deviation of percentage of defective item produced is 1.01%
Step-by-step explanation:
Given that;
the percentage of defective items produced was 2%, 1.4%, 4%, 3%, 2.2%.
sample size n = 5
a) Calculate the mean for these data
mean percentage of defective item produced will be;
[tex]x^{bar}[/tex] = ∑x / n
[tex]x^{bar}[/tex] = ∑x / n = ( 2% + 1.4% + 4% + 3% + 2.2% ) / 5
[tex]x^{bar}[/tex] = 12.6 / 5
[tex]x^{bar}[/tex] = 2.52 %
Therefore, the mean percentage of defective item produced is 2.52 %
b) Calculate the standard deviation for these data
Formula for standard deviation is;
S = √( (∑(x-[tex]x^{bar}[/tex] )²) / (n-1) )
so we make a table;
x ( x - [tex]x^{bar}[/tex] )% ( x - [tex]x^{bar}[/tex] )²%
2% -0.52 0.2704
1.4% -1.12 1.2544
4% 1.48 2.1904
3% 0.48 0.2304
2.2%. -0.32 0.1024
summation 4.048
so (∑(x-[tex]x^{bar}[/tex] )² = 4.048%
so we substitute the value into our equation;
S = √( (∑(x-[tex]x^{bar}[/tex] )²) / (n-1) )
S = √( (4.048%) / (5-1) )
S = √( 4.048% / 4 )
S = √( 1.0121
S = 1.00598 % ≈ 1.01%
Therefore, the standard deviation of percentage of defective item produced is 1.01%
A random sample of 10 employees of a company was selected to estimate the mean one-way commute time for all employees at the company. The mean and standard deviation of the sample were 38 minutes and 6 minutes, respectively. Assuming all conditions for inference are met, which of the following is the margin of error, in minutes, for a 95 percent confidence interval for the population mean one-way commute time? 1.812(610√) 1.812 times the fraction with numerator 6, and denominator the square root of 10 A 1.833(610√) 1.833 times the fraction with numerator 6, and denominator the square root of 10 B 1.96(610√) 1.96 times the fraction with numerator 6, and denominator the square root of 10 C 2.228(610√) 2.228 times the fraction with numerator 6, and denominator the square root of 10 D 2.262(610√)
Answer:
The margin of error is of [tex]2.262\frac{6}{\sqrt{10}} = 4.29[/tex]
Step-by-step explanation:
We have the standard deviation for the sample. So the T-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 10 - 1 = 9
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 9 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.95}{2} = 0.975[/tex]. So we have T = 2.262
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.262\frac{6}{\sqrt{10}} = 4.29[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The equation that represents the margin of error is: [tex]E = 2.262 \times \frac{6}{\sqrt {10}}[/tex]
The given parameters are:
Sample size = 10Mean = 38Standard deviation = 6Confidence Interval = 95%The margin of error is calculated using:
[tex]E = z_y \times \frac{\sigma}{\sqrt n}[/tex]
So, we have:
[tex]E = z_y \times \frac{6}{\sqrt {10}}[/tex]
The quantile at 95% confidence interval is 2.262
So, the equation becomes
[tex]E = 2.262 \times \frac{6}{\sqrt {10}}[/tex]
Hence, the equation that represents the margin of error is: [tex]E = 2.262 \times \frac{6}{\sqrt {10}}[/tex]
Read more about margin of error at:
https://brainly.com/question/14396648
Evaluate 9.3x when 8.9y and x=7 and y=8.
Answer:
136.3
Step-by-step explanation:
I assume it is asking you to add both 9.3x and 8.9y together. First you would multiply 9.3 by 7 and 8.9 by 8 which gives you 65.1 + 71.2 which equals 136.3.
Solve for W
-2.5 + w = 3.7
w=
Answer:
6.2
Step-by-step explanation:
3.7 + 2.5 = 6.2 Therefore w = 6.2
find the area of the shaded region under the
standard normal curve. If convenient, use technology to find the area
Answer
The area of the shaded region under the standard normal curve is 0.4834.
