Answer:
B
Explanation:
To form hydrogen bondings between the molecules, the compound needs a highly electronegative atom (usually N, O, or F) bonded with a hydrogen atom;
and that the highly electronegative atom has lone pair outermost shell electrons.
In the 5 options, only B (CH3OH) has an N, O, or F atom that has lone pair outermost shell electrons (2 lone pairs on each O atom), so it can form hydrogen bonds within its molecules.
Hydrogen bonds are stronger than the van der Waals' forces between its molecules (that exist regardless of whether there are hydrogen bonds).
The compound that exhibits hydrogen bonding as its strongest intermolecular force is CH₃OH as electronegative oxygen atom is bonded to hydrogen atom.
What is compound?Compound is defined as a chemical substance made up of identical molecules containing atoms from more than one type of chemical element.
Molecule consisting atoms of only one element is not called compound.It is transformed into new substances during chemical reactions. There are four major types of compounds depending on chemical bonding present in them.They are:
1)Molecular compounds where in atoms are joined by covalent bonds.
2) ionic compounds where atoms are joined by ionic bond.
3)Inter-metallic compounds where atoms are held by metallic bonds
4) co-ordination complexes where atoms are held by co-ordinate bonds.
They have a unique chemical structure held together by chemical bonds Compounds have different properties as those of elements because when a compound is formed the properties of the substance are totally altered.
Learn more about compounds,here:
https://brainly.com/question/13516179
#SPJ6
If a diatomic molecule has a vibrational force constant of k=240 kg s-2 and a reduced mass of 1.627x10-27 kg, its vibrational frequency should be (in cm-1):
A. 2040
B. 4079
C. 2885
D. 5770
E. 1443
Answer:
2040 cm-1
Explanation:
The vibrations frequency is obtained from;
v=1/2πc √k/μ
Where;
k= force constant = 240kgs-2
μ= reduced mass = 1.627×10^-27 kg
c= speed of light= 3×10^10cms-1
v= 1/2×3.142×3×10^10√240/1.627×10^-27
v= 5.3×10^-12 × 3.84×10^14
v= 20.4×10^2
v= 2040 cm-1
A researcher places a reactant for decomposition in an expandable reaction chamber and purges the air from the vessel with nitrogen gas. The 500mL reaction vessel is sealed at a pressure of 1.00atm and 390K. If the decomposition reaction was triggered by an electrical shock, producing 3.1g of oxygen gas, what would the volume (L) of the reaction vessel be if the temperature and pressure were kept constant
Answer:
3.1 L
Explanation:
Step 1: Given data
Pressure (P): 1.00 atmTemperature (T): 390 KMass of oxygen (m): 3.1 gVolume (V): ?Step 2: Calculate the moles of oxygen
The molar mass of oxygen is 32.00 g/mol.
[tex]3.1g \times \frac{1mol}{32.00g} = 0.097mol[/tex]
Step 3: Calculate the volume of the container
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T / P
V = 0.097 mol × (0.0821 atm.L/mol.K) × 390 K / 1.00 atm
V = 3.1 L
Which of the following involves a decrease in entropy? Group of answer choices the dissolution of NaCl in water the evaporation of ethanol the sublimation of carbon dioxide the decomposition of N2O4(g) to NO2(g) the freezing of liquid water into ice
Answer:
the freezing of liquid water into ice
Explanation:
Entropy is the degree of disorderliness of a system, entropy is an extensive property of a thermodynamic system. An extensive property of a system is one whose value changes with the number of particles or the amount of matter present in the system.
Gases possess the greatest entropy among the States of matter followed by liquids and lastly solids. Solid particles do not translate because they are held by strong intermolecular forces.
Hence, a change from liquid to solid implies a decrease in entropy since the solid state possesses less entropy in comparison to the liquid state, hence the answer.
Write the net ionic equation for any precipitation reaction that may be predicted when aqueous solutions of manganese(II) nitrate and sodium hydroxide are combined.
Answer:
Explanation:
Mn( NO₃ )₂ + 2Na OH = Mn( OH)₂ (s) ↓ + 2Na NO₃
Converting into ions
Mn⁺ + 2 NO₃⁻ + 2 Na⁺ + 2 OH⁻ = Mn( OH)₂ + 2 Na⁻ + 2 NO₃⁻
Cancelling out common terms
Mn⁺ + 2 OH⁻ = Mn( OH)₂
this is net ionic equation required.
