A wheel rotating about a fixed axis has a constant angular acceleration of 4.0 rad/s2. In a 4.0-s interval the wheel turns through an angle of 80 radians. Assuming the wheel started from rest, how long had it been in motion at the start of the 4.0-s interval

Answers

Answer 1

Answer:

The  time interval is  [tex]t = 3 \ s[/tex]

Explanation:

From the question we are told that

    The angular acceleration is  [tex]\alpha = 4.0 \ rad/s^2[/tex]

     The  time taken is  [tex]t = 4.0 \ s[/tex]

      The angular displacement is  [tex]\theta = 80 \ radians[/tex]

     

The angular displacement can be represented by the second equation of motion as shown below

          [tex]\theta = w_i t + \frac{1}{2} \alpha t^2[/tex]

where  [tex]w_i[/tex] is the initial velocity at the start of the 4 second interval

So substituting values

        [tex]80 = w_i * 4 + 0.5 * 4.0 * (4^2)[/tex]

=>    [tex]w_i = 12 \ rad/s[/tex]

Now considering this motion starting from the start point (that is rest ) we have

       [tex]w__{4.0 }} = w__{0}} + \alpha * t[/tex]

Where  [tex]w__{0}}[/tex] is the angular velocity at rest which is zero  and  [tex]w__{4}}[/tex] is the angular velocity after 4.0 second which is calculated as 12 rad/s s

        [tex]12 = 0 + 4 t[/tex]

=>       [tex]t = 3 \ s[/tex]

Answer 2

Following are the response to the given question:

Given:

[tex]\to \alpha = 4.0 \ \frac{rad}{s^2}\\\\[/tex]

[tex]\to \theta= 80\ radians\\\\\to t= 4.0 \ s\\\\ \to \theta_0=0\\[/tex]

To find:

[tex]\to \omega=?\\\\\to t=?\\\\[/tex]

Solution:

Using formula:

[tex]\to \theta- \theta_0 = w_{0} t+ \frac{1}{2} \alpha t^2\\\\ \to 80-0= \omega_{0}(4) + \frac{1}{2} (4)(4^2)\\\\ \to 80= \omega_{0}(4) + \frac{1}{2} (4)(16)\\\\\\to 80= \omega_{0}(4) + (4)(8)\\\\\to 80= \omega_{0}(4) + 32\\\\\to 80-32 = \omega_{0}(4) \\\\\to \omega_{0}(4)= 48 \\\\\to \omega_{0}= \frac{48}{4} \\\\ \to \omega_{0} = 12 \frac{rad}{ s} \\\\[/tex]  

It would be the angle for rotation at the start of the 4-second interval.

This duration can be estimated by leveraging the fact that the wheel begins from rest.  

[tex]\to \omega = \omega_{0} + \alpha t\\\\\to 12 = 0 +4(t) \\\\\to 12 = 4(t) \\\\ \to t=\frac{12}{4}\\\\\to t= 3\ s[/tex]

Therefore, the answer is "[tex]12\ \frac{rad}{s}[/tex] and [tex]3 \ s[/tex]".

Learn more:

brainly.com/question/7464119


Related Questions

two point charges of 5*10^-19 C and 20*10^-19C are separated by a distance of 2m. at which point on the line joining them will have the electric field zero?​

Answers

Answer:

On that line segment between the two charges, at approximately [tex]0.7\; \rm m[/tex] away from the smaller charge (the one with a magnitude of [tex]5 \times 10^{-19}\; \rm C[/tex],) and approximately [tex]1.3\; \rm m[/tex] from the larger charge (the one with a magnitude of [tex]20 \times 10^{-19}\; \rm C[/tex].)

Explanation:

Each of the two point charges generate an electric field. These two fields overlap at all points in the space around the two point charges. At each point in that region, the actual electric field will be the sum of the field vectors of these two electric fields.

Let [tex]k[/tex] denote the Coulomb constant, and let [tex]q[/tex] denote the size of a point charge. At a distance of [tex]r[/tex] away from the charge, the electric field due to this point charge will be:

[tex]\displaystyle E = \frac{k\, q}{r^2}[/tex].

At the point (or points) where the electric field is zero, the size of the net electrostatic force on any test charge should also be zero.

Consider a positive test charge placed on the line joining the two point charges in this question. Both of the two point charges here are positive. They will both repel the positive test charge regardless of the position of this test charge.

When the test charge is on the same side of both point charges, both point charges will push the test charge in the same direction. As a result, the two electric forces (due to the two point charges) will not balance each other, and the net electric force on the test charge will be non-zero.  

On the other hand, when the test charge is between the two point charges, the electric forces due to the two point charges will counteract each other. This force should be zero at some point in that region.

Keep in mind that the electric field at a point is zero only if the electric force on any test charge at that position is zero. Therefore, among the three sections, the line segment between the two point charges is the only place where the electric field could be zero.

Let [tex]q_1 = 5\times 10^{-19}\; \rm C[/tex] and [tex]q_2 = 20 \times 10^{-19}\; \rm C[/tex]. Assume that the electric field is zero at [tex]r[/tex] meters to the right of the [tex]5\times 10^{-19}\; \rm C[/tex] point charge. That would be [tex](2 - r)[/tex] meters to the left of the [tex]20 \times 10^{-19}\; \rm C[/tex] point charge. (Since this point should be between the two point charges, [tex]0 < r < 2[/tex].)

The electric field due to [tex]q_1 = 5\times 10^{-19}\; \rm C[/tex] would have a magnitude of:

[tex]\displaystyle | E_1 | = \frac{k\cdot q_1}{r^2}[/tex].

The electric field due to [tex]q_2 = 20 \times 10^{-19}\; \rm C[/tex] would have a magnitude of:

[tex]\displaystyle | E_2 | = \frac{k\cdot q_2}{(2 - r)^2}[/tex].