Step-by-step explanation:
A random variable X is said to have a normal distribution with mean, µ and variance σ².
Then , is a standard normal variate with mean, E (Z) = 0 and Var (Z) = 1. That is, Z N (0, 1).
The distribution of these z-variates is known as the standard normal distribution.
Compute the area under the curve between -2.13 and 0 as follows:
Thus, the area of the shaded region under the standard normal curve is 0.4834.
Use the grouping method to factor 2x3 + 6x2 - 7x- 21.
O A. (x - 3)(x + 7)
O B. (x+3)(2x2 - 7)
C. 2x(x + 3)(x - 7)
O D. (x - 3)(2x2 + 7)
Answer:
B. (x+3)(2x2−7)
Step-by-step explanation:
2x3 + 6x2 - 7x- 21
(2x3+6x2)(-7x-21)
2x2(x+3)-7(x+3)
(x+3)(2x2-7)
Suppose that 30% of the applicants for a certain industrial job possess advanced training in computer programming. Applicants are interviewed sequentially and are selected at random from the pool.
(a) Find the probability that the first applicant with advanced training in programming is found on the fifth interview.
(b) What is the expected number of applicants who need to be interviewed in order to find the first one with advanced training?
(c) Let Y denote the number of the trial on which the first applicant with computer training was found. If each interview costs $30, find the expected value and variance of the total cost incurred interviewing candidates until an applicant with advanced computer training is found.
Answer:
Step-by-step explanation:
From the given information:
Assume X represents the no. interviewed until 1 has advanced training.
X obeys a Geometric distribution with parameter 0.3.
X [tex]\sim[/tex] Geom (0.30)
For geometric distribution, the probability density is:
[tex]P(X =x) = p(1-p) ^{x-1} \ \ \ where; x =1,2,3...[/tex]
TO calculate the required probability;
[tex]P(X =5) =0.30 (1-0.30)^{5-1}[/tex]
[tex]P(X =5) =0.30 (0.70)^{4}[/tex]
[tex]P(X=5) = 0.30 \times 0.2401[/tex]
[tex]\mathbf{P(X=5) = 0.07203}[/tex]
(b)
The expected no. of applicants that need to be interviewed are:
[tex]E(X)=\dfrac{1}{p}[/tex]
[tex]E(X)=\dfrac{1}{0.30}[/tex]
E(X) = 3.33
(c)
The mean and the variance can be computed as:
[tex]E(Y) = \dfrac{1}{p}[/tex]
[tex]E(Y) = \dfrac{1}{0.30}[/tex]
E(Y) = 3.33
[tex]V(Y)=\dfrac{1-p}{p^2}[/tex]
[tex]V(Y)=\dfrac{1-0.3}{0.3^2}[/tex]
[tex]V(Y)=\dfrac{0.7}{0.3^2}[/tex]
[tex]V(Y)=7.778[/tex]
Suppose C represents the no. of the total cost and given that each interview costs $30.
Then C = 30Y
Recall that; C is constant for a random variable X
∴
E(C) = E(30Y)
E(C) = 30E(Y)
E(C) = 30*3.33
E(C) =99.9
E(C) [tex]\simeq[/tex] 100
V(C) = V(30Y)
V(C) = 900 V(Y)
V(C) = 900*7.778
V(C) = 7000.2
V(C) [tex]\simeq[/tex] 7000
pls help me on this.......
Hey there!
Your answer is [tex]-4x+7[/tex]
Here are the steps to solve:
Given:
[tex]-5x-(x-7)[/tex]
Distribute negative sign:
[tex]-5x+x+7[/tex]
Add like terms:
[tex]-4x+7[/tex]
Have a great day! Hope it helped!