How many molecules of ATP are formed during the complete catabolism of a saturated fatty acid with the chemical formula CH3(CH2)20CO2H?
Answer:
[tex]148~ATP[/tex]
Explanation:
In case, we can start with the structure of [tex]CH_3(CH_2)_2_0CO_2H[/tex]. When we draw the molecule, we will obtain a total amount of 22 carbons. So, in order to calculate the total amount of ATP we have to make several questions:
How many Acetyl CoA is produced?
To calculate the total Acetyl Coa we have to use the equation:
[tex]Number~of~Acetyl~Coa=\frac{n}{2}[/tex], where n is the amount of carbons, so:
[tex]Number~of~Acetyl~Coa=\frac{22}{2}=11~carbons[/tex]
How many rounds take place?
To calculate the rounds we have to use the equation:
[tex]Number~of~rounds=\frac{n}{2}-1[/tex], where n is the amount of carbons, so:
[tex]Number~of~Acetyl~Coa=\frac{22}{2}-1=10~carbons[/tex]
How many [tex]FADH_2[/tex] and [tex]NADH[/tex] are produced for this fatty acid?
For each round, we will have 1 [tex]FADH_2[/tex] and 1 [tex]NADH[/tex], if we have 10 rounds. In total, we will have 10
How many ATP are formed?
The ATP would be formed in the electron transport chain and each coenzyme will have a different yield of ATP. So for the total calculation, we have to keep in mind the following relationships:
-) [tex]1~FADH_2~=~1.5~ATP [/tex]
-) [tex]1~NADH~=~2.5~ATP [/tex]
-) [tex]Acetyl~CoA~=~10~ATP[/tex]
So, know we can do the total calculation:
[tex](10*1.5)+(10*2.5)+(11*10)=150[/tex]
We have to subtract "2 ATP" molecules that correspond to the activation of the fatty acid, so:
[tex]150-2=148~ATP[/tex]
In total, we will have 148 ATP.
See figure 1
I hope it helps!
Using the periodic table provided, identify the atomic mass of sodium (Na) . Your answer should have 5 significant figures. Provide your answer below: __ amu
Answer:
Your answer will either be 22.9897 or 22.990 !!
Explanation:
Which functional group does the molecule below have?
A. Ether
B. Ester
C. Hydroxyl
D. Amino
Answer:
Hydroxyl
Explanation:
A hydroxyl group is a functional group that attaches to some molecules containing an oxygen and hydrogen atom, bonded together. Also spelled hydroxy, this functional group provides important functions to both alcohols and carboxylic acids.
The functional groups are the part of the organic chemistry that confers the characteristic feature of a molecule. The molecule has a hydroxyl group in its structure. Thus, option C is correct.
What are hydroxyl functional groups?Hydroxyl functional groups are the atoms or molecules that provide a distinctive property to a compound. It has a chemical formula of -OH that has oxygen covalently bonded to the hydrogen atom.
The hydroxyl group is called the alcohol group that is seen in methanol, ethanol, propanol, etc. The presence of hydrogen allows the compound to form a water bond with other molecules and makes them soluble and polar.
Therefore, option C. the molecule has a hydroxyl or alcoholic functional group attached to its carbon atom.
Learn more about the hydroxyl functional group here:
https://brainly.com/question/4682253
#SPJ5
Nylon 88 is made from the monomers H2N(CH2)8NH2 and HOOC(CH2)6COOH. So, would you characterize nylon 88 as rather an addition or a condensation polymer? Please explain your answer.
Answer:
Combination of H2N(CH2)8NH2 and HOOC(CH2)6COOH leads to the loss of water molecules at each linkage position.
Explanation:
A condensation polymer is a polymer formed when two monomers combine with the elimination of a small molecule such as water. The removal of the small molecule occurs at the point where the two monomers are joined to each other.
Nylon is known to form condensation polymers. This is because it involves the linkage of an -OH group to an -NH2 group. Water is eliminated in the process.