Note that at all point in this section, the two electric fields [tex]E_1[/tex] and [tex]E_2[/tex] will be acting in opposite directions. At the point where the two electric fields balance each other precisely, [tex]| E_1 | = | E_2 |[/tex]. That's where the actual electric field is zero.

[tex]| E_1 | = | E_2 |[/tex] means that [tex]\displaystyle \frac{k\cdot q_1}{r^2} = \frac{k\cdot q_2}{(2 - r)^2}[/tex].

Simplify this expression and solve for [tex]r[/tex]:

[tex]\displaystyle q_1\, (2 - r)^2 - q_2 \, r^2 = 0[/tex].

[tex]\displaystyle 5\times (2 - r)^2 - 20\, r^2 = 0[/tex].

Either [tex]r = -2[/tex] or [tex]\displaystyle r = \frac{2}{3}\approx 0.67[/tex] will satisfy this equation. However, since this point (the point where the actual electric field is zero) should be between the two point charges, [tex]0 < r < 2[/tex]. Therefore, [tex](-2)[/tex] isn't a valid value for [tex]r[/tex] in this context.

As a result, the electric field is zero at the point approximately [tex]0.67\; \rm m[/tex] away the [tex]5\times 10^{-19}\; \rm C[/tex] charge, and approximately [tex]2 - 0.67 \approx 1.3\; \rm m[/tex] away from the [tex]20 \times 10^{-19}\; \rm C[/tex] charge.

An ideal air-filled parallel-plate capacitor has round plates and carries a fixed amount of equal butopposite charge on its plates. All the geometric parameters of the capacitor (plate diameter andplate separation) are now DOUBLED. If the original energy stored in the capacitor was U0, howmuch energy does it now store?

Answers

Answer:

U_f = (U_o)/2)

Explanation:

The capacitance of a given capacitor is given by the formula;

C = ε_o•A/d

While energy stored in plates capacitor is given as; U_o = Q²/2C

Now,we are told that that all the dimensions of the capacitor plate is doubled. Thus, we now have;

C' = ε_o•4A/2d

Hence, C' = 2C

so capacitance is now doubled

Thus, the final energy stored between the plates of capacitor is given as;

U_f = Q²/2C'

From earlier, we saw that C' = 2C.

Thus;

U_f = Q²/2(2C)

U_f = Q²/4C

Rearranging, we have;

U_f = (1/2)(Q²/2C)

From earlier, U_o = Q²/2C

Hence,

U_f = (1/2)(U_o)

Or

U_f = (U_o/2)

A flat loop of wire consisting of a single turn of cross-sectional area 8.20 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.60 T in 1.02 s. What is the resulting induced current if the loop has a resistance of 2.70

Answers

Answer:

The  induced current is [tex]I = 6.25*10^{-4} \ A[/tex]

Explanation:

From the question we are told that  

    The number of turns is  [tex]N = 1[/tex]

     The  cross-sectional area is  [tex]A = 8.20 cm^2 = 8.20 * 10^{-4} \ m^2[/tex]

    The  initial magnetic field is  [tex]B_i = 0.500 \ T[/tex]

     The  magnetic field at time =  1.02 s  is  [tex]B_t = 2.60 \ T[/tex]

     The  resistance is  [tex]R = 2.70\ \Omega[/tex]

The  induced emf is mathematically represented as

       [tex]\epsilon = - N * \frac{ d\phi }{dt}[/tex]

The  negative sign tells us that the induced emf is moving opposite to the change in magnetic flux

      Here  [tex]d\phi[/tex] is the change in magnetic flux which is mathematically represented as

        [tex]d \phi = dB * A[/tex]

Where  dB  is the change in magnetic field which is mathematically represented as

        [tex]dB = B_t - B_i[/tex]

substituting values

        [tex]dB = 2.60 - 0.500[/tex]

        [tex]dB = 2.1 \ T[/tex]

Thus  

      [tex]d \phi = 2.1 * 8.20 *10^{-4}[/tex]

     [tex]d \phi = 1.722*10^{-3} \ weber[/tex]

So  

     [tex]|\epsilon| = 1 * \frac{ 1.722*10^{-3}}{1.02}[/tex]

     [tex]|\epsilon| = 1.69 *10^{-3} \ V[/tex]

The  induced current i mathematically represented as

      [tex]I = \frac{\epsilon}{ R }[/tex]

  substituting values

       [tex]I = \frac{1.69*10^{-3}}{ 2.70 }[/tex]

       [tex]I = 6.25*10^{-4} \ A[/tex]

The charge on the square plates of a parallel-plate capacitor is Q. The potential across the plates is maintained with constant voltage by a battery as they are pulled apart to twice their original separation, which is small compared to the dimensions of the plates. The amount of charge on the plates is now equal to:__________.
a) 4 Q.
b) 2 Q.
c) Q.
d) Q/2.
e) Q/4.

Answers

Answer:

D. Q/2

Explanation:

See attached file

A 600-turn solenoid, 25 cm long, has a diameter of 2.5 cm. A 14-turn coil is wound tightly around the center of the solenoid. If the current in the solenoid increases uniformly from 0 to 5.0 A in 0.60 s, what will be the induced emf in the short coil during this time

Answers

Answer:

The induced emf in the short coil during this time is 1.728 x 10⁻⁴ V

Explanation:

The magnetic field at the center of the solenoid is given by;

B = μ(N/L)I

Where;

μ is permeability of free space

N is the number of turn

L is the length of the solenoid

I is the current in the solenoid

The rate of change of the field is given by;

[tex]\frac{\delta B}{\delta t} = \frac{\mu N \frac{\delta i}{\delta t} }{L} \\\\\frac{\delta B}{\delta t} = \frac{4\pi *10^{-7} *600* \frac{5}{0.6} }{0.25}\\\\\frac{\delta B}{\delta t} =0.02514 \ T/s[/tex]

