The product of 2 numbers is 918 one number is 37 less than the other what are the numbers

Answers

Answer 1
xy=918
x-37=y
x=918/y
(918/y)-y=37
(y^2)+37y-918=0
Using quadratic formula the two possibilities of y are 17 and -54.
If y=17, x=54. If y=-54, x=-17. Both of these work.

So there are two possible answers:
1. -17 and -54
2. 17 and 54

Related Questions

which of these shapes is congruent to given shape ?

Answers

Answer:

Step-by-step explanation:

shape D

Answer:

D.

Step-by-step explanation:

Well congruent means same size and same shape.

a) rectangle

This shape is a rectangle where as the given shape is a parallelogram.

This is not congruent to the given shape.

b) Parallelogram

This may be a parallelogram but it is too wide,

Hence, it is not congruent.

c) Rectangle

This is not a parallelogram,

Hence, this s not congruent

d) Parallelogram

This is a parallelogram with the same size just not in the same place but it is still congruent.

Thus, answer choices D. is the correct answer.

An article reported that for a sample of 46 kitchens with gas cooking appliances monitored during a one-week period, the sample mean CO2 level (ppm) was 654.16, and the sample standard deviation was 163.7.

Required:
a. Calculate and interpret a 9596 (two-sided) confidence interval for true average CO2 level in the population of all homes from which the sample was selected.
b. Suppose the investigators had made a rough guess of 175 for the value of s before collecting data. What sample size would be necessary to obtain an interval width of 50 ppm for a confidence level of 95%?

Answers

Answer:

a) CI = ( 148,69 ; 243,31 )

b) n = 189

Step-by-step explanation:

a)  If the Confidence Interval is 95 %

α = 5 %     or   α = 0,05     and   α/2  = 0,025

citical value for α/2  =  0,025     is    z(c) = 1,96

the  MOE   ( margin of error is )  

1,96* s/√n

1,96* 163,7/ √46

MOE =  47,31

Then  CI  =  196 ± 47,31

CI = ( 148,69 ; 243,31 )

CI look very wide ( it sems that if sample size was too low )

b) Now if s (sample standard deviation) is 175, and we would like to have only 50 ppm width with Confidence  level 95 %, we need to make

MOE = 25 = z(c) *  s/√n

25*√n = z(c)* 175

√n   =  1,96*175/25

√n  = 13,72

n = 188,23

as n is an integer number we make n = 189

4.0.3x= 2.1 Equals what

Answers

Answer:

x= 1.75

Step-by-step explanation:

Answer:

1.75 = x?

Step-by-step explanation:

what is the volume of the specker below volume of a cuboid 50cm 0.4m 45cm

Answers

Answer:

50*0.4*45=900cm²

If x + 4 = 12, what is the value of x?

Answers

Answer:

8

Step-by-step explanation:

To find the answer to these problems you can work backwards

12-4=8

x=8. Subtract 4 from 12

Write your height in inches. Suppose it increases by 15%, what would your new height be? Now suppose your increased height decreases by 15% after the 15% increase; what is your new height?

Answers

Answer:

New height= 41.4 inches

Second new height= 36inches

Step-by-step explanation:

Height is assumed to be 36 inches

If it increases by 15%.

15%= 0.15

It's new height =( 36*0.15) +36

New height= 5.4+36

New height = 41.4 inches

This expression (36*0.15) is the expression of adding 15% to the height.

So if the 15% is taken away again , height= 41.4-(36*0.15)

Height= 41.4-5.4

Height= 36 inches

Consider a triangle ABC like the one below. Suppose that B=36°, C= 62°, and b= 40. (The figure is not drawn to scale.) Solve the triangle.
Round your answers to the nearest tenth.
If there is more than one solution, use the button labeled "or".

Answers

Answer:

A=82°

a= 67.4

c = 60.1

Step-by-step explanation:

For A

A+B+C =180°

A= 180-(B+C)

A= 180-(36+62)

A= 189-(98)

A= 82°

For a

a/sinA= b/sinB

a/sin82= 40/sin36

a= (40*sin82)/sin36

a=( 40*0.9903)/0.5878

a=67.39

Approximately = 67.4

For c

c/sinC= b/sinB

c= (sinC*b)/sinB

c= (sin62*40)/sin36

c =(0.8829*40)/0.5878

c = 60.08

Approximately = 60.1

Isabel works as a tutor for $8 an hour and as a waitress for $9 an hour. This month, she worked a combined total of 93 hours at her two jobs. Let t be the number of hours Isabel worked as a tutor this month. Write an expression for the combined total dollar amount she earned this month.

