If you want to increase the mechanical advantage of a machine, what do you also have to increase?
Group of answer choices

The distance the force is applied over while using the machine

The amount of force applied while using the machine

The amount of energy put into the machine while using it

The amount of time the force is applied while using the machine

Answers

Answer 1

Explanation:

The distance the force is applied over while using the machine.


Related Questions

a block of wood ispushed against a relaxed spring to compressed it 0.080m the spring constant of spring is 2000 N/m what is true about change in kinetic potential energy of the block spring system

Answers

Change in kinetic energy is 6.4 Joules when a block of wood is pushed against a relaxed spring to compressed it 0.080m.

What is spring constant ?

The spring constant is the force necessary to stretch or compress a spring divided by the spring's length. It is used to determine the stability or instability of a spring and, by extension, the system for which it is designed. The symbol k stands for the "spring constant," a value that indicates how "stiff" a spring is. If k is large, it signifies that stretching it a specific length requires more force than stretching a less stiff spring the same length.

Use formula

change in kinetic energy = [tex]\frac{1}{2}[/tex] × k × [tex]x^{2}[/tex]

To know more about spring constant , visit ;

brainly.com/question/14203163

#SPJ1

An average froghopper insect has a mass of 12.8 mg and jumps to a maximum height of 293 mm when its takeoff angle is 62.0∘ above the horizontal. With the takeoff speed being 2.71 m/s :
a) How much kinetic energy did the froghopper generate for this jump? Express your answer in microjoules.
b) How much energy per unit body mass was required for the jump? Express your answer in joules per kilogram of body mass.

Answers

Answer:

Explanation:

a) The potential energy gained by the froghopper at the maximum height of 293 mm can be calculated using the formula:

ΔPE = mgh

where ΔPE is the change in potential energy, m is the mass, g is the acceleration due to gravity, and h is the maximum height.

Substituting the given values, we get:

ΔPE = (12.8 × 10^-6 kg) × (9.81 m/s^2) × (0.293 m) = 3.69 × 10^-6 J

The kinetic energy of the froghopper at takeoff can be calculated using the formula:

KE = 0.5mv^2

where KE is the kinetic energy and v is the takeoff speed.

Substituting the given values, we get:

KE = 0.5 × (12.8 × 10^-6 kg) × (2.71 m/s)^2 = 4.75 × 10^-5 J

Therefore, the total energy generated by the froghopper for the jump is the sum of the potential and kinetic energy, which is:

Total energy = ΔPE + KE = 3.69 × 10^-6 J + 4.75 × 10^-5 J = 5.12 × 10^-5 J

Expressing the answer in microjoules, we get:

Total energy = 5.12 × 10^-5 J = 51.2 µJ

b) The energy per unit body mass required for the jump can be calculated by dividing the total energy generated by the froghopper by its body mass.

Substituting the given values, we get:

Energy per unit body mass = (5.12 × 10^-5 J) ÷ (12.8 × 10^-6 kg) = 4 J/kg

Therefore, the energy per unit body mass required for the jump is 4 J/kg.

You are yodeling in the mountains (velocity of sound = 325 m/s). You hear the echo off the nearest mountain 14 seconds later. How far away is the nearest mountain?

Answers

The nearest mountain is 4,550 m away. see the calculation procedures

Calculation of c between mountains

Given data

Velocity of sound: 325 m/sTime for echo to return: 14 seconds Distance to nearest mountain: 4,550 m

Let us multiply the velocity of sound (325 m/s) by the time it takes for the echo to return (14 seconds).

325 m/s x 14 seconds = 4,550 m.

Therefore, the nearest mountain is 4,550 m away.

The velocity of sound is a measure of how quickly sound travels through a medium. In this example, the velocity of sound is 325 m/s and it takes 14 seconds for an echo to return from the nearest mountain.

This means the mountain is 4,550 m away. Yodeling in the mountains is a great way to appreciate the power of sound and its ability to move through space.

Learn more about distance here:

https://brainly.com/question/26046491

#SPJ1

A spring stretches 6.0 cm when a 0.25 kg block is hung from it.

If a 0.80 kg block replaces the 0.25 kg block, how far does the spring stretch?

Answers

When a 0.80 Kg block is used in place of a 0.25 Kg block, the length of the string is increased by 19.6 cm.

How does spring stretch become calculated?

The formula used by the Hooke's Law Calculator is Fs = -kx, where F is the spring's restoring force, k is the spring constant, and x is the displacement, or the length by which the spring is being stretched

We'll start by determining the spring's string constant. Specifics below:

Extension (e) = 6.0 cm

Mass (m) = 0.25 Kg

Acceleration due to gravity (g) = 9.8 m/s²

Force (F) = mg = 0.25 × 9.8 = 2.45 N

Spring constant (K) =?

F = Ke

2.45 = K × 6

Divide both sides by 6

K = 2.45 / 6

K = 0.40 N/cm

The extension will be calculated after the 0.25 kg block is replaced with the 0.80 kg block. As demonstrated below:

Mass (m) = 0.80 Kg

Acceleration due to gravity (g) = 9.8 m/s²

Force (F) = mg = 0.80 × 9.8 = 7.84 N

Spring constant (K) = 0.40 N/cm

Extension (e) = ?

