Answer:
39062/62,500Step-by-step explanation:
Given the following geometric progression; 1/2 + 1/10 + ( 1/50) + (1/250 ) + ... + (1/31,250),the sum of the arithmetic geometric progression is expressed using the formula below;
Sn = a(1-rⁿ)/1-r for r less than 1
r is the common ratio
n is the number of terms
a is the first term of the series
In between the mid-line ellipsis there are 2 more terms, making the total number of terms n to be 7]
common ratio = (1/10)/(1/2) = (1/50)/(1/10) = (1/250)/(1/50) = 1/5
a = 1/2
Substituting the given values into the equation above
S7 = 1/2{1 - (1/5)⁷}/1 - 1/5
S7 = 1/2(1- 1/78125)/(4/5)
S7 = 1/2 (78124/78125)/(4/5)
S7 = 78124/156,250 * 5/4
S7 = 390,620/625000
S7 = 39062/62,500
Hence the geometric sum is 39062/62,500
An ecologist wishes to mark off a circular sampling region having radius 10 m. However, the radius of the resulting region is actually a random variable R with the following pdf.
f(r)={34(1−(14−r)2)13≤r≤150 otherwise
What is the expected area of the resulting circular region?
Answer:
the expected area of the resulting circular region is 616.38 m²
Step-by-step explanation:
Given that:
[tex]f(r) = \left \{ {{\dfrac{3}{4}(1-(14-r)^2)} \atop {0 }} \right. \ \ 13 \leq r \leq 15[/tex] otherwise
The expected area of the resulting circular region is:
= [tex]E(\pi r^2)[/tex]
= [tex]\pi E (r^2)[/tex]
To calculate [tex]E(r^2)[/tex]
[tex]E(r^2) = \int\limits^{15}_{13} {r^2} \ f(r) \ dr[/tex]
[tex]E(r^2) = \int\limits^{15}_{13} \ \dfrac{3r^2}{4}(1-(14-r)^2)dr[/tex]
[tex]E(r^2) = \dfrac{3}{4} \int\limits^{15}_{13} \ r^2 (1-196-r^2+28r) dr[/tex]
[tex]E(r^2) = \dfrac{3}{4} \int\limits^{15}_{13} \ r^2 (28r^3-r^4-195r^2)dr[/tex]
[tex]E(r^2) = \dfrac{3}{4}[\dfrac{28 r^4}{4}-\dfrac{r^5}{5}-\dfrac{195r^3}{3}]^{^{15}}}__{13}[/tex]
[tex]E(r^2) = \dfrac{3}{4} [ \dfrac{28 \times 50625}{4} - \dfrac{759375}{5} - \dfrac{195 \times 3375}{3} ]-[ \dfrac{28 \times 28561}{4} - \dfrac{371293}{5} - \dfrac{195 \times 2197}{3} ][/tex]
[tex]E(r^2) = \dfrac{3}{4} [ 354375-151875-219375-199927+74258.6+142805][/tex]
[tex]E(r^2) = \dfrac{3}{4} [261.6][/tex]
[tex]E(r^2) = 196.2[/tex]
Recall:
The expected area of the resulting circular region is:
= [tex]E(\pi r^2)[/tex]
= [tex]\pi E (r^2)[/tex]
where;
[tex]E(r^2) = 196.2[/tex]
Then
The expected area of the resulting circular region is:
= [tex]\pi \times 196.2[/tex]
= 616.38 m²
James is measuring the temperature (1) of a plate left sitting in the sun fort
hours. Which of the following is the most appropriate domain for h(0?
O A. All positive numbers
O B. Positive integers only
O C. All real numbers
O D. All integers
Answer:
O B. Positive integers only
Step-by-step explanation:
You have that the temperature of a plate is measured respect to the number of hours that the plate has been left in the sun.
In this case you have that the independent variable is the number of hours and the dependent variable is the temperature.
Due to James would like to know how is changing the temperature of the plate, per hour, the best domain for the function, that is, the best available values for the time on which the temperature of the plate is measured, are the positive integers only.
O B. Positive integers only
Solve for x. please help me its urgent
Answer:
x = 25
Step-by-step explanation:
The sum of the angles of a quadrilateral are 360 degrees
3x+x+10 + 4x+6x = 360
Combine like terms
14x+10 = 360
Subtract 10 from each side
14x +10-10 = 360-10
14x = 350
Divide each side by 14
14x/14 = 350/14
x = 25
If f (x) = -9x - 9 and g (x) = Vx - 9, what is (f ° g) (10)?