The induced emf in the shorter coil is calculated as;

[tex]E = NA\frac{\delta B}{\delta t}[/tex]

where;

N is the number of turns in the shorter coil

A is the area of the shorter coil

Area of the shorter coil = πr²

The radius of the coil = 2.5cm / 2 = 1.25 cm = 0.0125 m

Area of the shorter coil = πr² = π(0.0125)² = 0.000491 m²

[tex]E = NA\frac{\delta B}{\delta t}[/tex]

E = 14 x 0.000491 x 0.02514

E = 1.728 x 10⁻⁴ V

Therefore, the induced emf in the short coil during this time is 1.728 x 10⁻⁴ V

The induced emf in the coil at the center of the longer solenoid is [tex]1.725\times10^{-4}V[/tex]

Induced EMF:

The induced emf is produced in a coil when the magnetic flux through the coil is changing. It opposes the change of magnetic flux. Mathematically it is represented as the negative rate of change of magnetic flux at follows:

[tex]E=-\frac{\delta\phi}{\delta t}[/tex]

where E is the induced emf,

[tex]\phi[/tex] is the magnetic flux through the coil.

The changing current varies the magnetic flux through the coil at the center of the long solenoid, which is given by:

[tex]\phi = \frac{\mu_oNIA}{L}[/tex]

so;

[tex]\frac{\delta\phi}{\delta t}=\frac{\mu_oNA}{L} \frac{\delta I}{\delta t}[/tex]

where N is the number of turns of longer solenoid, A is the cross sectional area, I is the current and L is the length of the coil.

[tex]\frac{\delta\phi}{\delta t}=\frac{4\pi \times10^{-7} \times600 \times \pi \times(1.25\times10^{-2})^2}{25\times10^{-2}} \frac{5}{60}\\\\\frac{\delta\phi}{\delta t}=1.23\times10^{-7}Wb/s[/tex]

The emf produced in the coil at the center of the solenoid which has 14 turns will be:

[tex]E=N\frac{\delta \phi}{\delta t}\\\\E=14\times1.23\times10^{-7}V\\\\E=1.725\times10^{-4}V[/tex]

Learn more about induced emf:

https://brainly.com/question/16765199?referrer=searchResults

Two copper wires have the same volume, but wire 2 is 10% longer than wire 1. The ratio of the resistances of the two wires R2/R1 is Group of answer choices 1.2. 1.1. 0.82. 0.91. 1.0.

Answers

Answer:

Explanation:

volume is same

π r₁² L₁  =π r₂²L₂

L₁ / L₂ = r₂² / r₁²

For resistance the formula is

R = ρ L / S where ρ is specific resistance , L is length and S is cross sectional area

R₁ = ρ L₁ / S₁

R₂ = ρ L₂ / S₂

Dividing

R₁ / R₂ = L₁ / L₂ x S₂ / S₁

=  L₁ / L₂ x r₂² / r²₁

= L₁ / L₂ x L₁ / L₂

= L₁²/ L₂²

L₂ = 1.1 L₁ ( GIVEN )

= L₁²/ (1.1L₁)²

1 / 1.21

R₂ / R₁ = 1.21 .

= 1.2

Velocity of a Hot-Air Balloon A hot-air balloon rises vertically from the ground so that its height after t sec is given by the following function.
h=1/2t2+1/2t
(a) What is the height of the balloon at the end of 40 sec?
(b) What is the average velocity of the balloon between t = 0 and t = 30?
ft/sec
(c) What is the velocity of the balloon at the end of 30 sec?
ft/sec

Answers

Answer:

Explanation:

Given the height reached by a balloon after t sec modeled by the equation

h=1/2t²+1/2t

a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t

If h(t)=1/2t²+1/2t

h(40) = 1/2(40)²+1/2 (40)

h(40) = 1600/2 + 40/2

h(40) = 800 + 20

h(40) = 820 feet

The height of the balloon after 40 secs is 820 feet

b) Velocity is the change of displacement of a body with respect to time.

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

when v = 0sec

v(0) = 0 + 1/2

v(0) = 1/2 ft/sec

at v = 30secs

v(30) = 30 + 1/2

v(30) = 30 1/2 ft/sec

average velocity = v(30) - v(0)

average velocity = 30 1/2 - 1/2

average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec

c) Velocity is the change of displacement of a body with respect to time.

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

The velocity of the balloon after 30secs will be;

v(30) = 30+1/2

v(30) = 30.5ft/sec

The velocity of the balloon after 30 secs is 30.5 feet/sec

A)  The height of the balloon at the end of 40 sec is 820 feet.

B) The average velocity of the balloon is 30 ft/sec.

C) The velocity of the balloon at the end of 30 sec is

Velocity

Given :

h=1/2t²+1/2t

Part A)

The height of the balloon after 40 secs is :

h(t)=1/2t²+1/2t

h(40) = 1/2(40)²+1/2 (40)

h(40) = 1600/2 + 40/2

h(40) = 800 + 20

h(40) = 820 feet

The height of the balloon after 40 secs is 820 feet

Part B)

The average velocity of the balloon is  :

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

when v = 0 sec

v(0) = 0 + 1/2

v(0) = 1/2 ft/sec

When at v = 30secs

v(30) = 30 + 1/2

v(30) = 30 1/2 ft/sec

average velocity = v(30) - v(0)

average velocity = 30 1/2 - 1/2

average velocity of the balloon = 30 ft/sec

The average velocity of the balloon  is  30 ft/sec.

Part C)

The velocity of the balloon at the end of 30 sec is :

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

The velocity of the balloon after 30secs will be;

v(30) = 30+1/2

v(30) = 30.5ft/sec

The velocity of the balloon after 30 secs is 30.5 feet/sec.