F = Ke

7.84 = 0.40 × e

Divide both sides by 0.40

e = 7.84 / 0.40

e = 19.6 cm

We may thus deduce from the preceding computation that the spring will lengthen by 19.6 cm.

To know more about Spring Stretch visit:

https://brainly.com/question/13008041

#SPJ1

Hi,I'm looking for a physics student to communicate with help

Answers

Answer:

hi, I am an IGCSE student and i know pretty well about physics, may I help you with any question?

Explanation:

A 1450 car having a speed of 25.2 collides with a 7.5 truck moving in the same direction at 20.0 . Velocity of the car after the collision changed to 15.0 in the initial direction. What is the velocity of the truck after the collision?

Answers

The velocity of the truck after the collision, given that a 1450 kg car having a speed of 25.2 m/s collides with the 7.5 kg truck is 1992 m/s

How do I determine the velocity of the truck after collision?

The following data were obtained from the question given above:

Mass of car (m₁) = 1450 KgInitial velocity of car (u₁) = 25.2 m/sMass of truck (m₂) = 7.5 KgInitial velocity of truck (u₂) = 20.0 m/sFinal velocity of car (v₁) = 15.0 m/sFinal velocity of truck (v₂) = ?

The velocity of the truck after the collision can be obtained by using the law of conservation of linear momentum as follow:

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

(1450 × 25.2) + (7.5 × 20) = (1450 × 15) + (7.5 × v₂)

36540 + 150 = 21750 + (7.5 × v₂)

36690 = 21750 + 7.5v₂

Collect like terms

7.5v₂ = 36690 - 21750

7.5v₂ = 14940

Divide both sides by 7.5

v₂ = 14940 / 7.5

v₂ = 1992 m/s

Thus, the velocity of the truck after collision is 1992 m/s

Learn more about velocity after collison:

https://brainly.com/question/28151651

#SPJ1

Circadian rhythm refers to the

Answers

The circadian rhythm refers to the body’s natural cycle of sleeping and waking. It can also be referred to as the body’s internal clock. Hope this helps.

Answer:

Circadian rhythm refers to the natural cycle of physical, mental, and behavior changes that the body goes through in a 24-hour cycle.

Please mark brainliest

PLEASE HELP ME! LIKE ASAP! Imagine a population of bugs that has two traits for body color. Some bugs are bright. Some are dark. A new predator can see the bright bugs more easily than the dark bugs. Describe how natural selection could affect this trait in the bug population over time.

Answers

Answer: if the predator sees the light bugs easier than the dark bugs then the bright bug will most likely go extinct

Explanation:

1 Fig B U 99 m 33 m A student stands at P so that his distance from building A is 33 m. After clapping his hands once, he hears several echoes. The speed of sound in air is 330 m/s. a) Calculate the time interval between clapping his hands and hearing (i) the first echo, (ii) the third echo chamber containing air.​

Answers

Using the principle of the echo, we can see that the first echo can be heard after  0.2 s.

What is echo?

In acoustics, an echo refers to the reflection of sound waves off a surface and back to the listener. When sound waves encounter a hard surface, such as a wall or mountain, some of the energy is reflected back towards the source.

To find the time interval for the first echo;

v = 2x/t

t = 2x/v

t = 2(33)/330

t = 0.2 s

Echoes are often heard in large open spaces such as auditoriums, canyons, or empty rooms. They can also be artificially created using electronic sound processing equipment, such as reverb effects in music production or sound systems in large events.

Learn more about echo:https://brainly.com/question/9527413

#SPJ1

When an object slows down, it has a? 8.______

Answers

When an object slows down, it has a negative acceleration, also known as deceleration.

What is deceleration of an object?

Deceleration is a vector quantity, meaning it has both magnitude (the amount of change in velocity per unit time) and direction (opposite to the direction of motion).

Thus, the rate of deceleration is often measured in terms of the object's acceleration, which is expressed in meters per second squared (m/s^2) or other appropriate units. When an object slows down, its acceleration is negative, meaning it is directed opposite to its initial motion. The greater the negative acceleration, the faster the object slows down.

Learn more about negative acceleration here: https://brainly.com/question/29633772

#SPJ1

The trajectory of a ball can be computed with
y = (tan 0)x
9
2v cos² 0.
-x² + Yo
where y the height (m), 0o = the initial angle (radians), vo = the initial velocity (m/s), g = the gravitational constant = 9.81 m/s²,
and yo the initial height (m). Use the golden-section search to determine the maximum height given yo = 2 m, vo = 20 m/s,
and 80=45°. Iterate until the approximate error falls below &s=10% using initial guesses of x/= 10 m and xu = 30 m. (Round
the final answer to three decimal places.)
The maximum height is
m.

Answers

We must define a function that accepts an input parameter x and returns the associated height y in order to use the golden-section search. By entering the specified numbers for yo, vo, 0o, g, and x into the formula.

How much learning error must be set?

The golden-section search algorithm can now be used to identify the value of x that maximises y. We begin by setting the error tolerance to 10% and starting with the basic hypotheses .

How can we determine the value of x that optimises y using the golden-section search algorithm?