Answers

We know that t is the number of hours Isabel worked as a tutor, and that she worked for a total of 93 hours. This means that the number of hours she worked as a waitress is 93 - t hours.

Now, for each of the t hours she worked as a tutor, she earned $8, so the total amount Isabel earned from that job is 8t dollars.

For each of the 93 - t hours Isabel worked as a waitress, she earned $9, so the amount she earned from her job as a waitress is 9(93 - t) dollars.

Therefore, the total amount she earned is 8t + 9(93 - t) dollars. This can be simplified to 837 - t dollars.

Find the slope on the graph. Write your answer as a fraction or a whole number, not a mixed number or decimal.

Answers

Answer:  slope = -1/2

Explanation:

Two points on this line are (0,1) and (2,0)

Use the slope formula

m = (y2-y1)/(x2-x1)

m = (0-1)/(2-0)

m = -1/2

The negative slope means the line goes downhill as you move from left to right.

Perform the indicated operation and write the result in standard form: (-3+2i)(-3-7i)
A. -5+27i
B. 23+15i
C. -5+15i
D. 23-15i
E-5-27I

Answers

Answer:

23+15i

Step-by-step explanation:

(-3+2i) (-3-7i)

multiply -3 w (-3+2i) and multiply -7i w (-3+2i)

9-6i+21i-14i^2

combine like terms

9+15i-14i^2

i squared is equal to -1 so

9+15i-(14x-1)

9+14+15i

23+15i

hope this helps :)

A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 259.2-cm and a standard deviation of 2.1-cm. For shipment, 17 steel rods are bundled together. Find the probability that the average length of rods in a randomly selected bundle of steel rods is greater than 259-cm.

Answers

Answer:

The probability that the average length of rods in a randomly selected bundle of steel rods is greater than 259 cm is 0.65173.

Step-by-step explanation:

We are given that a company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 259.2 cm and a standard deviation of 2.1 cm. For shipment, 17 steel rods are bundled together.

Let [tex]\bar X[/tex] = the average length of rods in a randomly selected bundle of steel rods

The z-score probability distribution for the sample mean is given by;

                            Z  =  [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = population mean length of rods = 259.2 cm

           [tex]\sigma[/tex] = standard deviaton = 2.1 cm

           n = sample of steel rods = 17

Now, the probability that the average length of rods in a randomly selected bundle of steel rods is greater than 259 cm is given by = P([tex]\bar X[/tex] > 259 cm)

 

     P([tex]\bar X[/tex] > 259 cm) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{259-259.2}{\frac{2.1}{\sqrt{17} } }[/tex] ) = P(Z > -0.39) = P(Z < 0.39)

                                                                = 0.65173

The above probability is calculated by looking at the value of x = 0.39 in the z table which has an area of 0.65173.

A manufacturer produces bolts of a fabric with a fixed width. The quantity q of this fabric (measured in yards) that is sold is a function of the selling price p (in dollars per yard), so we can write q = f(p). Then the total revenue earned with selling price p is R(p) = pf(p).
A. What does it mean to say that f(20)= 10,000 and f firstderivative (20)= -350?
B. Assuming the values in part a, find R first derivative (20).

Answers

Answer:

(A) the selling price is $20 per yards, and the expected yards to be sold is 10,000 yards

the derivative f'(20) is negative, which means the fabric producing company will sell 350 fewer yards when selling price is $20 per yard

(B) = R'(20) = $3000

∴the company will get extra $3000 revenue when selling price is $20 per yard

Step-by-step explanation:

A. given that

f(20)= 10,000

f'(20)= -350(first derivative)

the selling price is $20 per yards, and the expected yards to be sold is 10,000 yards

the derivative f'(20) is negative, which means the higher the price, it wil reduce the number of yards to be sold making it 350 fewer yards

(B) R(p) = p f(p)

f(20)= 10,000

f'(20)= -350(first derivative)

R(p) = p f(p)

differentiate with respect to p, using product rule

R'(p) = p f' (p) + f(p) (first derivative)

where p = 20

R'(20) = 20 f' (20) + f(20)

R'(20) = 20(-350) + 10,000

R'(20) = -7000 + 10,000

R'(20) = $3000

∴ the revenue is increasing by $3000 for every selling sold yard and increase in price per yard

Emma words in a coffee shop where she is paid at the same hourly rate each day. She was paid $71.25 for working 7.5 hours on Monday. If she worked 6 hours on Tuesday, how much was she paid on Tuesday

Answers

Answer:

$57

Since $71.25 was paid for working 7.5 hours.