The firm is requested to send 3 employees who have positive indications of asbestos on to a medical center for further testing. Suppose 40% of the employees have positive indications of asbestos in their lungs. a) Find the probability that exactly 10 employees will be tested in order to find 3 positives
Answer:
0.0645 = 6.45% probability that exactly 10 employees will be tested in order to find 3 positives
Step-by-step explanation:
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
40% of the employees have positive indications of asbestos in their lungs
This means that [tex]p = 0.4[/tex]
a) Find the probability that exactly 10 employees will be tested in order to find 3 positives
2 within the first 9([tex]P(X = 2)[/tex] when [tex]n = 9[/tex]), and the 10th, with 0.4 probability. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 2) = C_{9,2}.(0.4)^{2}.(0.6)^{7} = 0.1612[/tex]
0.4*0.1612 = 0.0645
0.0645 = 6.45% probability that exactly 10 employees will be tested in order to find 3 positives
May someone please help me? The question is:
What type of triangle is DAE? Look at the image above.
Answer:
Right angle triangle
Step-by-step explanation:
Choose 5 cards from a full deck of 52 cards with 13values (2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A) and 4 kinds(spade, diamond, heart, and club). Count how many possible ways to geta(a)Two-pairs: Two pairs plus another card of a different value, for example:(b)Flush: five cards of the same suitbutdifferent values, for example: (c)Full house: A three of a kind and a pair, for example: (d)Four of a kind: Four cards of the same value, for example:
Answer:
a) 182 possible ways.
b) 5148 possible ways.
c) 1378 possible ways.
d) 2899 possible ways.
Step-by-step explanation:
The order in which the cards are chosen is not important, which means that we use the combinations formula to solve this question.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question, we have that:
There are 52 total cards, of which:
13 are spades.
13 are diamonds.
13 are hearts.
13 are clubs.
(a)Two-pairs: Two pairs plus another card of a different value, for example:
2 pairs of 2 from sets os 13.
1 other card, from a set of 26(whichever two cards were not chosen above). So
[tex]T = 2C_{13,2} + C_{26,1} = 2*\frac{13!}{2!11!} + \frac{26!}{1!25!} = 182[/tex]
So 182 possible ways.
(b)Flush: five cards of the same suit but different values, for example:
4 combinations of 5 from a set of 13(can be all spades, all diamonds, and hearts or all clubs). So
[tex]T = 4*C_{13,5} = 4*\frac{13!}{5!8!} = 5148[/tex]
So 5148 possible ways.
(c)Full house: A three of a kind and a pair, for example:
4 combinations of 3 from a set of 13(three of a kind ,c an be all possible kinds).
3 combinations of 2 from a set of 13(the pair, cant be the kind chosen for the trio, so 3 combinations). So
[tex]T = 4*C_{13,3} + 3*C_{13.2} = 4*\frac{13!}{3!10!} + 3*\frac{13!}{2!11!} = 1378[/tex]
So 1378 possible ways.
(d)Four of a kind: Four cards of the same value, for example:
4 combinations of 4 from a set of 13(four of a kind, can be all spades, all diamonds, and hearts or all clubs).
1 from the remaining 39(do not involve the kind chosen above). So
[tex]T = 4*C_{13,4} + C_{39,1} = 4*\frac{13!}{4!9!} + \frac{39!}{1!38!} = 2899[/tex]
So 2899 possible ways.
Ana, Profesora de Psicología de una escuela, planeo realizar un estudio sobre las
respuestas de los espectadores a ciertos aspectos de las peliculas A By Después
de encuestar su clase de 55 estudiantes, determinó la siguiente información: 17
han visto A. 17 han visto B. 23 han visto c. 6 han visto A y B. & han visto A y C 10
han visto By C 2 han visto las tres peliculas.
a. ¿Quántos estudiantes han visto exactamente dos de estas peliculas?
b. ¿Cuántos estudiantes han visto exactamente una de estas peliculas?