Calculate the values of x2 and x3 using the golden ratio:Evaluate the function at x2 and x3:If y2 > y3, the maximum is between x1 and x3, so we set x4 = x3 and repeat from step 1. Otherwise, the maximum is between x2 and x4, so we set x1 = x2 and repeat from step.

To know more about Trajectories  visit:-

brainly.com/question/28874076

#SPJ1

A sled with a mass 47.0 kg is pulled along flat, snow-covered ground. The static friction coefficient is 0.30, and the kinetic friction coefficient is 0.10.
(a) What does the sled weigh?

(b) What force will be needed to start the sled moving?

(c) What force is needed to keep the sled moving at a constant velocity?
(d) Once moving, what total force must be applied to the sled to accelerate it at 3.3 m/s2?

Answers

(a) The weight of the sled is given by the product of its mass and the acceleration due to gravity:

w = m*g = 47.0 kg * 9.81 m/s^2 = 461.07 N

(b) The force needed to start the sled moving is the maximum force of static friction, which is given by:

f_s = μ_s * w = 0.30 * 461.07 N = 138.32 N

(c) Once the sled is moving at a constant velocity, the force needed to keep it moving is equal to the force of kinetic friction, which is given by:

f_k = μ_k * w = 0.10 * 461.07 N = 46.11 N

(d) The total force needed to accelerate the sled at 3.3 m/s^2 is the sum of the force of kinetic friction and the force required to produce the desired acceleration:

F = f_k + m*a = 46.11 N + 47.0 kg * 3.3 m/s^2 = 200.97 N

The half life of a radioactive element is 4×10⁸ years. Calculate its decay constant and mean life

Answers

The decay constant (λ) of a radioactive element can be calculated using the formula:

λ = ln(2) / T1/2

where ln(2) is the natural logarithm of 2 and T1/2 is the half-life of the element.

Substituting the given values, we get:

λ = ln(2) / (4 x 10^8)

λ = 1.73 x 10^-9 per year

Therefore, the decay constant of the radioactive element is 1.73 x 10^-9 per year.

The mean life (τ) of a radioactive element can be calculated using the formula:

τ = 1 / λ

Substituting the calculated value of λ, we get:

τ = 1 / (1.73 x 10^-9)

τ = 5.78 x 10^8 years

Therefore, the mean life of the radioactive element is 5.78 x 10^8 years.

velocity, and acceleration velocity refers to an object’s4.________

Answers

Answer: I'm not entirely sure this is what you meant, but...

Velocity refers to an object's speed and acceleration.

A small glass ball is rubbed with a piece of silk, giving the ball a charge of 1.0 x 10^-8 C. Determine the magnitude of the force due to the Earth's magnetic field if the ball is thrown to the west with a velocity 8.0 m/s . The earth's magnetic field is 5.0 x 10^-5 T

Answers

The magnitude of the force due to the electric field on the charged glass ball is 2.4 x [tex]10^{-5}[/tex] N, and the Earth's magnetic field is not relevant in this scenario.

What is Magnetic Field?

A magnetic field is a field created by a magnet, moving electric charge, or changing electric field. A magnetic field can also be created by a loop of electric current. A magnetic field is a vector field, meaning it has both magnitude and direction.

The Earth's magnetic field is not relevant for the interaction between the charged glass ball and the Earth's gravitational field. Instead, we need to calculate the force due to the electric field generated by the charge on the ball.

We can use the formula for the electric force on a charged particle:

F = qE

where F is the force on the charge q, and E is the electric field at the location of the charge.

In this case, the charge on the ball is q = 1.0 x 10^-8 C, and the velocity of the ball is directed to the west, so the direction of the force should be to the north or south.

Assuming the electric field due to the charge on the ball is uniform and perpendicular to the velocity of the ball, we can use the formula for the electric field due to a point charge:

E = k*q / [tex]r^{2}[/tex]

where k is Coulomb's constant (9 x 10^9 N·[tex]m^{2}[/tex]/[tex]C^{2}[/tex]), q is the charge on the ball, and r is the distance from the charge to the point where we want to calculate the electric field.

If we assume that the ball is moving at a constant height above the Earth's surface, then the distance r is constant and we can use the above equation to find the electric field E.

E = k*q / [tex]r^{2}[/tex] = (9 x 10^9 N·[tex]m^{2}[/tex] /[tex]C^{2}[/tex]) * (1.0 x 10^-8 C) /[tex]r^{2}[/tex]

We don't know the distance r, but we do know that the electric force on the ball due to this field must be equal to the force required to cause the ball to move in a circular path, as it is in this case. The force required to maintain a circular motion of radius r with speed v is

where m is the mass of the ball. This force must be equal to the electric force on the ball:

F = qE

We can equate these two expressions to solve for the distance r

Plugging in the given values, we get:

r = 1.78 x [tex]10^{-3}[/tex] m

So the ball is moving in a circular path with radius r = 1.78 x [tex]10^{-3}[/tex]m, and the electric field at the location of the ball is:

E = 2.4 x [tex]10^{3}[/tex] N/C

Finally, we can calculate the force on the charged ball due to this electric field:

F = qE = (1.0 x [tex]10^{8}[/tex] C) * (2.4 x [tex]10^{3}[/tex] N/C)

F = 2.4 x [tex]10^{-5}[/tex]N

Learn more about Magnetic Field from the given link

https://brainly.com/question/14411049

#SPJ1

In the upper atmosphere at altitudes where commercial airlines travel, we find extremely cold temperatures. What is the speed of sound (in metric units) for a temperature of -49.0 oC?