Answer: [tex](f \circ g) (10)= -18\ .[/tex]
Step-by-step explanation:
Given: [tex]f (x) = -9x - 9[/tex] and [tex]g (x) = \sqrt{x - 9}[/tex]
To find : (f o g) (10)
For this we first find (f o g) (x)= [tex]f(g(x))[/tex]
[tex]=f(\sqrt{x-9})\\\\=-9(\sqrt{x-9})-9[/tex]
Now,
[tex](f \circ g) (10)=-9(\sqrt{10-9})-9\\\\=-9\sqrt{1}-9\\\\=-9-9=-18[/tex]
Hence, the value of [tex](f \circ g) (10)= -18\ .[/tex]
Function f is shown on the graph below where two points are marked. If function f is horizontally compressed by a factor of 2, plot the two corresponding points that would lie on the transformed function.
Answer:
If you have
[tex]f(x) = x^2[/tex]
The point (2,4) would be transformed to (1,1)
Step-by-step explanation:
If your compression is horizontal then the transformation you are making is the following
[tex]g(x) = f(x/2)[/tex]
Therefore, if you have
[tex]f(x) = x^2[/tex]
The point (2,4) would be transformed to (1,1)
Find X. Please help.
Answer:
x = 18.08°Step-by-step explanation:
To find the value of x we use sine
sin ∅ = opposite / hypotenuse
From the question
29 is the hypotenuse
9 is the opposite
sin x = 9/29
x = sin-¹ 9/29
x = 18.08°
Hope this helps you
Answer:
Angle=71.9°
using the trig inverse formula sec(angle)= hypotenuse/adjacent
You and your best friend are both on the swim team. You want to beat your friend at the next swim meet so you decide to swim 151515 minutes longer than she does one day at practice. Write an equation for the number of minutes you swim, yyy, when your friend swims xxx number of minutes. Y
Answer:
yyy = xxx + 151515
Step-by-step explanation:
Since you want to swim 151515 minutes longer one day at practice (note this time is actually 105 days), you simply need to swim the same amount of time as your friend, plus the extra time. Hence, your time will be equal to your friends time plus the extra time you plan to swim.
After Keith picked 9 lemons, he wanted to share them with his fellow classmates. If Keith wants to give 1 1/8 lemons to each of his classmates, then how many classmates will get some lemon?
Answer:
8 classmates
Step-by-step explanation:
[tex]9/1\frac{1}{8}=\\9/\frac{9}{8}=\\9*\frac{8}{9}=\\\frac{72}{9}=\\8[/tex]
Se golpea (chuta) un balón sobre el piso y sale dando botes parabólicos cada vez menores. Si se lanzo inicialmente con una velocidad de 32m/s, y un ángulo de 60º y se sabe que en cada bote pierde un cuarto de su velocidad y el ángulo se reduce en 10º, determinar el alcance total logrado al termino del tercer bote y el tiempo empleado en ello Gracias a la persona Desconocida
Answer:
a)d = 180,91 m
b)t = 11,76 seg
Step-by-step explanation:
Para el lanzamiento de proyectil, la ecuación que nos da la velocidad en V(y) es:
V(y) = Voy - g*t
en donde Voy = Vo * senα ( donde Vo es la velocidad inicial, α el angulo del disparo.
Si en esta ecuación hacemos V(y) = 0 estamos en el punto donde el componente en el eje y de la velocidad del proyectil es cero, ese punto es el punto medio del recorrido.
0 = Vo*sen 60⁰ - g*t
g*t = Vo* √3/2
t = { 32 [m/s] * √3 }2*9,8 [m/s²]
t = 16*√3 / 9,8
t = 2,8278 seg
El tiempo total del primer recorrido es entonces por simetría
t₁ = 2 * 2,8278 t₁ = 5,6556 seg
La distancia del primer impacto al suelo es:
x = Vox * t₁ ( Vox es constante Vx = Vo*cos 60⁰ )
x = 32 * (1/2) * 5,6556
x₁ = 90,49 m
Aplicando los mismos criterios ahora para el segundo bote
Ahora Vo = 32 - 32*(1/4)