C. ¿Cuántos estudiantes no han visto estas películas?
d. ¿Cuántos estudiantes han visto A. pero ninguna de las otras?
Answer:
The answer is below
Step-by-step explanation:
El número de personas que vieron solo A = n (A) = 17
El número de personas que vieron solo B = n (B) = 17
El número de personas que vieron solo C = n (C) = 23
El número de personas que vieron A y B = n (A ∩ B) = 6
El número de personas que vieron A y C = n (A ∩ C) = 8
El número de personas que vieron B y C = n (B ∩ C) = 10
El número de personas que vieron las tres películas = n (A ∩ B ∩ C) = 2
1) Número de estudiantes que han visto dos películas = n (A ∩ B) + n (A ∩ C) + n (B ∩ C) = 6 + 8 + 10 = 24
2)
n (A∩ B '∩ C') = n (A) -n (A ∩ B) -n (A ∩ C) -n (A ∩ B ∩ C) = 17-8-6-2 = 1
n (A'∩ B ∩ C ') = n (B) -n (A ∩ B) -n (B ∩ C) -n (A ∩ B ∩ C) = 17-6-10-2 = 1
n (A'∩ B '∩ C) = norte (C) -n (UNA ∩ C) -n (B ∩ C) -n (UNA ∩ B ∩ C) = 23-8-10-2 = 3
estudiantes que no han visto = 55 - n (A∩ B '∩ C') -n (A'∩ B ∩ C ') - n (A'∩ B ∩ C') - n (A ∩ B) -n ( B ∩ C) -n (UNA ∩ C) -n (A∩ B ∩ C) = 55-1-1-3-6-8-10-2 = 24
3)
número de alumnos que no han visto =
4)
número de estudiantes que vieron solo A = n (A∩ B '∩ C') = 1
What is the ratio in simplest form between the length of a side in MARDT and the length of its corresponding side in JPLSF?
A. 3/4
B. 4/3
C. 3/2
D. 2/1
Answer:
b i think
Step-by-step explanation:
The ratio of the corresponding sides of MARDT and JPLSF is A. 3/4.
What is congruency?We know two similar planer figures are congruent when we have sides or angles or both that are the same as the corresponding sides or angles or both.
By observing the given figures MARDT is similar to JPLSF.
So, the ratio of their corresponding sides must also be equal.
Given, Length of MA is 4 and the length of JP is 3.
Therefore, The ratio of sides MARDT and JPLSF is 3/4.
learn more about congruency here :
https://brainly.com/question/7888063
#SPJ2
Please help!!!!
I do not know how to resolve this.
Answer:
5/9
Step-by-step explanation:
Whats 743x4824
and also comment if you have a discord account and if you do comment what it is
Answer:
3584232 || N o- t h x—?
Step-by-step explanation:
Answer:
3584232
Step-by-step explanation:
Yes I do its Sunju #5984
1. In the right triangle shown below, determine the value of x. (Round to the nearest
tenth.)
Answer:
20.8
Step-by-step explanation:
so x is opposite the 60 degree angle so that means that it is half of the hypotanuese times root three
so then x would be equal
24/12=12 root three which is equal to 20.8
Solve the following system of equations and show all work.
y=-x^2 + 4
y=2x+1
Answer:
Step-by-step explanation:
y = -x²+4 and y = 2x+1
Therefore, -x²+4 = 2x+1
x²+2x-3 = 0
x = 1,-3
There are two solutions:
(1,3) and (-3,-5)
The solutions to the system of equations are (x, y) = (-3, -5) and (1, 3).
We have,
To solve the system of equations:
Set the expressions for y equal to each other:
-x² + 4 = 2x + 1
Rearrange the equation to bring all terms to one side:
-x² - 2x + 3 = 0
Solve the quadratic equation by factoring, completing the square, or using the quadratic formula. In this case, we will use factoring.