Learn more about "Velocity":

https://brainly.com/question/862972?referrer=searchResults

What is the inductance of a coil if the coil produces an emf of 2.40 V when the current in it changes from -27.0 mA to 33.0 mA in 11.0 ms

Answers

Answer:

Inductance of a coil(L) = 0.44 H (Approx)

Explanation:

Given:

coil produces emf = 2.40 V

Old current = -27 mA

New current = 33 mA

Time taken = 11 mS

Find:

Inductance of a coil(L)

Computation:

Inductance of a coil(L) = -emf / [Δi / Δt]

Inductance of a coil(L) = -2.4 / [(-33 - 27) / 11]

Inductance of a coil(L) = -2.4 / [-5.4545]

Inductance of a coil(L) = 0.44 H (Approx)

In the figure, suppose the length L of the uniform bar is 3.2 m and its weight is 220 N. Also, let the block's weight W = 270 N and the angle θ = 45˚. The wire can withstand a maximum tension of 450 N. (a) What is the maximum possible distance x before the wire breaks? With the block placed at this maximum x, what are the (b) horizontal and (c) vertical components of the force on the bar from the hinge at A?

Answers

Answer:

a)   x = 2.46 m

b)   318.2 N

c)    177.8 N

Explanation:

Need to resolve the tension of the string at end say B.

The vertical upward force at B due to tension is 450 sin 45°.  

Using Principle of Moments, with the pivot at A,

Anti clockwise moments = Clockwise moments

450 sin 45° X 3.2   = 220 X (3.2/2) + (270 X x)  

x = 2.46 m

(b) The horizontal force is only due to the wire's tension, so it is  

450 cos 45° = 318.2 N

(c) total downward forces = 270 + 220 = 496 N  

Total upward forces = 450 sin 45° (at B) + upForce (at A)

Equating, upForce = 496 - 318.2  

= 177.8 N

The medical profession divides the ultraviolet region of the electromagnetic spectrum into three bands: UVA (320-420 nm), UVB (290-320 nm), and UVC (100-290 nm). UVA and UVB promote skin cancer and premature skin aging; UVB also causes sunburn, but helpfully fosters production of vitamin D. Ozone in Earth's atmosphere blocks most of the more dangerous UVC. Find the frequency range associated with UVB radiation.

Answers

Answer:

υ = 9.375 x 10¹⁴ Hz to 10.34 x 10¹⁴ Hz

Explanation:

The frequency of an electromagnetic radiation can be given by the following formula:

υ = c/λ

where,

υ = frequency of electromagnetic wave = ?

c = speed of light = 3 x 10⁸ m/s

λ = wavelength of electromagnetic wave = 290 nm to 320 nm

FOR LOWER LIMIT OF FREQUENCY:

λ = 320 nm = 3.2 x 10⁻⁷ m

Therefore,

υ = (3 x 10⁸ m/s)/(3.2 x 10⁻⁷ m)

υ = 9.375 x 10¹⁴ Hz

FOR UPPER LIMIT OF FREQUENCY:

λ = 290 nm = 3.2 x 10⁻⁷ m

Therefore,

υ = (3 x 10⁸ m/s)/(2.9 x 10⁻⁷ m)

υ = 10.34 x 10¹⁴ Hz

Therefore, the frequency range for UVB radiations is:

υ = 9.375 x 10¹⁴ Hz to 10.34 x 10¹⁴ Hz

Calculate the power of the eye in D when viewing an object 5.70 m away. (Assume the lens-to-retina distance is 2.00 cm. Enter your answer to at least one decimal place.)

Answers

Answer:

Power=50.17dioptre

Power=50.17D

Explanation:

P=1/f = 1/d₀ + 1/d₁

Where d₀ = the eye's lens and the object distance= 5.70m=

d₁= the eye's lens and the image distance= 0.02m

f= focal length of the lense of the eye

We know that the object can be viewed clearly by the person ,then image and lens of the eye's distance needs to be equal with the retinal and the eye lens distance and this distance is given as 0.02m

Therefore, we can calculate the power using above formula

P= 1/5.70 + 1/0.02

Power=50.17dioptre

Therefore, the power the eye's is using to see the object from distance is 5.70D

How do you stay hydrated during warm-up and scheduled activity?

Answers

Answer:

In order to stay hydrated during warm-up(s) drink 8oz of water 20-30 mintues before you start exercising or during your warm-up(s), make sure you drink 7 to 10 oz of water every 10 to 20 minutes during exercise, and drink 8oz of water no more than 30 minutes after you exercise.

In order to stay hydrated during scheduled activity(s) drink 17 to 20 oz of water 2 to 3 hours before you start to exercise, like said before drink 8 oz of water 20 to 30 minutes before you start exercising or during your warm-up(s), drink 7 to 10 oz of water every 10 to 20 minutes during exercise, also said before drink 8 ounces of water no more than 30 minutes after you exercise.

Answer: My scheduled activity was one hour of softball practice. I play catcher, so my thighs and knees take a lot of abuse from kneeling and standing. The lunges were excellent at preparing my thighs for softball. The high knees exercise and arm pumping didn’t feed into softball too well. I suppose that they might help me with base running.

Explanation: EDMENTUM

What magnification in multiples is produced by a 0.150 cm focal length microscope objective that is 0.155 cm from the object being viewed?

Answers

Answer:

51.6

Explanation:

A microscope is made up of a convex lens and the nature of the image formed by the object viewed from it is a virtual image. Since the image is virtual, the image distance will be negative and the focal length will be positive (for convex lenses).

Using the lens formula to first calculate the image distance from the lens;

1/f = 1/u + 1/v

f is the focal length = 0.150 cm,

u is the object distance = 0.155 cm

v is the image distance.