V = 24 m/s
g*t = 24 * sen 50⁰
t = 24* 0,7660/ 9,8
t = 1,8759
2*t = 2*1,8759
t₂ = 3,7518 seg
x₂ = Vox * t₂
x₂ = 24* 0,6428*3,7518
x₂ = 57,88 m
Y para el tercer bote Vo = 24 - 24(1/4) Vo = 18 m/s α = 40⁰
t = 18 *0,6428/9,8
t = 1,18
2t = t₃ = 2*1,18
t₃ = 2,36 seg
x₃ = Vox * 2,36 Vox = Vo*cos 40 Vox = 18*0,7660
Vox = 13,79
x₃ = 13,79*2,36
x₃ = 32,54 m
La distancia total será
d = x₁ + x₂ + x₃
d = 90,49 + 57,88 + 32,54
d = 180,91 m
y el tiempo total será la suma de los tiempos
t = t₁ + t₂ + t₃
t = 5,65 + 3,75 + 2,36
t = 11,76 seg
1. Which of the following ordered pairs are solutions to the system of equations below?
4x + 4y = -9
Y = 2x - 13
A : (-3, -7)
B : (3-7)
C : (3,7)
D : (-3,7)
Answer:
43\ 12 , 35/ 6
Step-by-step explanation:
43\ 12 , 35/ 6
Answer: B: (3, -7)
Step-by-step explanation:
4x + 4y = -9
y = 2x - 13
Use Substitution:
4x + 4(2x - 13) = -9
4x + 8x - 52 = -9
12x - 52 = -9
12x = 43
[tex]x=\dfrac{43}{12}[/tex]
None of the options provided are valid so either there is a typo on your worksheet or you typed in one of the equations wrong.
Plan B: Input the choices into the equation to see which one makes a true statement.
4x + 4y = -9
A) (x, y) = (-3, -7)
4(-3) + 4(-7) = -9
-12 + -28 = -9
-40 ≠ -9
B) (x, y) = (3, -7)
4(3) + 4(-7) = -9
12 + -28 = -9
-16 ≠ -9
C) (x, y) = (3, 7)
4(3) + 4(7) = -9
12 + 28 = -9
40 ≠ -9
D) (x, y) = (-3, 7)
4(-3) + 4(7) = -9
-12 + 28 = -9
16 ≠ -9
Obviously there is something wrong with the first equation because none of the options provide a true statement.
y = 2x - 13
A) (x, y) = (-3, -7)
-7 = 2(-3) - 13
-7 = -6 -13
-7 ≠ -19
B) (x, y) = (3, -7)
-7 = 2(3) - 13
-7 = 6 -13
-7 = -7 this works!!!
C) (x, y) = (3, 7)
7 = 2(3) - 13
7 = 6 -13
7 ≠ -7
D) (x, y) = (-3, 7)
7 = 2(-3) - 13
7 = -6 -13
7 ≠ -19
Option B is the only one that provides a true statement so this must be the answer.
Which of the following is the standard form of y =3/7 x-1 a)3/7x-y=1 b) y-3/7x= - 1 c) 7y-3x= -7 d) 3x - 7y= 7
Answer:
d)
Step-by-step explanation:
the general form is ax + by = c
Choose the correct equation for the parabola based on the given information. Given: Focus:(2,8) Directrix: y = 4 a. 2(y-2)= (x- 6)^2 b. 8(x -2) = (y -6)^2 c. 8(y - 6)= (x-2)^2 d. 2(x-2)= (y-8)^2
Explanation:
The directrix is horizontal, so the axis of symmetry is vertical. We'll have an x^2 term. The vertical distance from y = 4 to y = 8 is 4 units. Cut this in half to get 2, which is the focal distance p = 2.
The point (2,4) is directly below (2,8), and the point is on the directrix. The midpoint between (2,4) and (2,8) is (2,6). This is the vertex.
(h,k) = (2,6)
4p(y-k) = (x-h)^2
4*2(y-6) = (x-2)^2
8(y-6) = (x-2)^2
1. What are the formulas that help determine the equation of a circle? 2. How are the center, radius and a point on the circle expressed algebraically? 3. What do you need to know in order to use the ellipse equation formulas?
Answer: see below
Step-by-step explanation:
1) The equation of a circle is: (x - h)² + (y - k)² = r² where
(h, k) represents the center of the circler represents the radius of the circle.2) If you are given a point on the circle and the center (h, k)
you can input those points into the equation of a circle to find r².
Then input (h, k) and r² to identify the equation of that particular circle.
3) If you divide each term in the equation of a circle by r², you will get:
[tex]\dfrac{(x-h)^2}{r^2}+\dfrac{(y-k)^2}{r^2}=1[/tex]
(h, k) is the center of the circler is the x-radius and y-radiusThe difference between a circle and an ellipse is that an ellipse is in the shape of an oval. In other words, the x-radius and y-radius are different.