That means he was being paid $9.5 per hour.

Which is 71.25÷7.5.

And on tuesday that's 9.5×6 which is $57

Find connection between Fibonacci numbers and the aspects of Engineering???????????????



if u answer i will mark u as brainliest

Answers

Answer:

Fibonacci numbers is a series of numbers in which each number is sum of two preceding numbers.

Step-by-step explanation:

It is a sequence in mathematics denoted F. Fibonacci numbers have important contribution to western mathematics. The first two Fibonacci numbers are 0 and 1, all the numbers are then sum of previous two numbers. Fibonacci sequence is widely used in engineering applications for data algorithms. Fibonacci sequence is basis for golden ratio which is used in architecture and design. It can be seen in petals of flower and snail's shell.

Solve of the following equations for x: 2x = 4.

Answers

Answer:

[tex]\boxed{ x = 2}[/tex]

Step-by-step explanation:

=> [tex]2x = 4[/tex]

Dividing both sides by 2

=> [tex]\frac{2x}{2} = \frac{4}{2}[/tex]

=> x = 2

2x=4

x=4/2=2

.............

10=12-x what would match this equation

Answers

Answer:

x=2

Step-by-step explanation:

12-10=2

Answer:

x=2

Step-by-step explanation:

10=12-x

Subtract 12 from each side

10-12 = 12-12-x

-2 =-x

Multiply by -1

2 = x

Find the value of the chi-square test statistic for the goodness-of-fit test. You wish to test the claim that a die is fair. You roll it 48 times with the following results. Number 1 2 3 4 5 6Frequency 5 10 12 9 4 8Observed frequency (O) 5,10,12,9,4,8Expected frequency (E) 8,8,8,8,8,8What is the value of the 2 test statistic?a. X2 = 3.538b. X2 = 4.182c. X2 = 5.75d. X2 = 7.667

Answers

Answer:

The value of Chi-square test statistic is χ² = 5.75.

Step-by-step explanation:

The Chi-square Goodness of fit test will be used to determine whether the die is fair or not.

The hypothesis can be defined as follows:

H₀: The die is fair.

Hₐ: The die is not fair.

The Chi-square test statistic is given by:

[tex]\chi^{2}=\sum\limits^{n}_{i=1}{\frac{(O_{i}-E_{i})^{2}}{E_{i}}}[/tex]

Consider the table attached below.

The value of Chi-square test statistic is χ² = 5.75.

Explain how the interquartile range of a data set can be used to identify outliers. The interquartile range​ (IQR) of a data set can be used to identify outliers because data values that are ▼ less than equal to greater than ▼ IQR Upper Q 3 minus 1.5 (IQR )Upper Q 3 plus IQR Upper Q 3 plus 1.5 (IQR )or ▼ less than equal to greater than ▼ IQR Upper Q 1 plus 1.5 (IQR )Upper Q 1 minus IQR Upper Q 1 minus 1.5 (IQR )are considered outliers.

Answers

Answer:

- greater than Upper Q 3 plus 1.5 (IQR)

- less than Upper Q 1 minus 1.5 (IQR)

Step-by-step explanation:

To identify outliers the interquartile range of the dataset can be used

Outliers can be identified as data values that are

- greater than Upper Q 3 plus 1.5 (IQR)

- less than Upper Q 1 minus 1.5 (IQR)

Using the interquartile range concept, it is found that:

The interquartile range​ (IQR) of a data set can be used to identify outliers because data values that are 1.5IQR less than Q1 and 1.5IQR more than Q3 and considered outliers.

----------------------------

The interquartile range of a data-set is composed by values between the 25th percentile(Q1) and the 75th percentile(Q3).It's length is: [tex]IQR = Q3 - Q1[/tex]Values that are more than 1.5IQR from the quartiles are considered outliers, that is:

[tex]v < Q1 - 1.5IQR[/tex] or [tex]v > Q3 + 1.5IQR[/tex]

Thus:

The interquartile range​ (IQR) of a data set can be used to identify outliers because data values that are 1.5IQR less than Q1 and 1.5IQR more than Q3 and considered outliers.