Since the image distance is negative,

1/f = 1/u - 1/v

1/0.150 = 1/0.155 - 1/v

1/v = 1/0.155 - 1/0.15

1/v = 6.542 - 6.667

1/v = -0.125

v = 1/-0.125

v = -8 cm

Magnification = image distance/object distance

Mag = 8/0.155

Mag = 51.6

Magnification produces is 51.6

A planet in another solar system orbits a star with a mass of 5.0 x 1030 kg. At one point in its orbit, it is 150 x 106 km from the star and is moving at 55 km/s. What is the semimajor axis of the planet's orbit

Answers

Answer:

32

Explanation:

Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel's energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.5 m diameter and a mass of 250 kg. Its maximum angular velocity is 1200 rpm.
How long does it take the flywheel to reach top angular speed of 1200 rpm?

Answers

Answer:

t = 2.95 min

Explanation:

Given that,

The diameter of flywheeel, d = 1.5 m

Mass of flywheel, m = 250 kg

Initial angular velocity is 0

Final angular velocity, [tex]\omega_f=1200\ rpm = 126\ rad/s[/tex]

We need to find the time taken by the flywheel to each a speed of 1200 rpm if it starts from rest.

Firstly, we will find the angular acceleration of the flywheel.

The moment of inertia of the flywheel,

[tex]I=\dfrac{1}{2}mr^2\\\\I=\dfrac{1}{2}\times 250\times (0.75)^2\\\\I=70.31\ kg-m^2[/tex]

Now,

Let the torque is 50 N-m. So,

[tex]\alpha =\dfrac{\tau}{I}\\\\\alpha =\dfrac{50}{70.31}\\\\\alpha =0.711\ rad/s^2[/tex]

So,

[tex]t=\dfrac{\omega_f-\omega_i}{\alpha }\\\\t=\dfrac{126-0}{0.711}\\\\t=177.21\ s[/tex]

or

t = 2.95 min

In a double-slit arrangement the slits are separated by a distance equal to 150 times the wavelength of the light passing through the slits. (a) What is the angular separation between the central maximum and an adjacent maximum

Answers

Complete  Question

In a double-slit arrangement the slits are separated by a distance equal to 150 times the wavelength of the light passing through the slits. (a) What is the angular separation between the central maximum and an adjacent maximum? (b) What is the distance between these maxima on a screen 57.9 cm from the slits?

Answer:

a

  [tex]\theta = 0.3819^o[/tex]

b

  [tex]y = 0.00386 \ m[/tex]

Explanation:

From the question we are told that

    The slit separation is  [tex]d = 150 \lambda[/tex]

    The  distance from the screen is  [tex]D = 57.9 \ cm = 0.579 \ m[/tex]

 

Generally the condition for constructive interference is mathematically represented as

            [tex]dsin (\theta ) = n * \lambda[/tex]

=>        [tex]\theta = sin ^{-1} [\frac{n * \lambda }{ d } ][/tex]

where  n is the order of the maxima  and value is 1 because we are considering the central maximum and an adjacent maximum

     and  [tex]\lambda[/tex] is the wavelength of the light

So

       [tex]\theta = sin ^{-1} [\frac{ 1 * \lambda }{ 150 \lambda } ][/tex]

       [tex]\theta = 0.3819^o[/tex]

Generally the distance between the maxima is mathematically represented as

       [tex]y = D tan (\theta )[/tex]

=>    [tex]y = 0.579 tan (0.3819 )[/tex]

=>    [tex]y = 0.00386 \ m[/tex]

The flywheel of an engine has I of 1.60kg.m2 about its rotation axis. What constant torque is required to bring it up to an angular speed of 400 rpm in 8.00s, starting from rest?

Answers

Answer:

Torque = 8.38Nm

Explanation:

Time= 8.00s

angular speed (w) =400 rpm

Moment of inertia (I)= 1.60kg.m2 about its rotation axis

We need to convert the angular speed from rpm to rad/ sec for consistency

2PI/60*n = 0.1047*409 = 41.8876 rad/sec

What constant torque is required to bring it up to an angular speed of 40rev/min in a time of 8s , starting from rest?

Then we need to use the formula below for our torque calculation

from basic equation T = J*dω/dt ...we get

Where : t= time in seconds

W= angular velocity

T = J*Δω/Δt = 1.60*41.8876/8.0 = 8.38 Nm

Therefore, constant torque that is required is 8.38 Nm

Torque can be defined as the twisting or turning force that tends to cause rotation around an axis. The required constant torque is 8.38 N-m.

Given-

Inertia of the flywheel is 1.60 kg m squared.

Angular speed of the flywheel [tex]n[/tex] is 400 rpm. Convert it into the rad/sec, we get,

[tex]\omega =\dfrac{2\pi }{60} \times n[/tex]

[tex]\omega =\dfrac{2\pi }{60} \times 400[/tex]

[tex]\omega = 41.89[/tex]

Thus, the angular speed of the flywheel [tex]\omega[/tex] is 41.89 rad/sec.

When a torque [tex]\tau[/tex] is applied to an object it begins to rotate with an acceleration inversely proportional to its moment of inertia [tex]I[/tex]. Mathematically,

[tex]\tau=\dfrac{\Delta \omega }{\Delta t} \times I[/tex]

[tex]\tau=\dfrac{ 41.89 }{8} \times 1.6[/tex]

[tex]\tau=8.38[/tex]

Hence, the required constant torque is 8.38 N-m.

to know more about the torque, follow the link below-

https://brainly.com/question/6855614

You have explored constructive interference from multi-layer thin films. It is also possible for interference to be destructive, a phenomenon exploited in making antireflection coatings for optical elements such as eyeglasses. In order to allow the lenses to be thinner (and thus lighter weight), eyeglass lenses can be made of a plastic that has a high index of refraction (np = 1.70). The high index causes the plastic to reflect light more effectively than does glass, so it is desirable to reduce the reflection to avoid glare and to allow more light to reach the eye. This can be done by applying a thin coating to the plastic to produce destructive interference.

a. Consider a plastic eyeglass lens with a coating of thickness d with index nc . Light with wavelength is incident perpendicular to the lens. If nc < n p , then determine an equation for d in terms of the given variables (and an integer m) in order for there to be destructive interference between the light reflected from the top of the coating and the light reflected from the coating/lens interface.
b. Repeat part a assuming that nc > n p .
c. Choose a suitable value for nc and calculate a value for d that will result in destructive interference for 500 nm light. Note that materials to use for coatings that have nc < 1.3 or nc > 2.5 are difficult to find.
d. Does the index of refraction n p of the eyeglass lens itself matter? Explain.