In the case of H2N(CH2)8NH2 and HOOC(CH2)6COOH, linkage of the both monomers at the 8 position of each chain leads to the formation of nylon- 8,8 with loss of water molecules at each linkage position. This stepwise loss of water molecules at each linkage makes it a condensation polymer.
which statement describes the use of a flowchart?
Answer:
A flowchart is a type of diagram that represents a workflow or process
Explanation:
Answer: orders in which steps in a process happen
Explanation:
The s orbital can hold
Answer:
2 electrons
Explanation:
An astronomy research team has been studying the atmosphere of a moon orbiting a newly discovered exoplanet. The team has determined that the moon has an average temperature of 95K on the surface, with an average pressure of 1.6atm. Remote analysis of this moon's atmosphere has revealed it has a molar mass of 28.6 g/mol. Calculate the density (g/L) of 1 mole of the moon's atmosphere under the given conditions.
Answer:
5.81 g/L
Explanation:
Let's apply the Ideal Gases Law to determine this:
P . V = n . R . T
Pressure = 1.6 atm
Volume = ?
Mol = 1 mol
Temperature = 96 K
In order to find the density, we should know the volume of the atmosphere which is a mixture of gases so, we consider all the atmosphere as a unique ideal gas.
1. 6 atm . V = 1 mol . 0.082 L.atm/mol.K . 96K
V = (1 mol . 0.082 L.atm/mol.K . 96K) / 1.6 atm
V = 4.92 L → As this is the volume for the whole atmosphere and the mass of 1 mol is 28.6 g, density should be:
28.6 g / 4.92L = 5.81 g/L
Density → mass / volume
A crystal lattice formed by positive and negative ions is called a
Answer:
Ionic Crystal
Explanation:
For dinner you make a salad with lettuce, tomatoes, cheese, carrots, and
croutons. Your salad would be classified as a(n)
O A. compound
OB. element
OC. homogeneous mixture
D. heterogeneous mixture
A heterogeneous mixture
A powder contains FeSO4⋅7H2O (molar mass=278.01 g/mol), among other components. A 2.810 g sample of the powder was dissolved in HNO3 and heated to convert all iron to Fe3+. The addition of NH3 precipitated Fe2O3⋅xH2O, which was subsequently ignited to produce 0.443 g Fe2O3.What was the mass of FeSO4⋅7H2O in the 2.810 g sample?
Answer:
the mass of FeSO4.7H2O in the 2.810 g sample was 1.5402 g
Explanation:
From the given information:
Two moles of FeSO4.7H2O = one mole of Fe2O3
Let recall that:
number of moles of Fe2O3 = mass of Fe2O3 / molar mass of Fe2O3
Given that :
mass of Fe2O3 = 0.443 g
number of moles of Fe2O3 = 0.443 g/ 159.69 g/mol
number of moles of Fe2O3 = 0.00277 mol
Thus;
number of moles of FeSO4.7H2O = 2 × Fe2O3
number of moles of FeSO4.7H2O = 2 × 0.00277 mol
number of moles of FeSO4.7H2O = 0.00554 mol
However from the usual stoichiometry formula; the mass of a substance = number of moles × molar mass
Now; the mass of FeSO4.7H2O = number of moles × molar mass
the mass of FeSO4.7H2O = 0.00554 mol × 278.01 g/mol
the mass of FeSO4.7H2O = 1.5402 g
Therefore; the mass of FeSO4.7H2O in the 2.810 g sample was 1.5402 g
Nitrogen has different oxidation states in the following compounds: nitrite ion, nitrous oxide, nitrate ion, ammonia, and nitrogen gas. Arrange these species in order of increasing nitrogen oxidation state. Select the correct answer below: A. ammonia, nitrogen gas, nitrite, nitrous oxide, nitrate B. nitrogen gas, ammonia, nitrous oxide, nitrite, nitrate C. ammonia, nitrogen gas, nitrous oxide, nitrite, nitrate D. ammonia, nitrogen gas, nitrate, nitrite, nitrous oxide
Answer:
C. ammonia, nitrogen gas, nitrous oxide, nitrite, nitrate
Explanation:
To establish the oxidation number of nitrogen in each compound, we know that the sum of the oxidation numbers of the elements is equal to the charge of the species.