A. 984.9 m/s

B. 344.7 m/s

C. 300.8 m/s

D. 140.7 m/s

Answers

Basically -49 c is 224K
at 0c or 273k velocity of sound is 332 m/s (should have been given in question)
Now, velocity of sound is directly proportional to square root of temperature
Thus
v^2 / (332) ^2 = (224/273)
This gives us 300.732 m/s mathematically

So that gives us c as answer

How can 2-phenylethanoic acid can be prepared from toluene?​

Answers

Answer: C6H5CH3 (toluene) + Br2 + Mg + CO2 + oxidizing agent → C6H5CH2COOH (2-phenylethanoic acid)

Explanation:

2-Phenylethanoic acid, also known as phenylacetic acid, can be prepared from toluene through the following steps:

Bromination: Toluene is brominated using Br2 and FeBr3 as a catalyst to form 2-bromotoluene.

Grignard reaction: The 2-bromotoluene is reacted with magnesium (Mg) in dry ether to form phenylmagnesium bromide (C6H5MgBr).

Acidification: The phenylmagnesium bromide is then reacted with carbon dioxide (CO2) to form 2-phenylpropanoic acid (also known as phenylpropionic acid). This reaction is carried out by bubbling CO2 gas through the solution of phenylmagnesium bromide in dry ether.

Oxidation: The 2-phenylpropanoic acid is then oxidized using a strong oxidizing agent, such as potassium permanganate (KMnO4) or chromic acid (H2CrO4), to form 2-phenylethanoic acid.

The overall reaction can be represented as follows:

C6H5CH3 (toluene) + Br2 + Mg + CO2 + oxidizing agent → C6H5CH2COOH (2-phenylethanoic acid)

Note: This is a complex reaction sequence and should only be attempted by experienced chemists in a well-equipped laboratory with appropriate safety measures.

A 500 g air-track glider collides with a spring at one end of the track. The figures show the glider's velocity and the force exerted on the glider by the spring. (Figure 1), (Figure 2) How long is the glider in contact with the spring? Express your answer to two significant figures and include the appropriate units.

Answers

We can find the time for which the glider is in contact with the spring by using the impulse-momentum theorem:

Impulse = Change in momentum

The impulse of the force exerted by the spring is given by the area under the force-time graph, which is a triangle:

Impulse = (1/2) * (1 N) * (0.02 s) = 0.01 Ns

The initial momentum of the glider is:

p1 = m * v1 = (0.5 kg) * (0.3 m/s) = 0.15 kg m/s

The final momentum of the glider is zero, since it comes to rest:

p2 = 0 kg m/s

Therefore, the change in momentum is:

Δp = p2 - p1 = -0.15 kg m/s

Setting the impulse equal to the change in momentum and solving for the time gives:

Impulse = Change in momentum

0.01 Ns = Δp = p2 - p1

0.01 Ns = 0 - 0.15 kg m/s

0.01 Ns = -0.15 kg m/s

t = Δp / Impulse = (-0.15 kg m/s) / (0.01 Ns) ≈ -15 s

The negative value for time doesn't make sense physically, so we need to check our work. Looking at the force-time graph, we see that the force is actually zero for most of the time, and only becomes non-zero when the glider is in contact with the spring. Therefore, we need to find the time for which the force is non-zero.

The force is non-zero for a duration of 0.01 s, so this is the contact time:

t = 0.01 s

Therefore, the glider is in contact with the spring for 0.01 seconds.

here's the answer. I'm not too sure about it, but good luck

The time for which the glider is in contact with the spring is approximately 0.17 s.



What is momemnum and  impluse?

Momentum is a physical quantity that describes the motion of an object. It is defined as the product of an object's mass and velocity. Mathematically, momentum can be expressed as:

p = mv

where p is momentum, m is the mass of the object, and v is the velocity of the object.

Impulse is the change in momentum of an object that results from the application of a force over a certain period of time. Impulse is equal to the product of force and the time interval over which the force acts. Mathematically, impulse can be expressed as:

J = FΔt

where J is the impulse, F is the force applied to the object, and Δt is the time interval over which the force acts.

The relationship between impulse and momentum is given by the impulse-momentum theorem, which states that the impulse applied to an object is equal to the change in momentum of the object. Mathematically, the impulse-momentum theorem can be expressed as:

J = Δp

where J is the impulse, and Δp is the change in momentum of the object. This theorem is useful in analyzing collisions and other situations where forces act on objects for a finite period of time.