A similar problem is given at https://brainly.com/question/14683936

Pat is taking an economics course. Pat's exam strategy is to rely on luck for the next exam. The exam consists of 100 true-false questions. Pat plans to guess the answer to each question without reading it. If a grade on the exam is 60% or more, Pat will pass the exam. Find the probability that Pat will pass the exam.

Answers

Answer:

The probability that Pat will pass the exam is 0.02775.

Step-by-step explanation:

We are given that exam consists of 100 true-false questions. Pat plans to guess the answer to each question without reading it.

If a grade on the exam is 60% or more, Pat will pass the exam.

Let X = grade on the exam by Pat

The above situation can be represented through binomial distribution such that X ~ Binom(n = 100, p = 0.50).

Here the probability of success is 50% because there is a true-false question and there is a 50-50 chance of both being the correct answer.

Now, here to calculate the probability we will use normal approximation because the sample size if very large(i.e. greater than 30).

So, the new mean of X, [tex]\mu[/tex] = [tex]n \times p[/tex] = [tex]100 \times 0.50[/tex] = 50

and the new standard deviation of X, [tex]\sigma[/tex] = [tex]\sqrt{n \times p \times (1-p)}[/tex]

                                                                  = [tex]\sqrt{100 \times 0.50 \times (1-0.50)}[/tex]

                                                                  = 5

So, X ~ Normal([tex]\mu=50, \sigma^{2} = 5^{2}[/tex])

Now, the probability that Pat will pass the exam is given by = P(X [tex]\geq[/tex] 60)

         P(X [tex]\geq[/tex] 60) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\geq[/tex] [tex]\frac{60-50}{5}[/tex] ) = P(Z [tex]\geq[/tex] 2) = 1 - P(Z < 2)

                                                       = 1 - 0.97725 = 0.02275

Hence, the probability that Pat will pass the exam is 0.02775.

Solving exponential functions

Answers

Answer:

approximately 30

Step-by-step explanation:

[tex]f(x) = 4 {e}^{x} [/tex]

[tex]f(2) = 4 {e}^{2} [/tex]

[tex]f(2) = 4 \times 7.389[/tex]

[tex]f(2) = 29.6[/tex]

( Approximately 30)

Hope this helps..

Good luck on your assignment..

Answer:

approximately 30

Step-by-step explanation:

[tex]f(x)=4e^x[/tex]

Put x as 2 and evaluate.

[tex]f(2)=4e^2[/tex]

[tex]f(2)=4(2.718282)^2[/tex]

[tex]f(2)= 29.556224 \approx 30[/tex]

Assume that y varies directly with
x, then solve.

If y=6 when x=2/3 find x when y=12.

Х=? (It’s a fraction)

Answers

Answer:

x = 4/3

Step-by-step explanation:

Direct variation:

y = kx

We use the given x-y point to find k.

6 = k * 2/3

k = 6 * 3/2

k = 9

The equation is

y = 9x

For y = 12,

12 = 9x

x = 12/9

x = 4/3

A simple random sample of 20 third-grade children from a certain school district is selected, and each is given a test to measure his/her reading ability. You are interested in calculating a 95% confidence interval for the population mean score. In the sample, the mean score is 64 points, and the standard deviation is 12 points. What is the margin of error associated with the confidence interval

Answers

Answer:

Margin of Error = ME =± 5.2592

Step-by-step explanation:

In the given question n= 20 < 30

Then according to the central limit theorem z test will be applied in which the standard error will be  σ/√n.

Sample Mean = μ = 64

Standard Deviation= S= σ = 12

Confidence Interval = 95 %

α= 0.05

Critical Value for two tailed test for ∝= 0.05 = ±1.96

Margin of Error = ME = Standard Error *Critical Value

ME = 12/√20( ±1.96)=

ME    = 2.6833*( ±1.96)= ± 5.2592

The standard error for this test is σ/√n

=12/√20

=2.6833

Suppose that a forester wants to see if the average height of lodgepole pines in Yellowstone is different from the national average of 70 ft. The standard deviation lodgepole pine height is known to be 9.0 ft. The forester decides to measure the height of 19 trees in Yellowstone and use a one-sample z-test with a significance level of 0.01. She constructs the following null and alternative hypotheses, where mu is the mean height of lodgepole pines in Yellowstone.
H_0: mu = 70
H_1: mu notequalto 70
Use software to determine the power of the hypothesis test if the true mean height of lodgepole pines in Yellowstone is 62 ft. You may find one of these software manuals useful. Write your answer in decimal form and round to three decimal places.
Power =

Answers

Answer:

You can use your graphing calculator to find the answer.