Nitrite ion (NO₂⁻)
1 × N + 2 × O = -1
1 × N + 2 × (-2) = -1
N = +3
Nitrous oxide (NO)
1 × N + 1 × O = 0
1 × N + 1 × (-2) = 0
N = +2
Nitrate ion (NO₃⁻)
1 × N + 3 × O = -1
1 × N + 3 × (-2) = -1
N = +5
Ammonia (NH₃)
1 × N + 3 × H = 0
1 × N + 3 × (+1) = 0
N = -3
Nitrogen gas (N₂)
2 × N = 0
N = 0
The order of increasing nitrogen oxidation state is:
C. ammonia, nitrogen gas, nitrous oxide, nitrite, nitrate
When silver nitrate is added to an aqueous solution of magnesium chloride, a precipitation reaction occurs that produces silver chloride and magnesium nitrate. When enough AgNO3 is added so that 34.3 g of MgCl2 react, what mass of the AgCl precipitate should form
Answer:
103.62 g of AgCl.
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
2AgNO3 + MgCl2 —> 2AgCl + Mg(NO3)2
Step 2:
Determination of the mass of MgCl2 that reacted and the mass of AgCl produced from the balanced equation.
This is illustrated below:
Molar mass of MgCl2 = 24 + (2x35.5) = 95 g/mol
Mass of MgCl2 from the balanced equation = 1 x 95 = 95 g
Molar mass of AgCl = 108 + 35.5 = 143.5 g/mol
Mass of AgCl from the balanced equation = 2 x 143.5 = 287 g
Thus, from the balanced equation above,
95 g of MgCl2 reacted to produce 287 g of AgCl.
Step 3:
Determination of the mass of AgCl produced from the reaction of 34.3 g of MgCl2.
The mass of AgCl produced from the reaction can be obtained as follow:
Form the balanced equation above,
95 g of MgCl2 reacted to produce 287 g of AgCl.
Therefore, 34.3 g of MgCl2 will react to produce = (34.3 x 287)/95 = 103.62 g of AgCl.
Therefore, 103.62 g of AgCl were produced from the reaction.
The cell potential for an electrochemical cell with a Zn, Zn2 half-cell and an Al, Al3 half-cell is _____ V. Enter your answer to the hundredths place and do not leave out a leading zero, if it is needed.
Answer:
0.900 V
Explanation:
Oxidation half cell;
2Al(s) -----> 2Al^3+(aq) + 6e
Reduction half equation;
3Zn^2+(aq) + 6e ----> 3Zn(s)
E°anode = -1.66V
E°cathode= -0.76 V
E°cell= E°cathode - E°anode
E°cell= -0.76-(-1.66)
E°cell= 0.900 V
Anita heats a beaker containing water. As the temperature of the
water increases, which change to the water molecules occurs?
Select one:
The molecules separate into atoms of hydrogen and oxygen.
The molecules move at a faster rate.
The molecules become more massive.
The molecules expand and become wider.
Answer:
The molecules expand and become wider.
Explanation:
Answer:
The molecules move at a faster rate.
Explanation:
Temperature is directly proportional to the average kinetic energy of molecules, so when the temperature of water molecules increases, they have a higher average kinetic energy.
They move at a faster rate. The distance between the molecules only increases when they become gas where they break apart from the bondings with the other water molecules.
“Denitrifying” bacteria return molecular nitrogen gas (N2) back into the biosystem by a series of reductions. Identify the correct sequence. Select the correct answer below: A. NO−3→NO−2→N2O→N2 B. N2O→NO−3→NO−2→N2 C. N2O→NO−2→NO−3→N2 D. NO−3→N2O→NO−2→N2
Answer:
NO−3→NO−2→N2O→N2
Explanation:
Denitrification is the process by which nitrogen is returned to the atmosphere by denitrifying bacteria. The process of denitrification involves a sequence of reduction reactions in the sequence; NO3−→NO2−→N2O→N2.
Nitrogen is usually present in soil in the form of soil nitrates which are soluble in water and can be absorbed by plant roots. These denitrifying bacteria reduce soil nitrates to nitrites, then to nitrogen I oxide and finally to molecular nitrogen as shown in the sequence above.
Denitrification can release N2O, is an ozone-depleting substance and
greenhouse gas into the atmosphere with its attendant consequence on global warming.