Factor the quadratic equation:
(-x - 3)(x - 1) = 0
Set each factor equal to zero and solve for x:
-x - 3 = 0 or x - 1 = 0
Solve the first equation:
-x = 3
x = -3
Solve the second equation:
x = 1
Substitute the values of x back into one of the original equations to find the corresponding values of y.
For x = -3:
y = 2(-3) + 1
y = -6 + 1
y = -5
For x = 1:
y = 2(1) + 1
y = 2 + 1
y = 3
Therefore,
The solutions to the system of equations are (x, y) = (-3, -5) and (1, 3).
Learn more about equations here:
https://brainly.com/question/17194269
#SPJ2
1/5 = something/10 = something/100 = something percentage %
Answer:
20%
Step-by-step explanation:
The computation is shown below:
Let something be x
[tex]\frac{1}{5} = \frac{x}{10} = \frac{x}{100} = x\%[/tex]
[tex]0.2 = \frac{x}{10} = \frac{x}{100} = x\%[/tex]
So if we see that 0.2 would be equivalent to the [tex]\frac{x}{10}[/tex] and then [tex]\frac{x}{100}[/tex] after than x percentage
Therefore according to this the x percentage is 20%
Hence, the x percentage is 20%
I need help please and go look at my other answer i need that answer to that fast its 20 points and i will mark as brainlest
The answer is A because when you divide into 175 to find the amount discounted, then you subtract that to 175 and you get 145.25
c = 18n + 13
i don’t understand it
thats not possible do you have options or another equation...?? because there is 2 unknown variable
convert 50 watts to kilowatts
Answer:
0.05 kilowatts
Answer:
0. 05
Step-by-step explanation:
The width of a rectangle is 23 yd. What is the perimeter of the rectangle if the length is 6 yd less than the width?
a. 40 yd
c. 391 yd
b. 104 yd
d. 80 yd
I need to know this please answer asap
Answer:
y=-1/2x+1
Step-by-step explanation:
How to expand 6x(x-2y)
Answer:
[tex]6x^{2} - 12xy[/tex]
Step-by-step explanation:
6x × x = [tex]6x^{2}[/tex]
6x × -2y = -12xy
[tex]6x^{2} - 12xy[/tex]
f (x)= 1/x-4 -6. Find the inverse of f(x) and its domain.
Answer:
B Or D
Step-by-step explanation:
The inverse function is [tex]f^{-1}(x) = \frac{1}{x + 6} + 4[/tex] and the domain is [tex]x \ne 6[/tex]
The function is given as:
[tex]f(x) = \frac{1}{x - 4} - 6[/tex]
Express f(x) as y
[tex]y = \frac{1}{x - 4} - 6[/tex]
Swap the positions of x and y
[tex]x = \frac{1}{y - 4} - 6[/tex]
Add 6 to both sides
[tex]x + 6= \frac{1}{y - 4}[/tex]
Multiply both sides by y-4
[tex](x + 6)(y -4) =1[/tex]
Divide both sides by x + 6
[tex]y - 4 = \frac{1}{x + 6}[/tex]
Add 4 to both sides
[tex]y = \frac{1}{x + 6} + 4[/tex]
Rewrite as:
[tex]f^{-1}(x) = \frac{1}{x + 6} + 4[/tex]
Hence, the inverse function is [tex]f^{-1}(x) = \frac{1}{x + 6} + 4[/tex] and the domain is [tex]x \ne 6[/tex]
Read more about inverse functions at:
https://brainly.com/question/8120556
Solve this system by substitution. y = 3x - 12 6x + y = 6 *Remember to write your answer as a coordinate voint (x, y).
Verizon Wireless charges
$0.09 for every 5 text
messages sent. How much
is your bill if you send 75
texts?
Make this into a equation
hey i need help!!!!!!
Answer:2.10%
Step-by-step explanation:
2 is the whole number with 1/10 being also = to 10/100s