Here in the Question,

To find the time for which the glider is in contact with the spring, we need to use the impulse-momentum theorem, which relates the impulse (change in momentum) of an object to the force applied to it and the time over which the force is applied:

impulse = force x time = change in momentum

The momentum of the glider before it collides with the spring is:

p1 = m1v1 = (0.500 kg)(0.750 m/s) = 0.375 kg·m/s

The momentum of the glider after it rebounds from the spring is:

p2 = m2v2

We can find v2 from the velocity-time graph in Figure 1. At the moment of maximum compression, the velocity of the glider is zero, so we need to find the time at which this occurs. From the graph, we can see that this occurs at about t = 0.02 s. Therefore, the velocity of the glider after rebounding from the spring is:

v2 = -0.750 m/s

(Note that the negative sign indicates that the glider is moving in the opposite direction after rebounding.)

The change in momentum of the glider is:

Δp = p2 - p1 = m2v2 - m1v1 = (0.500 kg)(-0.750 m/s) - (0.500 kg)(0.750 m/s) = -0.750 kg·m/s

The impulse applied to the glider by the spring is equal in magnitude to the change in momentum:

impulse = Δp = -0.750 kg·m/s

We can find the time for which the force is applied by rearranging the impulse-momentum theorem:

time = impulse/force

We can find the force from the force-time graph in Figure 2. The force at the maximum compression is approximately 4.5 N. Therefore, the time for which the glider is in contact with the spring is:

time = impulse / force = (-0.750 kg·m/s) / (4.5 N) ≈ 0.167 s ≈0.17 s

Therefore, Rounding to two significant figures and including the appropriate units, the time for which the glider is in contact with the spring is approximately 0.17 s.



To learn about momentum equation  click:

https://brainly.com/question/30101966

#SPJ2

Two particles are initially separated by 20 cm. Particle A, with mA = 10pg and qA = -5 nC, is on the left and makes a head-on collision with Particle B at a speed of 4 * 10^4 m/s. Particle B, with mB = 5pg and qB = -10nC, is on the right and moves toward Particle A at a speed of 6 * 10^4 m/s. Assume Particle A is moving in the positive direction. (If you wish to get correct answers, then be sure to use ke = 9 * 10^9 N * m^2 / C^2 and e = 1.6 * 10^-19 C.)

(a) The initial mechanical energy of the system in muJ (μJ - microjoules) and to three decimal places, is?

(b) The magnitude of the maximum force acting on qA during the collision in mN (miliNewton) and to three decimal places, is?

(c) The work done by the electric force on the system to stop the particles in muJ (μJ) and to two decimal places, is?

(d) The minimum separation distance between the two particles in cm and to three decimal places, is?

(e) The maximum speed experienced by Particle A is
Option 1: when it is infinitely far away from Particle B
2: is unable to be determined
3: when it is closest to Particle B
4: at its initial location
5: at a location that cannot be determined without more information

Answers

When particle A is infinitely far from particle B, option 1, it moves at its top speed.

Initial velocity of the first particle was u₁ = 4×10 ⁴m/s Initial velocity of the second particle was u₂ = 6×10⁴ m/s Initial velocity of the third particle was v = Final velocity of both particles after collision was v =

Use the idea of linear momentum conservation;

a) After a collision, a 5 kg particle moves at a speed of -1 m/s, changing the total kinetic energy of the system by -40 joules. More kinetic energy can be obtained by adding an external substance.

k e = 9 ₓ 10⁹ N  m² / C² and e = 1.6 ₓ 10⁻¹⁹ C.)

b) The Joule is the unit used to measure kinetic energy, which is the energy that an item stores as a result of motion. The product of a particle's mass and velocity is known as momentum. In order to determine the particle's velocity following a collision, we must first compare the values in the momentum conservation formula, which is provided as:c) m1 and v1 represent the mass and speed of a 10 pg item (before collision)

m2, v2 represent the mass and speed of a 10 kilogram item (before collision)

M1, V1 stand for mass and speed.

d) A first particle and a second particle are O.

v(m₁+ m₂) = m₁u₁ - m₂u₂.

11 x 2 - 11 x 2 = v( 11 + 11)

22 - 22 = v(22) (22)

0 = 22v = 0/22  = 0

e) After colliding, both particles' final velocities are zero

As a result, both particles are at rest.

Learn more about particle here

https://brainly.com/question/30296584

#SPJ1

A ray of light in water has a wavelength of 4.42×
[tex] {10}^{ - 7} m[/tex]
What is the wavelength of that way while passing through ice?​​

Answers

When light is travelling through ice, its wavelength is 4.50 10⁻⁷ metres.

When light travels from air to glass, what happens to its wavelength?

Since glass has a higher index of refraction than air, light travels more slowly through glass than through air (n=c/v). Although the wavelength does not change, the frequency does because the speed does.

The following equation describes the relationship between the wavelengths of light in two different media:

n1 * λ1 = n2 * λ2

We may rewrite this equation to get the wavelength of the light in the second medium while assuming that the light's frequency stays constant: λ2 = (n1 / n2) * λ1

For water, the refractive index is about 1.333, and for ice, it is about 1.31. Therefore, we have:

λ2 = (1.333 / 1.31) * 4.42×10⁻⁷ m

λ2 = 4.50×10⁻⁷ m

To know more about wavelength visit:-

https://brainly.com/question/7143261

#SPJ1

A 15.0 cm tall object is placed 35.0 cm from a convex lens, which
has a focal length of 15.0 cm. Calculate the height for the image.