You are given 10.00 mL of a solution of an unknown acid. The pH of this solution is exactly 2.18. You determine that the concentration of the unknown acid was 0.2230 M. You also determined that the acid was monoprotic (HA). What is the pKa of your unknown acid
Answer:
[tex]pKa=3.70[/tex]
Explanation:
Hello,
In this case, given the information, we can compute the concentration of hydronium given the pH:
[tex]pH=-log([H^+])\\[/tex]
[tex][H^+]=10^{-pH}=10^{-2.18}=6.61x10^{-3}M[/tex]
Next, given the concentration of the acid and due to the fact it is monoprotic, its dissociation should be:
[tex]HA\rightleftharpoons H^++A^-[/tex]
We can write the law of mass action for equilibrium:
[tex]Ka=\frac{[H^+][A^-]}{[HA]}[/tex]
Thus, due to the stoichiometry, the concentration of hydronium and A⁻ are the same at equilibrium and the concentration of acid is:
[tex][HA]=0.2230M-6.61x10^{-3}M=0.2164M[/tex]
As the concentration of hydronium also equals the reaction extent ([tex]x[/tex]). Thereby, the acid dissociation constant turns out:
[tex]Ka=\frac{(6.61x10^{-3})^2}{0.2164}\\ \\Ka=2.02x10^{-4}[/tex]
And the pKa:
[tex]pKa=-log(Ka)=-log(2.02x10^{-4})\\\\pKa=3.70[/tex]
Regards.
What are the concentrations of [K+], [OH-], [CO32-] and [H+], in a 1.2 M solution of K2CO3 ? (Note: Question is asking for concentrations and not pH) g
Answer:
The concentrations are: [K⁺] = 1.2 M, [OH⁻] = 0.016 M, [CO₃²⁻] = 1.18 M and [H⁺] = 6.25x10⁻¹³ M.
Explanation:
The dissociation equation of K₂CO₃ in water is:
K₂CO₃(aq) ⇄ K⁺(aq) + CO₃²⁻(aq) (1)
Also, the CO₃²⁻ will react with water as follows:
CO₃²⁻(aq) + H₂O(l) ⇄ HCO₃⁻(aq) + OH⁻(aq) (2)
The constant of the reaction (2) is:
[tex] Kb = \frac{[OH^{-}][HCO_{3}^{-}]}{[CO_{3}^{-2}]} = 2.08 \cdot 10^{-4} [/tex]
The solution of K₂CO₃ is 1.2 M, and since the mole ratio of K₂CO₃ with K⁺ and CO₃²⁻ is 1:1, then we have:
[tex] [K_{2}CO_{3}] = [K^{+}] = [CO_{3}^{-2}] = 1.2 M [/tex]
Now, from equation (2) we have:
CO₃²⁻(aq) + H₂O(l) ⇄ HCO₃⁻(aq) + OH⁻(aq) (3)
1.2 - x x x
[tex] 2.08 \cdot 10^{-4} = \frac{[OH^{-}][HCO_{3}^{-}]}{[CO_{3}^{-2}]} [/tex]
[tex] 2.08 \cdot 10^{-4} = \frac{x^{2}}{1.2 - x} [/tex]
[tex] 2.08 \cdot 10^{-4}*(1.2 - x) - x^{2} = 0 [/tex] (4)
By solving equation (4) for x we have:
x = 0.016 M = [HCO₃⁻] = [OH⁻]
Hence, the CO₃²⁻ concentration is:
[CO₃²⁻] = 1.2 M - 0.016 M = 1.18 M
Finally, the concentration of [H⁺] is:
[tex] [H^{+}][OH^{-}] = 10^{-14} [/tex]
[tex][H^{+}] = \frac{10^{-14}}{[OH^{-}]} = \frac{10^{-14}}{0.016} = 6.25 \cdot 10^{-13} M[/tex]
Therefore, the concentrations are: [K⁺] = 1.2 M, [OH⁻] = 0.016 M, [CO₃²⁻] = 1.18 M and [H⁺] = 6.25x10⁻¹³ M.
I hope it helps you!
For a reaction, what generally happens if the temperature is increased? a) A decrease in k occurs, which results in a faster rate. b) A decrease in k occurs, which results in a slower rate. c) An increase in k occurs, which results in a faster rate.