Go to STAT, then TESTS, and hit "1: Z-Test..."

Make sure it is set to Stats, then for mu0, do 70; for standard deviation, do 9; for mean, you do 62; for sample size, you do 19. For mu, you do not equal to mu0. Then you hit "Calculate".

You then get a z-value (critical value) of -3.874576839, and a p-value of 0.00010685098.

This means that...

We reject the null hypothesis that the average height of lodgepole pines in Yellowstone is 70 feet because p = 0.0001 is less than the significance level of alpha = 0.01. There is sufficient evidence to suggest that the mean height of lodgepole pines in Yellowstone is NOT equal to 70 feet.

Hope this helps!

find 10th term of a geometric sequence whose first two terms are 2 and -8. Please answer!!

Answers

Answer:

The 10th term is -524,288

Step-by-step explanation:

The general format of a geometric sequence is:

[tex]a_{n} = r*a_{n-1}[/tex]

In which r is the common ratio and [tex]a_{n+1}[/tex] is the previous term.

We can also use the following equation:

[tex]a_{n} = a_{1}*r^{n-1}[/tex]

In which [tex]a_{1}[/tex] is the first term.

The common ratio of a geometric sequence is the division of the term [tex]a_{n+1}[/tex] by the term [tex]a_{n}[/tex]

In this question:

[tex]a_{1} = 2, a_{2} = -8, r = \frac{-8}{2} = -4[/tex]

10th term:

[tex]a_{10} = 2*(-4)^{10-1} = -524288[/tex]

The 10th term is -524,288

Suppose that insurance companies did a survey. They randomly surveyed 410 drivers and found that 300 claimed they always buckle up.
We are interested in the population proportion of drivers who claim they always buckle up.
NOTE: If you are using a Student's t-distribution, you may assume that the underlying population is normally distributed. (In general, you must first prove that assumption, though.)
(i) Enter an exact number as an integer, fraction, or decimal.
x =
(ii) Enter an exact number as an integer, fraction, or decimal.
n =
(iii) Round your answer to four decimal places.
p' =
Which distribution should you use for this problem? (Round your answer to four decimal places.)
P' _ ( , )

Answers

Answer:

x = 300

n = 410

p' = 0.7317

[tex]\mathbf{P' \sim Normal (\mu = 0.7317, \sigma = 0.02188)}[/tex]

Step-by-step explanation:

From the given information;

the objective is to answer the following:

(i) Enter an exact number as an integer, fraction, or decimal.

Mean x = 300

(ii) Enter an exact number as an integer, fraction, or decimal.

Sample size n = 410

(iii) Round your answer to four decimal places.

Sample proportion p' of the drivers who always claimed they buckle up is :

p' = x/n

p' = 300/410

p' = 0.7317

Which distribution should you use for this problem? (Round your answer to four decimal places.)

P' _ ( , )

The normal distribution is required to be used because we are interested in proportions and the sample size is large.

Let consider X to be the random variable that follows a normal distribution.

X represent the number of people that always claim they buckle up

[tex]P' \sim Normal (\mu = p' , \sigma = \sqrt{\dfrac{p(1-p)}{n}})[/tex]

[tex]P' \sim Normal (\mu = 0.7317, \sigma = \sqrt{\dfrac{0.7317(1-0.7317)}{410}})[/tex]

[tex]P' \sim Normal (\mu = 0.7317, \sigma = \sqrt{\dfrac{0.7317(0.2683)}{410}})[/tex]

[tex]P' \sim Normal (\mu = 0.7317, \sigma = \sqrt{\dfrac{0.19631511}{410}})[/tex]

[tex]P' \sim Normal (\mu = 0.7317, \sigma = \sqrt{4.78817341*10^{-4}})[/tex]

[tex]\mathbf{P' \sim Normal (\mu = 0.7317, \sigma = 0.02188)}[/tex]

Need Assistance With This
*Please Show Work*​

Answers

Answer:

a =7.5

Step-by-step explanation:

Since this is a right triangle, we can use the Pythagorean theorem

a^2+ b^2 = c^2  where a and b are the legs and c is the hypotenuse

a^2 + 10 ^2 = 12.5^2

a^2 + 100  =156.25

Subtract 100 from each side

a^2 = 56.25

Take the square root of each side

sqrt(a^2) = sqrt( 56.25)

a =7.5

Please answer this correctly without making mistakes

Answers

Answer:

16 km

Step-by-step explanation:

Given:

Distance from Washington to Stamford = distance from Washington to Salem + distance from Salem to Stamford = 10.3 km + 11.9 km = 22.2 km

Distance from Washington to Oakdele = 6.2 km

Required: the difference between the distance from Washington to Stamford and from Washington to Oakdele

Solution:

Distance from Washington to Stamford = 22.2 km

Distance from Washington to Oakdele = 6.2 km

The difference = 22.2 km - 6.2 km = 16 km

Therefore, from Washington, it is 16 km farther to Stamford than to Oakdele.

Which of the hypothesis tests listed below is a left-tailed test? Select all correct answers. Select all that apply: H0:μ=18, Ha:μ<18 H0:μ=19.3, Ha:μ>19.3 H0:μ=8, Ha:μ≠8 H0:μ=11.3, Ha:μ<11.3 H0:μ=3.7, Ha:μ<3.7

Answers

Answer:

H0:μ=18, Ha:μ<18

H0:μ=11.3, Ha:μ<11.3

H0:μ=3.7, Ha:μ<3.7

Step-by-step explanation:

A left tailed test is a type of test usually taken from the alternative hypothesis that includes only one of either the less than or greater than options and not both.

A left tailed test corresponds with the less than option and in this case study, the left tailed test are:

H0:μ=18, Ha:μ<18

H0:μ=11.3, Ha:μ<11.3

H0:μ=3.7, Ha:μ<3.7

Evaluate the function y=1/2(x)-4 for each of the given domain values? PLZ HELP ME

Answers

Answer:

c. -13/4.

d. -13/3.

Step-by-step explanation:

c. f(3/2) = (1/2)(3/2) - 4

= 3 / 4 - 4

= 0.75 - 4

= -3.25

= -3 and 1/4

= -13/4.

d. f(-2/3) = (1/2)(-2/3) - 4

= -2/6 - 4

= -1/3 - 4

= -1/3 - 12/3

= -13/3.

Hope this helps!

Given: AD = BC and AD || BC
Prove: ABCD is a parallelogram.
Angles Segments Triangles Statements Reasons
ZBCA
DAC
A
Statements
Reasons
00
D
с
Assemble the proof by dragging tiles to
the Statements and Reasons columns.

Answers

Do you have the picture to the problem ?

Triangle DAC is congruent to triangle BCA by SAS congruence theorem.

What is the congruence theorem?

Triangle congruence theorem or triangle congruence criteria help in proving if a triangle is congruent or not. The word congruent means exactly equal in shape and size no matter if we turn it, flip it or rotate it.

Given that, AD = BC and AD || BC.

AD = BC (Given)

AD || BC (Given)

AC = AC (Reflexive property)

∠DAC=∠BCA (Interior alternate angles)

By SAS congruence theorem, ΔDAC≅ΔBCA

By CPCT, AB=CD

Therefore, triangle DAC is congruent to triangle BCA by SAS congruence theorem.

To learn more about the congruent theorem visit:

https://brainly.com/question/24033497.