Answers

The image is reversed if the image height has a negative sign. The image is inverted and has a height of -6.45 cm.

How is the image's height determined?

The lens equation describes how a convex lens's object distance (d o), image distance (d i), and focal length (f) relate to one another:

1/f = 1/d_o + 1/d_i

1/d_i = 1/15.0 cm - 1/35.0 cm 1/d_i = 1/f - 1/d o

1/d_i = 0.0667 cm -1

d_i = 15.0 cm

The image's magnification (M) is determined by:

M = - d_i / d_o

M = -15.0 cm / 35.0 cm

M = -0.43

M = h_i / h_o

h_i = M x h_o

The value for h_o is 15.0 cm. With M = -0.43, we obtain:

h_i = -0.43 * 15.0 cm

h_i = -6.45 cm

To learn more about convex lens visit:

brainly.com/question/27038900

#SPJ1

A motorcycle travels, in one direction only, with an average speed of 916.66 m/min during the first 30 minutes of its travel and 900 m/min during the next 20 minutes.
Calculate (Units must be in units of the international system):
a. The total distance traveled.
b. The average speed.

Answers

Explanation:

a. To calculate the total distance traveled, we need to find the distance traveled during the first 30 minutes and the distance traveled during the next 20 minutes, and then add them up.

During the first 30 minutes:

distance = speed × time

distance = 916.66 m/min × 30 min

distance = 27,499.8 meters

During the next 20 minutes:

distance = speed × time

distance = 900 m/min × 20 min

distance = 18,000 meters

Total distance traveled:

distance = 27,499.8 meters + 18,000 meters

distance = 45,499.8 meters

Therefore, the total distance traveled is 45,499.8 meters.

b. To calculate the average speed, we need to divide the total distance traveled by the total time taken.

Total time taken:

time = 30 min + 20 min

time = 50 min

Average speed:

speed = distance ÷ time

speed = 45,499.8 meters ÷ 50 min

speed = 909.996 m/min

Therefore, the average speed is 909.996 m/min.

A basketball has a mass of approximately 624 grams [g] and a volume of 0.25 cubic feet [ft3]. Determine the density of the basketball in units of slug per gallon [slug/gal].

Answers

The basketball has a slugs density of 0.0228 per gallon (m/V = 0.0427 slugs/1.8697 gallons) (approximately).

What in density is a slug?

Based on normal gravity, the international foot, and the avoirdupois pound, one slug weighs 32.1740 lb (14.59390 kg). An item with a mass of 1 slug would weigh around 32.2 lbf, or 143 N, at the Earth's surface.

We need to apply the following conversion factor to convert grammes to slugs:

1 slug = 14.5939 kg

1 kg = 1000 g

Therefore:

1 slug = 14.5939 kg = 14.5939 x 1000 g = 14593.9 g

So, the mass of the basketball in slugs is:

m = 624 g / 14593.9 g/slug = 0.0427 slugs

To convert from cubic feet to gallons, we need to use the following conversion factor:

1 gallon = 0.133681 ft^3

Therefore:

0.25 ft⁻³ = 0.25 / 0.133681 = 1.8697 gallons

So, the volume of the basketball in gallons is:

V = 1.8697 gallons

The density of the basketball in slug/gal is:

ρ = m / V = 0.0427 slugs / 1.8697 gallons = 0.0228 slug/gal (approximately)

To know more about slugs density visit:-

https://brainly.com/question/30024936

#SPJ1

A double-convex thin lens has surfaces with equal radii of curvature of magnitude 3.00 cm. Looking through this lens, you observe that it forms an image of a very distant tree at a distance of 1.98 cm from the lens. What is the index of refraction of the lens?

Answers

n = 1.50. In this case, the index of refraction is 1.50, which demonstrates that the lens is able to refract light in order to form an image.

Given ParametersRadii of curvature (r1, r2): 3.00 cm Distance of image (d): 1.98 cm

Let us calculate the focal length of the lens:

F = 1/[(1/r1)+(1/r2)]

F = 1/[(1/3.00 cm)+(1/3.00 cm)]

F = 1.50 cm

Calculate the index of refraction:

n = 1/(1/f - 1/d)

n = 1/(1/1.50 cm - 1/1.98 cm)

n = 1.50

Both of these surfaces cause light rays to bend and converge at a focal point on the other side of the lens. The index of refraction of the lens can be calculated by using the equation n = 1/(1/f - 1/d), where f is the focal length and d is the distance of the image.

Learn more about lenses here:

https://brainly.com/question/26550490

#SPJ1

Hanif is the tallest player in a volleyball team. He is in spiking position when Johan delivers him the ball. The 0.226-kg volleyball is 2.29 m above the ground and has a speed of 1.06 m/s. Hanif spikes the ball, doing 9.89 J of work on it. (a) Determine the potential energy and the kinetic energy of the ball before Hanif spikes it. (b) The total mechanical energy of the ball before Hanif spikes it.​

Answers

(a)

Potential Energy  = 4.95 J

Kinetic Energy =0.132 J

b.) the total mechanical energy of the ball before Hanif spikes it is 5.08 J.

How to calculate?