Answers

Answer:

a)   d sin θ = m λ₀ / n

b)   d sin θ = (m + ½) λ₀ / n

c)    d = 2,439 10⁻⁷ m

Explanation:

For the interference these rays of light we must take as for some aspects,

* when a beam of light passes from a medium with a lower index to one with a higher index, the reflected ray has a phase change of 18º, this is equivalent to lam / 2

* when the ray penetrates the lens the donut length changes by the refractive index

            λ = λ₀ / n

now let's write the destructive interference equation for these lightning bolts

           d sin θ = (m´ + 1/2 + 1/2) λ / n = (m` + 1) λ₀ / n

           d sin θ = m λ₀ / n

b) now nc> np

in this case there is no phase change in the reflected ray and the equation for destructive interference remains

             d sin θ = (m + ½) λ₀ / n

c) select the value of nc = 2.05 of the ZnO

we calculate the thickness of the film (d)

            d = m λ / (n sin 90)

in this type of interference the observation is normal, that is, the angle is 90º)

           d = 1 500 10-9 / (2.05 1)

           d = 2,439 10⁻⁷ m

d) the lens replacement index is very important because it depends on its relation with the film index which equation to destructively use interference

Tom is climbing a 3.0-m-long ladder that leans against a vertical wall, contacting the wall 2.5 m above the ground. His weight of 680 N is a vector pointing vertically downward. (Weight is measured in newtons, abbreviated N).
A) What is the magnitude of the component of Tom's weight parallel to the ladder?
B) What is the magnitude of the component of Tom's weight perpendicular to the ladder?

Answers

Answer: A) [tex]P_{x}[/tex] = 564.4 N

              B) [tex]P_{y}[/tex] = 374 N

Explanation: The ladder forms with the wall a right triangle, with one unknown side. To find it, use Pythagorean Theorem:

[tex]hypotenuse^{2} = side^{2} + side^{2}[/tex]

[tex]side = \sqrt{hypotenuse^{2} - side^{2}}[/tex]

side = [tex]\sqrt{3^{2} - 2.5^{2}}[/tex]

side = 1.65

Tom's weight is a vector pointing downwards. Since he is at an angle to the floor, the gravitational force has two components: one that is parallel to the floor ([tex]P_{x}[/tex]) and othe that is perpendicular ([tex]P_{y}[/tex]). These two vectors and weight, which is gravitational force, forms a right triangle with the same angle the ladder creates with the floor.

The image in the attachment illustrates the described above.

A) [tex]P_{x}[/tex] = P sen θ

[tex]P_{x} = P.\frac{oppositeside}{hypotenuse}[/tex]

[tex]P_{x}[/tex] = 680.[tex]\frac{1.65}{3}[/tex]

[tex]P_{x}[/tex] = 564.4 N

B) [tex]P_{y}[/tex] = P cos θ

[tex]P_{y} = P.\frac{adjacentside}{hypotenuse}[/tex]

[tex]P_{y}[/tex] = 680. [tex]\frac{1.65}{3}[/tex]

[tex]P_{y}[/tex] = 374 N

A 5.00-kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of 1.60 s. Find the force constant of the spring.

Answers

Answer:A7.50kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of2.30s. Find the force constant of the spring.

N/m

Explanation:

(a) Find the magnitude of an earthquake that has an intensity that is 37.25 (that is, the amplitude of the seismograph reading is 37.25 cm). (Round your answer to one decimal place.)

Answers

Answer:

The magnitude of an earthquake is 5.6.

Explanation:

The magnitude of an earthquake can be found as follows:

[tex] M = log(\frac{I}{S}) [/tex]

Where:

I: is the intensity of the earthquake = 37.25 cm

S: is the intensity of a standard earthquake = 10⁻⁴ cm

Hence, the magnitude is:

[tex]M = log(\frac{I}{S}) = log(\frac{37.25}{10^{-4}}) = 5.6[/tex]

Therefore, the magnitude of an earthquake is 5.6.

I hope it helps you!

I swing a ball around my head at constant speed in a circle with circumference 3 m. What is the work done on the ball by the 10 N tension force in the string during one revolution of the ball

Answers

Answer:

The work done on the ball by the tension force is 0 J.

Explanation:

The work can be calculated as follows:

[tex]W = |F|\cdot |d|cos(\theta)[/tex]

Where:

F: is the tension force = 10 N

d: is the displacement = ball's circumference = 3 m

θ: is the angle between the force and the distance = 90°

Hence, the work is:

[tex]W = |10| \cdot |3| cos(90) = 0 J[/tex]

Since the tension force and the displacement vector are orthogonal, the work done on the ball is zero.

                             

Therefore, the work done on the ball by the tension force is 0 J.

I hope it helps you!              

The work done on the ball by the 10 N tension force is zero ( 0 Joules).