#SPJ5

Other Questions
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. A bag contains 5 blue marbles, 2black marbles ,and 3 red marbles. A marine is randomly drawn from the bag The probability of not drawing a red marble is___ . The probability of drawing a red marble is For the cellar of a new house, a hole is dug in the ground, with vertical sides going down 2.10 m. A concrete foundation wall is built all the way across the 8.90 m width of the excavation. This foundation wall is 0.189 m away from the front of the cellar hole. During a rainstorm, drainage from the street fills up the space in front of the concrete wall, but not the cellar behind the wall. The water does not soak into the clay soil. Find the force that the water causes on the foundation wall. For comparison, the weight of the water is given by 2.10 m 8.90 m 0.189 m 1000 kg/m3 9.80 m/s2 = 34.6 kN. Read the excerpt from The Story of My Life by Helen Keller. We walked down the path to the well-house, attracted by the fragrance of the honeysuckle with which it was covered. Some one was drawing water and my teacher placed my hand under the spout. As the cool stream gushed over one hand she spelled into the other the word water, first slowly, then rapidly. I stood still, my whole attention fixed upon the motions of her fingers. Suddenly I felt a misty consciousness as of something forgottena thrill of returning thought; and somehow the mystery of language was revealed to me. I knew then that "w-a-t-e-r" meant the wonderful cool something that was flowing over my hand. That living word awakened my soul, gave it light, hope, joy, set it free! There were barriers still, it is true, but barriers that could in time be swept away. What does the point of view in the excerpt allow readers to learn? A. It allows readers to learn how much Annie Sullivan wants to teach Helen about language. B. It allows readers to learn how to spell water in sign language. C. It allows readers to learn what Helen is thinking and feeling when she discovers language. D. It allows readers to learn what Helen is thinking and feeling when she discovers water. Without actually solving the problem, choose the correct solution by deciding which choice satisfies the given conditions.Kesha has a total of 100 coins, all of which are either dimes or quarters. The total value of the coins is $14.50. Find the number of each type of coin.Which choice satisfies the given conditions?O A. 70 dimes, 30 quartersB. 20 dimes, 80 quartersC. 40 dimes, 42 quarters what is 3x^3 - 11x^2 - 26x + 30 divided by x-5? now a days disease may also be cure by morning walk\yoga The graphic below shows how photosynthesis and cellular respiration are related. Paul attends the London Book Fair every year to represent his company and show its products to publishers from other countries. He also meets with individual publishers to discuss distributing their books in the U.S. The London Book Fair is Group of answer choices Estimated cash flows appear below for an investment project. The project is required rate of return (IRR) is 11.40%. What is the discounted payback period for the project in years Draw a pie chart for the percent of the money spent on various types of books by a library in a year. Which statement is consistent with the law of supply? An increase in market price will lead to a decrease in quantity supplied. At a zero price, quantity supplied will be infinite. A reduction in market price will lead to an increase in quantity supplied. An increase in market price will lead to an increase in quantity supplied. b. Which of the following characteristics leads to an upward-sloping supply curve? Instructions: Click the box with a check mark for correct or click a second time to clear the box for incorrect. Increasing opportunity costs unanswered Increasing marginal costs unanswered Diminishing marginal utility unanswered A decrease in resource prices unanswered An increase in resource prices unanswered Increasing labor productivity unanswered c. How do you derive a market supply curve from individual supply curves? Add up prices paid for each unit supplied by producers Use the largest quantity supplied among all producers for each price Calculate the average quantity supplied among all producers Add up quantities supplied by all individual producers for each price Calculate the required rate of return for Avy Inc., assuming that the company has a beta of 1.10, while investors expect treasury bills to be yielding 3.0%, with a market risk premium is 5.0%. Write a function named twoWordsV2 that has the same specification as Problem 1, but implement it using while and not using break. (Hint: provide a different boolean condition for while.) Since only the implementation has changed, and not the specification, for a given input the output should be identical to the output in Problem 1. Find the area of this shape.4 cm2 cm4 cm4 cm-15.75 cm11The area of the shape is __square centimeters. Mustafas soccer team is planning a school dance as a fundraiser. The DJ charges $200 and decorations cost $100. The team decides to charge each student $5.00 to attend the dance. If n represents the number of students attending the dance, which equation can be used to find the number of students needed to make $1,500 in profit? A: 5n - 300 = 1,500 B: 5n + 300 = 1,500 C: 5n - 200 + 100n = 1,500 D: 5n - 100 - 200n = 1,500 Velma contracts with Gordon, who agrees to build a stone retaining wall and French drain on her property. The wall and drain are necessary to prevent erosion of her land, which is falling into the creek on her property at a rapid rate. If Gordon breaches the contract by failing to get to work, Velma is under a legal obligation to calculate EG if a=5 and b=15 Which value of m will create a system of parallel lines with no solution? y=mx-6 8x-4y=12 A coordinate grid with one line labeled 8 x minus 4 y equals 12. The line passes through a point at (0, negative 3), (1, negative 1) and a point at (1.5, 0). -2 - 2 Voters are making a choice to spend money on three projects: a dam, a school, or a road. In the choice between the dam and the school, the majority favors the school. In a choice between a dam and a road, the majority favors a dam. In a choice between a road and a school, the majority favors a road. These rankings indicate that majority voting may:a. Result in economically efficient outcomes because of rent-seeking behaviorb. Reflect irrational preferencesc. Produce inconsistent choicesd. Lead to consistent choices in spite of irrational community preferences