The equation of an ellipse is:
[tex]\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1[/tex]
(h, k) is the center of the ellipsea is the x-radiusb is the y-radiusWater leaking from a local reservior at the rate of 500 gallons per hour. A. none of these B. quadratic C. exponential D. linear
Answer:
Linear
The 500 hundred gallons is adding up by the hours. Linear- first difference.
Ashley has 500 songs in his music player. Every week he adds 10 songs to his collection. How many songs will he have in his music player after 20 weeks ?
At the end of n weeks, the number of songs is given by the function
f(n) =500 +10n
Or
f(n) = 10 +20b
The output of the function is 700
or
600
when the input is 20.
Answer:
700
Step-by-step explanation:
500+10*20=700
it's f(n) = 500+10n
Evelyn is shopping for laundry detergent, and she prefers to get the best unit price she can. At the store, brand A is priced at $54 for 6 loads of laundry and brand B is priced at $63 for 9 loads of laundry
The unit cost of Brand B is less than Brand A, Evelyn for shop for Brand B.
What is the meaning of Unit Price ?Unit price is the price of one(unit) quantity of any substance.
The Brand A detergent costs $54 for 6 loads of laundry
Brand B detergent costs $63 for 9 loads of laundry
The unit price of both the detergent has to be compared to find the best among both
Unit cost for Brand A = 54/6 = $9
1 load of Brand A costs $9
Unit cost of Brand B = $63/9 = $7
1 load of Brand B costs $7
As, the unit cost of Brand B is less than Brand A, Evelyn for shop for Brand B.
To know more about Unit Price
https://brainly.com/question/15402847
#SPJ2
A land owner is planning to build a fenced-in, rectangular patio behind his garage, using his garage as one of the "walls." He wants to maximize the area using 80 feet of fencing. The quadratic function A(x)=x(80−2x) gives the area of the patio, where x is the width of one side. Find the maximum area of the patio.
Answer: 800 feet²
Step-by-step explanation:
Lets remove the brackets from the function's expression
A(x) = -2x²+80x
So we got the quadratic function and we have to find the x that corresponds to function's maximum. Let it be X max
As we know Xmax= (X1+X2)/2 , where X1 and X2 are the roots of the function A(x)
Lets find X1 and X2
x(80-2x)=0
x1=0 80-2*X2=0
x2=40
So Xmax= (0+40)/2=20
So Amax= A(20)= 20*(80-2*20)=20*40=800 feet²
please please please help me. i need to pass, will do anything. ANYTHING!
Answer:
[tex]d \approx 5.8[/tex]
Step-by-step explanation:
Just use the distance formula.
[tex]d=\sqrt{(x_2-x_{1})^2+(y_2-y_{1})^2}[/tex]
[tex]d=\sqrt{(3-0)^2+(5-0)^2}}[/tex]
[tex]d=\sqrt{(3)^2+(5)^2}}[/tex]
[tex]d=\sqrt{9+25}[/tex]
[tex]d=\sqrt{34[/tex]
[tex]d \approx 5.8[/tex]
The difference between seven times a number and 9 is equal to three times the sum of the number and 2. Find the number If x represents the number, which equation is correct for solving this problem?
Answer:
[tex]\large \boxed{\bf \sf \ \ \ 7x-9 = 3(x+2) \ \ \ }[/tex]
Step-by-step explanation:
Hello,
x represents this number and we know that
the difference between seven times this number and 9
7*x - 9
is equal to three times the sum of this number and 2
3(x+2)
So we can write
[tex]7x-9 =3(x+2) \\\\7x-9 =3x+6 \ \ \text{distributive law} \\\\7x-9-3x=3x+6-3x =6 \ \ \text{subtract 3x} \\\\4x-9+9=6+9 \ \text{add 9} \\\\4x=15 \ \ \text{divide by 4} \\\\ \boxed{x=\dfrac{15}{4}}\\[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Write an expression with four terms. Include at least one term with an exponent, one term with a coefficient of 5, one term with three factors, and one constant. Make two of the terms like terms. Include a brief description of each term in the expression.
Answer:
4x^2 + 5x^2 + 4xy
Explanation
You need 2 like terms this could be of the form:
ax^2 + bx^2 + c
1 term with a coefficient of 5, sub in b = 5
ax^2 + 5x^2 + c
1 term with 3 factors, c = 4xy
This would mean it has a factor of 4,x and y.