Given that:

the circumference(displacement d) of the ball = 3 mthe tension force of the ball = 10 Nthe angle θ between the tension force and the displacement =90°

Using the work equation;

W = F × d cos θ

W = 10×3× cos (90)

W = 10 × 3 × 0

W = 0 Joules

Learn more about work done here:

https://brainly.com/question/13662169?referrer=searchResults

Which examples are simple machines?
Select all correct answers.
a hammer
an automobile
O a pulley
an inclined plane

Answers

A hammer and a pulley

What will the surface charge density be if the radius of the disk is doubled but its total charge remains the same

Answers

Answer:

the new surface charge density = Q/4πr²( initial surface charge density divided by 4)

Explanation:

charge density(surface) = Q/A = charge/area

let r be the initial radius of the disk

therefore, area A = πr²

charge density = Q/πr²

Now that the radius is doubled, let it be represented as R

∴ R = 2r

Recall, charge density = Q/A

A = πR = π(2r)² = 4πr²

the new surface charge density = Q/4πr²

the initial surface charge density divided by 4

A sample of lead has a mass of 26.00 kg and a density of 1.130 104 kg/m3 at 0°C. (Assume the average linear expansion coefficient for lead is 2.900 10-5(°C-1).)
(a) What is the density of lead at 82.00°C? (Give your answer to four significant figures.)
____ kg/m3
(b) What is the mass of the sample of lead at 82.00°C?
_____ kg

Answers

Answer:

Explanation:

coefficient of linear expansion α = 2.9 x 10⁻⁵

coefficient of volume expansion γ = 3 x 2.9 x 10⁻⁵ = 8.7 x 10⁻⁵

[tex]d_t = d_0( 1 - \gamma t )[/tex]

[tex]d_{82} = 1.13\times 10^4( 1 - 8.7\times 10^{-5}\times82 )[/tex]

= 1.13 x 10⁴ - 806.14 x 10⁻¹

= 1.13 x 10⁴ - 0.00806 x 10⁴

= 1.1219 x 10⁴ kg / m³

b ) mass of the sample will remain the same as mass does not increase or decrease with temperature .

At what temperature will water begin to boil and turn to steam?
212 degrees Celsius
100 degrees Fahrenheit
212 kelvins
100 degrees Celsius

Answers

Answer:

100 degrees Celsius

Explanation:

Water starts to boil at 100 degrees celcius or 212 degrees fahrenheit.

At 100 degrees Celsius water begin to boil and turns to steam.

What are the boiling point and melting point of water?

The melting point for water is 0 degrees C (32 degrees F). The boiling point of water varies with atmospheric pressure. At lower pressure or higher altitudes, the boiling point is lower. At sea level, pure water boils at 212 °F (100°C).

Is boiling water always 212?

If the temperature is much above 212°F, the water will boil. That means that it won't just evaporate from the surface but will form vapor bubbles, which then grow, inside the liquid itself. If the water has very few dust flecks etc.

Learn more about a boiling point here https://brainly.com/question/40140

#SPJ2

Unpolarized light is incident upon two polarization filters in sequence. The two filters transmission axes are not aligned. If 18% of the incident light passes through this combination of filters, what is the angle between the transmission axes of the filters

Answers

Answer:

53°

Explanation:

I/Io*2= 0.18

0.18= cos²theta

Cos^-1(0.36) = 53°

A 0.12-kg metal rod carrying a current of current 4.1 A glides on two horizontal rails separation 6.3 m apart. If the coefficient of kinetic friction between the rod and rails is 0.18 and the kinetic friction force is 0.212 N , what vertical magnetic field is required to keep the rod moving at a constant speed of 5.1 m/s

Answers

Answer:

The magnetic field is [tex]B = 8.20 *10^{-3} \ T[/tex]

Explanation:

From the question we are told that

   The  mass of the metal rod is  [tex]m = 0.12 \ kg[/tex]

    The current on the rod is  [tex]I = 4.1 \ A[/tex]

    The distance of separation(equivalent to length of the rod ) is [tex]L = 6.3 \ m[/tex]

     The coefficient of kinetic friction is [tex]\mu_k = 0.18[/tex]

      The kinetic frictional force is  [tex]F_k = 0.212 \ N[/tex]

     The constant speed is [tex]v = 5.1 \ m/s[/tex]

Generally the magnetic force on the rod is mathematically represented as  

      [tex]F = B * I * L[/tex]

For  the rod to move with a constant velocity the magnetic force must be equal to the kinetic frictional force so

        [tex]F_ k = B* I * L[/tex]

=>      [tex]B = \frac{F_k}{L * I }[/tex]

=>       [tex]B = \frac{0.212}{ 6.3 * 4.1 }[/tex]

=>       [tex]B = 8.20 *10^{-3} \ T[/tex]

A wooden artifact from a Chinese temple has a 14C activity of 41.0 counts per minute as compared with an activity of 58.2 counts per minute for a standard of zero age. You may want to reference (Pages 913 - 916) Section 21.4 while completing this problem. Part A From the half-life for 14C decay, 5715 yr, determine the age of the artifact. Express your answer using two significant figures. t

Answers

Answer:

Explanation:

The relation between activity and number of radioactive atom in the sample is as follows

dN / dt = λ N where λ is disintegration constant and N is number of radioactive atoms

For the beginning period

dN₀ / dt = λ N₀

58.2 = λ N₀

similarly

41 = λ N

dividing

58.2 / 41 = N₀ / N

N = N₀ x .70446

formula of radioactive decay

[tex]N=N_0e^{-\lambda t }[/tex]

[tex].70446 =e^{-\lambda t }[/tex]

- λ t = ln .70446 =   - .35

t = .35 / λ

λ = .693 / half life

= .693 / 5715

= .00012126

t = .35 / .00012126

= 2886.36

= 2900 years ( rounding it in two significant figures )

g If this combination of resistors were to be replaced by a single resistor with an equivalent resistance, what should that resistance be

Answers

Question:

In this circuit the resistance R1 is 3Ω, R2 is 7Ω, and R3 is 7Ω. If this combination of resistors were to be replaced by a single resistor with an equivalent resistance, what should that resistance be?