Potential energy (PE) = mgh

Kinetic energy (KE) = (1/2)mv^2

m = 0.226 kg

h = 2.29 m

v = 1.06 m/s

g = 9.81 m/s^2 (acceleration due to gravity)

PE = mgh = (0.226 kg)(9.81 m/s^2)(2.29 m) = 4.95 J

KE = (1/2)mv^2 = (1/2)(0.226 kg)(1.06 m/s)^2 = 0.132 J

(b) The total mechanical energy of the ball before Hanif spikes it is the sum of its potential and kinetic energy:

Total mechanical energy = PE + KE = 4.95 J + 0.132 J = 5.08 J

Learn more about kinetic energy at: https://brainly.com/question/8101588

#SPJ1

PLEAS HELP ME WITH THIS WORKSHEET PLEASEEEEE!!!!!

Explosion
1) Two swimmers are floating on a raft that is motionless. One swimmer has a mass of 50 kg and
the other at 80 kg. They both push off the raft at the same time. The 80 kg swimmer moves
away at 3 m/s. What velocity does the 50 kg swimmer move away with?
M1 = 50 kg v1' =____ M2 = 80 kg v2' = 3 m/s
Equation: 0= m1 (v1') + m2 (v2')
Elastic
2) Two hockey players are skating towards each other. A 90 kg player traveling at 6 m/s
rams into a 60 kg player moving at 2 m/s. After the collision, the 90 kg player slows to 4
m/s but is still traveling in the same direction. What is the velocity of the 60 kg player?
Equation: m1 (v1) + m2 (v2) = m1 (v1') + m2 (v2')
v2 = -2 m/s
M1 = 90 kg
v1 = 6 m/s M2 = 60 kg
V1' = 4 m/s
v2' =___

Answers

We can use the conservation of momentum to solve both problems:

Conservation of momentum:

0 = m1(v1') + m2(v2')

where m1 = 50 kg, v2' = 3 m/s, and m2 = 80 kg. We can solve for v1' to get:

v1' = -(m2/m1) v2'

v1' = -(80 kg/50 kg) (3 m/s) = -4.8 m/s

Therefore, the 50 kg swimmer moves away from the raft with a velocity of -4.8 m/s.

Conservation of momentum:

m1(v1) + m2(v2) = m1(v1') + m2(v2')

where m1 = 90 kg, v1 = 6 m/s, m2 = 60 kg, and v1' = 4 m/s. We can solve for v2 to get:

v2 = (m1v1 + m2v2 - m1v1') / m2

v2 = (90 kg)(6 m/s) + (60 kg)(2 m/s) - (90 kg)(4 m/s) / 60 kg

v2 = -1 m/s

Therefore, the velocity of the 60 kg player after the collision is -1 m/s, which means they are moving in the opposite direction to the 90 kg player.

EARTH AND SPACE SCIENCE!
All of the following are Kepler's laws of planetary motion EXCEPT?

a.) Planets follow elliptical orbits with the sun at one of its foci
b.) The period of a planet (time it takes to go around the sun) is related to its distance from its Sun
c.) The period of a planet(time it takes to go around the sun) is related to the planet's mass

Answers

C. The period of a planet (time it takes to go around the sun) is not related to its mass.

The first law states that the planets follow elliptical orbits with the sun at one of its foci, the second law states that an imaginary line drawn from the sun to a planet sweeps out equal areas in equal times, and the third law states that the square of the period of a planet is directly proportional to the cube of its average distance from the sun. Since the period of a planet is not related to its mass, answer C is not one of Kepler's laws of planetary motion.

learn more about Kepler's laws Refer:brainly.com/question/30760148

#SPJ1

An ideal gas undergoes an isothermal (constant-temperature) compression at temperature T, with its volume changing from V1 to V2. (i) Prove that the work done during this process is given by an expression =12. (5) (ii) Is the work done positive or negative? Give reasons.

Answers

The effort required to compress an ideal gas is therefore given by W = -1/2 nRT ln(V2/V1) during an isothermal process.

What labour is involved in an ideal gas's isothermal expansion and compression?

When an ideal gas is subjected to isothermal expansion (T = 0) in a vacuum, the work done is equal to zero as pex=zero. Joule established q = 0 empirically; hence, U = 0. Equation 1 can be written as: for both reversible and irreversible isothermal changes. Reversible isothermal change q = -w = pex (Vf-Vi)

nRT = ln(V2/V1) - W

If we solve for W, we obtain:

W = ln(V1/V2)nRT (v) If we condense this phrase, we get:

W=-nRT ln(V2/V1).

W=-RT ln(V2/V1).

W=-1/2nRT ln(V2/V1)

To know more about ideal gas  visit:-

https://brainly.com/question/28257995

#SPJ1

Scientists monitor the ozone layer by taking air samples by airplane or weather balloons. What atmospheric layer do the scientists collect the ozone samples from?

Answers

Scientists typically collect ozone samples from the stratosphere, which is the atmospheric layer located between about 10 and 50 kilometers (6 to 30 miles) above the Earth's surface.

What is the stratosphere?

The stratosphere is the layer of the Earth's atmosphere located above the troposphere and below the mesosphere. It extends from about 10 kilometers (6 miles) to about 50 kilometers (30 miles) above the Earth's surface.