Answer:
an increase in K occurs,which results in a faster rate
if the temperature is increased for a reaction, An increase in k occurs, which results in a faster rate of reaction. Hence, Option (D) is correct.
What is Rate constant ?
A coefficient of proportionality relating the rate of a chemical reaction at a given temperature to the concentration of reactant (in a unimolecular reaction) or to the product of the concentrations of reactants.
It is represented as 'K'
The negative exponential relationship between k and the temperature indicates that as temperature increases, the value of k also increases.
Since the rate constant can be determined experimentally over a range of temperatures, the activation energy can be calculated using the Arrhenius equation.
Therefore, if the temperature is increased for a reaction, An increase in k occurs, which results in a faster rate of reaction. Hence, Option (D) is correct.
Learn more about Chemical kinetics here ;
https://brainly.com/question/24188785
#SPJ2
g Calculate the time (in min.) required to collect 0.0760 L of oxygen gas at 298 K and 1.00 atm if 2.60 A of current flows through water. (Hint: Ideal gas law)
Answer:
7.67 mins.
Explanation:
Data obtained from the question include the following:
Volume (V) = 0.0760 L
Temperature (T) = 298 K
Pressure (P) = 1 atm
Current (I) = 2.60 A
Time (t) =?
Next, we shall determine the number of mole (n) of O2 contained in 0.0760 L.
This can be obtained by using the ideal gas equation as follow:
Note:
Gas constant (R) = 0.0821 atm.L/Kmol
PV = nRT
1 x 0.0760 = n x 0.0821 x 298
Divide both side by 0.0821 x 298
n = 0.0760 / (0.0821 x 298)
n = 0.0031 mole
Next, we shall determine the quantity of electricity needed to liberate 0.0031 mole of O2.
This is illustrated below:
2O²¯ + 4e —> O2
Recall:
1 faraday = 1e = 96500 C
4e = 4 x 96500 C
4e = 386000 C
From the balanced equation above,
386000 C of electricity liberated 1 mole of O2.
Therefore, X C of electricity will liberate 0.0031 mole of O2 i.e
X C = 386000 X 0.0031
X C = 1196.6 C
Therefore, 1196.6 C of electricity is needed to liberate 0.0031 mole of O2
Next, we shall determine the time taken for the process. This can be obtained as follow:
Current (I) = 2.60 A
Quantity of electricity (Q) = 1196.6 C
Time (t) =?
Q = It
1196.6 = 2.6 x t
Divide both side by 2.6
t = 1196.6/2.6
t = 460.23 secs.
Finally, we shall convert 460.23 secs to minute. This can be achieved by doing the following:
60 secs = 1 min
Therefore,
460.23 secs = 460.23/60 = 7.67 mins
Therefore, the process took 7.67 mins.
The combustion of propane (C 3H 8) in the presence of excess oxygen yields CO 2 and H 2O: C 3H 8 (g) + 5O 2 (g) → 3CO 2 (g) + 4H 2O (g) When 2.5 mol of O 2 are consumed in their reaction, ________ mol of CO 2 are produced.
Answer:
1.5 mol of CO₂
Explanation:
Use the mole ratio to find how many moles of CO₂ are produced from the reaction.
For every 5 moles of O₂, three moles of CO₂ is produced.
2.5 mol O₂ × 3 mol CO₂ ÷ 5 mol O₂
= 2.5 mol O₂ × 0.6
= 1.5 mol CO₂
When 2.5 mol of O₂ is consumed in the reaction, 1.5 mol of CO₂ is produced.
Hope that helps.
identify the correct acid/conjugate base pair in this equation:
NaHCO3 + H20 = + H2CO3 + OH
+ Na
H20 is an acid and H2CO3 is its conjugate base.
HCO3 is an acid and OH is its conjugate base.
H20 is an acid and HCO3 is its conjugate base.
H20 is an acid and OH is its conjugate base.
Answer:
H20 is an acid and OH is its conjugate base.
Explanation:
Chemical reactions involving acids and bases occur. An acid is a substance that dissociates in water i.e. lose an hydrogen ion/proton. According to the Bronsted-Lowry acid-base theory, when an acid dissociates in water and loses its hydrogen ion, the resulting substance that forms is the CONJUGATE BASE. A conjugate base is the compound formed as a result of the removal of an H+ ion from an acid.