So final equation is (a could be any value I give it a value of 4 for convenience)
4x^2 + 5x^2 + 4xy
Step-by-step explanation:
1. A mortgage of $200,000 requires payments of $1395.40 per month at 5.7%
compounded quarterly. How long will it take to repay the loan? What amount of interest
does the purchase pay?
Answer:
a) How long will it take to repay the loan?
20 years
b) What amount of interest does the purchase pay?
$134,896
Step-by-step explanation:
a) How long will it take to repay the loan?
In the above question, they are asking you for the Loan duration
The Formula for Loan duration(T) =
ln (- m/(r÷n) × C - m)/In (1 + r/n)
Where:
m = monthly payments = $1395.40
C = Amount of mortgage =$200,000
r = Interest rate = 5.7% = 0.57
n = compounded quarterly = 4
T = ln (- 1395.40/(0.57÷4) × 200,000 - 1395.40)/In (1 + 0.57/4)
T = 20 years.
Therefore, it will take 20 years to repay the Loan.
b) What amount of interest does the purchase pay?
The total number of payments =
Loan duration × Number of months
Number of months = 12 months( because it is monthly payment)
Loan duration = 20 years
Total number of payments = 240 payments.
In the question, we are given the amount paid monthly payment as
$1,395.40
Total amount paid = Monthly payments × Total number of payments
= $1,395.40 × 240
= $334,896
The amount of Interest the purchase pay = $334,896 - $200,000
= $134,896
Solve for X. pls help asap
Answer:
x=3
Step-by-step explanation:
Use the Pythagorean Theorem to write an equation.
x^2+y^2=z^2
Substitute values from the problem.
x^2 + 6^2 = 9^2
Solve for what you know.
x^2 + 36 = 81
Square root it.
x+6=9
Subtract 6 from both sides.
x=3
In the future, if you see a right triangle with an unknown side, and the other two sides are either 3, 6, or 9, you know that the other one is the missing value out of 3/6/9. This is called a 3/6/9 triangle.
Answer:
6.7Step-by-step explanation:
Hypotenuse (h) = 9
base (b) = X
Perpendicular (p) = 6
Now,
Using Pythagoras theorem:
[tex] {h}^{2} = {p}^{2} + {b}^{2} [/tex]
[tex] {b}^{2} = {h}^{2} - {p}^{2} [/tex]
[tex] {b}^{2} = {(9)}^{2} - {(6)}^{2} [/tex]
[tex] {b}^{2} = 81 - 36[/tex]
[tex] {b}^{2} = 45[/tex]
[tex]b = \sqrt{45} [/tex]
[tex]b = 6.7[/tex]
Hope this helps...
Good luck on your assignment..
1. 2x-y≤-6
2. 5x+4y ≥20
Answer
2x-y <or =-6
2x<or=-6+y
divide both sides by 2
x<or=1/2y+3
5(1/2y+3)+4y>or=20
5/2y+15+4y>or=20
5/2y+4y>or=20-15
13/2y>or=5
divide both sides by 2/13
y>or=10/13
2x-10/13<or=-6
2x<or=-6+10/13
2x<or=-68/13
divide both sides by 2
x< or =-34/13
Use this scenario for questions 16-20: A city council begins hosting music nights in the park. They want to understand the success of the program, so they record attendance on 4 different nights (n = 4). On average, the city saw an average attendance of 47 (s = 4.7). Other cities that have launched a similar program and have seen an average attendance of μ = 53 (σ = 4.2). Is the city attendance different from other cities that have launched these music programs (alpha = .05)? What would be the hypotheses for this test? (HINT: remember one-tailed and two-tailed tests!).
Answer:
Step-by-step explanation:
To identify the null hypothesis, the null hypothesis is the default statement while the alternative hypothesis is the opposite of the null and always tested against the null hypothesis.
The alternative hypothesis depending on the case study can give rise to a one-tailed or a two-tailed test. The one tailed test includes either less than or greater than option and not both while the two tailed test involves both.
In this case study,
the null hypothesis is u1 (representing the city in particular) = u2 (representing other cities)
The alternative hypothesis is u1 (representing the city in particular) =/ u2 (representing other cities).
This, this test due to its not equal to sign is a two tailed test, the two results might differ maybe with one higher than the other, or lower than the other.