The stratosphere is characterized by a gradual increase in temperature with altitude, due to the absorption of ultraviolet radiation by ozone in the stratosphere.

This is where most of the Earth's ozone is found and where the ozone layer is located. The ozone layer absorbs harmful ultraviolet (UV) radiation from the sun, protecting life on Earth from its harmful effects. Scientists collect air samples from this layer using airplanes or weather balloons equipped with specialized instruments.

Learn about the stratosphere here https://brainly.com/question/28097222

#SPJ1

A 5.0KG block is placed at rest on a 30 degree incline. The coefficient of static friction is 0.5 and the coefficient of kinetic friction is lower than that. Draw a free body diagram of the block including all force components and determine the net force. Will the block slide or will it remain at rest?

Answers

Here is a free body diagram of the block on the incline:

         /|

        / |

       /  |

      /   |

     /    |

    /     |

   /θ    |

  /       |

 /         |

/           |

/____________|

        N

        |

        |

        |

        |<----f_kinetic

        |_______  <----f_gravity

Static force:

f_static is less than the maximum force of static friction, the block will not slide and will remain at rest.

     

In this diagram, θ represents the angle of the incline, N represents the normal force exerted on the block by the incline, f_gravity represents the force of gravity pulling the block down the incline, and f_kinetic represents the force of kinetic friction opposing the motion of the block. Since the block is at rest, the net force must be zero.

We can calculate the force of gravity using the formula:

f_gravity = mgcosθ

where m is the mass of the block, g is the acceleration due to gravity (9.81 m/s^2), and θ is the angle of the incline. Substituting the given values, we get:

f_gravity = (5.0 kg)*(9.81 m/s²)*cos(30°) = 42.7 N

The normal force, N, is perpendicular to the incline and equal in magnitude to the component of the force of gravity perpendicular to the incline. We can calculate it using the formula:

N = f_gravity*sinθ

Substituting the given values, we get:

N = (5.0 kg)*(9.81 m/s²)*sin(30°) = 24.5 N

The force of static friction, f_static, can be found using the formula:

f_static = μ_static*N

where μ_static is the coefficient of static friction. Substituting the given value, we get:

f_static = (0.5)*(24.5 N) = 12.3 N

Since the block is at rest, the force of static friction must be equal in magnitude to the component of the force of gravity parallel to the incline:

f_static = f_gravitysinθ = (5.0 kg)(9.81 m/s²)*sin(30°) = 24.5 N

Since f_static is less than the maximum force of static friction, the block will not slide and will remain at rest.

We don't need to determine the force of kinetic friction since the block is not sliding.

To know more about the force, visit:

https://brainly.com/question/26115859

#SPJ1

Other Questions
Which stage of meiosis is most responsible for the genetic variation observed within a species? A. Metaphase II B. Prophase II C. Metaphase I D. Prophase PLEASE HELP!! AND EXPLAIN 6. What is the area of this figure? Help me If a nonrenewable resource such as oil suddenly became scarce while the demand remained constant A-the price would increase.B the price would decreaseC supply would increaseD supply would decrease Determine the measure of CEB and then mneed asap economic surplus is maximized in a competitive market when question content area bottom part 1 a. marginal benefit equals marginal cost. b. demand is equal to supply. c. producers sell the quantity that consumers are willing to buy. d. the deadweight loss equals the sum of consumer surplus and producer surplus. what is the term for the additional variable used to determine the values of the original variables in the ordered pair of a system of equations whose solution is an infinite number of solution A block of copper with a mass of 0.94 kg has 24,600 J of thermal energy removed from it. How much does its temperature change? 3/14 - Write the definition of each word earthquake ground shaking at a particular site is influenced by 1) the earthquake magnitude, 2) distance from the epicenter, and 3) the . Hawks in both parties condemned Biden's compromise with Russia. First, they hoped that Washington could intervene with decisive military assistance; Then they were convinced that Putin would yield if the United States threatened to intervene militarily. However, the opposition of the Republicans is not as loud as before, because they still remember the controversial relationship between Trump and Russia. Coping can be defined as: Distension of the superficial veins caused by weakened valves is termedA) hemorrhoids.B) venoconstriction.C) vaso vasorum.D) varicose veins.E) venous reserve solar, hydropower, geothermal, and wind energy are examples of what type of energy? Shonda performed an experiment in which she pulled a marble out of a bag, recorded its color, put it back, and repeated. After completing 12 trials, she pulled a red marble 3 times.Which answers are good models for this bag of marbles?Select two that apply.Responses5red, 3 blue, 4yellow, 3red, 6 blue, 6yellow3 red, 12 blue, 3 yellow, 1 green 5 red, 5 blue, 5 yellow, 5 green 3 red, 3 purple, 3 orange, 3 green Outline the importance of hydrosphere what are the x and y components of the acceleration a 2.0 kg object on which the forces below are acting? A sample of 0.49 g of carbon dioxide was obtained by heating 1.22 g of calcium carbonate. What is the percent yield for this reaction A circle has a raidius of 16 ft. what is the area in terms of pi. how has colonialism affected the economic development of countries, including china, india, and formerly colonized countries in africa? $4,500 is invested at 10% annual interest, which is compounded continuously, what is the account balance after 3 years