Based on the chemical reaction in the question, NaHCO3 + H20 = H2CO3 + OH- + Na+
The H20 loses its hydrogen ion (H+) to form an anion OH-. This anion formed is the conjugate base while H20 is its acid.
how salt solution can be determined by using hydrometer
Answer:
Salt solution may be calculated by measuring the specific gravity of a sample of water using a hydrometer.
Hope this answer correct (^^)....
Identify some other substances (besides KCl) that might give a positive test for chloride upon addition of AgNO3. do you think it is reasonable to exclude these types of substances as contaminants that would give a false positive when you tested your reaction residue to verify that it is KCl?
Answer:
-The other substances that give a positive test with AgNO3 are other chlorides present, iodides and bromide.
-It is reasonable to exclude iodides and bromides but it is not reasonable to exclude other chlorides
Explanation:
In the qualitative determination of halogen ions, silver nitrate solution(AgNO3) is usually used. Now, various halide ions will give various colours of precipitate when mixed with with silver nitrate. For example, chlorides(Cl-) normally yield a white precipitate, bromides(Br-) normally yield a cream precipitate while iodides (I-) normally yield a yellow precipitate. Thus, all these ions or some of them may be present in the system.
With that being said, if other chlorides are present, they will also yield a white precipitate just like KCl leading to a false positive test for KCl. However, since other halogen ions yield precipitates of different colours, they don't lead to a false test for KCl. Thus, we can exclude other halides from the tendency to give us a false positive test for KCl but not other chlorides.
Eugenol is a molecule that contains the phenolic functional group. Which option properly identifies the phenol in eugenol
Answer:
Explanation:
Hello,
Among the options given on the attached document, since phenolic functional group is characterized by a benzene ring bonded with a hydroxyl group (C₆H₅OH) we can see that the first option correctly points out such description. Thus, answer is on the second attached picture. Other options are related with other sections found in eugenol that are not phenolic.
Best regards.
The first option identified the phenol in eugenol.
Phenolic functional groupAccording to the attached image, since the phenolic functional group should be characterized by a benzene ring bonded along with a hydroxyl group (C₆H₅OH) so here we can see that the first option correctly points out such description. However, other options are related to other sections found in eugenol that are not phenolic.
learn more about molecule here: https://brainly.com/question/13127022
Osmosis is the process responsible for carrying nutrients and water from groundwater supplies to the upper parts of trees. The osmotic pressures required for this process can be as high as 19.1 atm . What would the molar concentration of the tree sap have to be to achieve this pressure on a day when the temperature is 32 ∘C ? Express your answer to three significant figures and include the appropriate units. View Available Hint(s)
Answer:
[tex]M=0.763\frac{mol}{L}=0.763M[/tex]
Explanation:
Hello,
In this case, as the osmotic pressure (π) is widely known as a colligative property, we can see that the solution in this case is formed by water and tree sap, that is mathematically defined by:
[tex]\pi =iMRT[/tex]
Thus, since tree sap is a covalent substance that is nonionizing, we can infer its van't Hoff factor to be 1, therefore, for the given osmotic pressure and temperature, we can compute the molar concentration (in molar units mol/L) as follows:
[tex]M=\frac{\pi }{RT} =\frac{19.1atm}{0.082\frac{atm*L}{mol*K}*(32+273.15)K} \\\\M=0.763\frac{mol}{L}=0.763M[/tex]
Best regards.
When you placed the chromatography paper in the Petri dish containing the salt-water solution solvent, what would have happened if the level of solvent was above the level of the dye spots on your paper
Answer:
It will not achieve the desired separation
Explanation:
Chromatography is a separation method that involves the use of a stationary phase and a mobile phase. The stationary phase is immobile, in the particular instance of this question, the stationary phase is paper. The mobile phase is the appropriate solvent, in this case, a salt-water solution.
If the level of solvent is above the dye spots, it will introduce error into the separation. The solvent (if volatile) may evaporate without drawing up and separating the solute. Secondly, the solvent may simply dissolve the spots without achieving any meaningful separation of the components in the system. This second reason is particularly why the salt solution must be below the dye spots in this chromatographic separation.