Solve for X. Pls help asap
Answer:
[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{12}}}}}[/tex]
Step-by-step explanation:
hypotenuse ( h ) = x
Peendicular ( p ) = 10
base ( b ) = 22
Using the Pythagoras theorem
[tex] \boxed{ \sf{ {h}^{2} = {p}^{2} + {b}^{2} }}[/tex]
[tex] \dashrightarrow{ \sf{ {x}^{2} = {10 }^{2} + {22}^{2} }}[/tex]
[tex] \dashrightarrow{ \sf{ {x}^{2} = 100 + 44}}[/tex]
[tex] \dashrightarrow{ \sf{ {x}^{2} = 144}}[/tex]
[tex] \dashrightarrow{ \sf{ \sqrt{ {x}^{2} } = \sqrt{144}}} [/tex]
[tex] \dashrightarrow{ \sf{x = 12}}[/tex]
Hope I helped!
Best regards! :D
Evan wants to build a rectangular enclosure for his animals. One side of the pen will be against the barn, so he needs no fence on that side. The other three sides will be enclosed with wire fencing. If Evan has 1000 feet of fencing, you can find the dimensions that maximize the area of the enclosure. a) Let w be the width of the enclosure (perpendicular to the barn) and let l be the length of the enclosure (parallel to the barn). Write an function for the area A of the enclosure in terms of w . (HINT first write two equations with w and l and A . Solve for l in one equation and substitute for l in the other). A(w) = ___________ b) What width would maximize the area? w = __________ c) What is the maximum area? A = _________ square feet
Answer: A. A=(1000-2w)*w B. 250 feet
C. 125 000 square feet
Step-by-step explanation:
The area of rectangular is A=l*w (1)
From another hand the length of the fence is 2*w+l=1000 (2)
L is not multiplied by 2, because the opposite side of the l is the barn,- we don't need in fence on that side.
Express l from (2):
l=1000-2w
Substitude l in (1) by 1000-2w
A=(1000-2w)*w (3) ( Part A. is done !)
Part B.
To find the width w (Wmax) that corresponds to max of area A we have to dind the roots of equation (1000-2w)w=0 ( we get it from (3))
w1=0 1000-2*w2=0
w2=500
Wmax= (w1+w2)/2=(0+500)/2=250 feet
The width that maximize area A is Wmax=250 feet
Part C. Using (3) and the value of Wmax=250 we can write the following:
A(Wmax)=250*(1000-2*250)=250*500=125 000 square feets
CAN I GET SOME HELP OVER HERE? Ina Crespo rowed 12 miles down the Habashabee River in 2 hours, but the return trip took her 3 hours. Find the rate Ina rows in still water and the rate of the current. Let x represent the rate Ina can row in still water and let y represent the rate of the current. Ina can row ? mph in still water
Answer: The speed of Ina in still water is 5mph
Step-by-step explanation:
If the speed of Ina on still water is x, and the speed of the river is y:
The total speed of Ina when she goes along with the current is:
S = x + y
when she goes against the current we have:
St = x - y.
Now we can use the relation:
speed = time/velocity.
along with the current, we have:
x + y = 12mi/2h = 6mi/h
against the current we have:
x - y = 12mi/3h = 4mi/h
So we have the equations
x + y = 6mi/h
x - y = 4mi/h
in the first equation we can isolate x
x = 6mi/h - y
now we replace this in the second equation:
(6mi/h - y) - y = 4mi/h
6mi/h - 2y = 4mi/h
-2*y = 4mi/h - 6mi/h = -2mi/h
y = 1mi/h
now we replace this in the first equation:
x + 1mi/h = 6mi/h
x = 5mi/h.
The speed of Ina in still water is 5mph
A deep-sea diver is in search of coral reefs.he finds a beautiful one at an elevation of -120 4/7feet. While taking pictures of the reef he catches sight of a manta ray. He swims up 25 3/7feet to check it out.what is the diver's new elevation?
Answer:-95 1/7 feet
Step-by-step explanation:
-120 4/7+25 3/7=-95 1/7 feet
What’s this? I’m stuck!
Answer:
68 degrees
Step-by-step explanation:
Y=56,
56+56=112
180-112=68
Hope this helps, if you have any other questions, feel free to ask me to explain more
Have a good day! :)
Which equation represents the function graphed
coordinate plane?
Answer:
b. y = |x+4| - 10
Step-by-step explanation:
When you see a v-shaped graph, it could very well relate to an absolute-value function.
The value of the absolute value function has the vertex at x= -4, meaning that it has a minimum value when x=-4, which means that the absolute value function is of the form |x+4| giving a zero when x= -4.
Also, the minimum of the function occurs at y = -10, meaning that the function has been translated by -10.
Therefore the function is
y = |x+4| - 10
Answer:
B
Step-by-step explanation:
EDGE unit review