Answer:

9.1Ω

Explanation:

The circuit diagram has been attached to this response.

(i) From the diagram, resistors R1 and R2 are connected in parallel to each other. The reciprocal of their equivalent resistance, say Rₓ, is the sum of the reciprocals of the resistances of each of them. i.e

[tex]\frac{1}{R_X} = \frac{1}{R_1} + \frac{1}{R_2}[/tex]

=> [tex]R_{X} = \frac{R_1 * R_2}{R_1 + R_2}[/tex]             ------------(i)

From the question;

R1 = 3Ω,

R2 = 7Ω

Substitute these values into equation (i) as follows;

[tex]R_{X} = \frac{3 * 7}{3 + 7}[/tex]

[tex]R_{X} = \frac{21}{10}[/tex]

[tex]R_{X} = 2.1[/tex]Ω

(ii) Now, since we have found the equivalent resistance (Rₓ) of R1 and R2, this resistance (Rₓ) is in series with the third resistor. i.e Rₓ and R3 are connected in series. This is shown in the second image attached to this response.

Because these resistors are connected in series, they can be replaced by a single resistor with an equivalent resistance R. Where R is the sum of the resistances of the two resistors: Rₓ and R3. i.e

R = Rₓ + R3

Rₓ = 2.1Ω

R3 = 7Ω

=> R = 2.1Ω + 7Ω = 9.1Ω

Therefore, the combination of the resistors R1, R2 and R3 can be replaced with a single resistor with an equivalent resistance of 9.1Ω

Other Questions
How much work is done when 0.0042 C is moved through a potential difference of 12.0 V? Use W = qV A. 0.050 J B. 0.00035 J C. 2900 J D. 12 J The heights of three trees are 0.41m, 2.10m and 3.52m. Find their average height A. There is no solution, and it is shown by region BB. There is no solution C. There is a solution, and it is shown by region CD. There is a solution, and it is shown by region A HERE a question........ Click on ONE answer only.If you're driving for long periods of time, night or day, how longand frequent should your breaks be?five minutes every hourfifteen minutes every two hoursone hour every ten hoursthirty minutes every five hoursCheck Answer A 1.0 kg object absorbs 1,303 J of heat energy and experiences a temperature increase of 5.2C. What is the objects specific heat, in joules per gram-degree celsius? Report your answer with the correct number of significant figures. At the beginning of June, Bezco Toy Company budgeted 24,000 toy action figures to be manufactured in June at standard direct materials and direct labor costs as follows: Direct materials $36,000 Direct labor 8,640 Total $44,640 The standard materials price is $0.6 per pound. The standard direct labor rate is $9 per hour. At the end of June, the actual direct materials and direct labor costs were as follows: Actual direct materials $33,400 Actual direct labor 8,000 Total $41,400 There were no direct materials price or direct labor rate variances for June. In addition, assume no changes in the direct materials inventory balances in June. Bezco Toy Company actually produced 21,600 units during June. Determine the direct materials quantity and direct labor time variances. Round your per unit computations to two decimal places, if required. Enter a favorable variance as a negative number using a minus sign and an unfavorable variance as a positive number. Direct materials quantity variance $ -3,600 Unfavorable Direct labor time variance $ -864 Unfavorable Feedback Analytic thinking is best characterized by Select one: a. taxonomic categorization. b. thematic categorization. c. multiple-level categorization. d. categorical analysis. e. synthetically integrating theses and anti-theses. Write a report on the lap experiment: Motion with Constant Acceleration while writing a persuasive piece which appeal should you use to evoke emotion in your audience Sam purchased 3 1/4 pounds of cheese. He used half of the purchased cheese for a casserole and 1/4 pound for sandwiches. Express as a mixed number the number of the number of pounds of cheese he has left. Using your knowledge of SMART goals, select the best goal. A. Our division will make money this year. B. Our division will become profitable soon. C. Our division will be successful by the end of 2013. D. Our division will increase profits by 10% by the end of 2013.The following table contains the steps used in creating a workable plan. Identify the order in which the steps are usually taken. Planning Step Order Develop commitment to goals Track progress toward goal achievement Develop an effective action plan Set goals Maintain flexibility Which of the following methods can be used to track goal progress? A. Setting proximal and distal goals.B. Maintaining slack resources.C. Using options-based planning.D. Providing performance feedback. A newly found element with the symbol J has two naturally occurring isotopes. Isotope one has an atomic mass of 139.905 amu and an abundance of 37.25%. Isotope two has an atomic mass of 141.709 amu and an abundance of 62.75%. Calculate the mass of the element. 1. Chanice drives her scooter 7 kilometres north. She stops for lunch and then drives 5 kilometres east. What distance did she cover? What was her displacement? The winery sold 81 cases of wine this week. If twiceas many red cases were sold than white. how manywhite cases were sold this week? The exact heights of different elephants Choose the correct answer below. A. The data are continuous because the data can only take on specific values. B. The data are discrete because the data can take on any value in an interval. C. The data are discrete because the data can only take on specific values. D. The data are continuous because the data can take on any value in an interval. During genetic engineering, what is the function of a Ligase enzyme? A. To create a plasmid. B. To bond the target gene to the plasmid with covalent bonds . C. To create sticky ends to bond to gene to the plasmid. D. To cut the DNA at a Recognition site. 2What is the solution of the equation 6x - 3 = -51?A. -9B. -8c. 8.D. 9 Read and choose the correct option to answer the question. Tiene preguntas? La farmacutica est en la farmacia de lunes a jueves, de nueve a seis, para ayudar. For which scenario would the text above best apply? A person who has a twisted ankle A person who has the flu A person who needs assistance with medication A person who wants to purchase a wheelchair In this excerpt from Emmuska Orczy's novel The Scarlet Pimpernel, which line best represents an element of historical fiction?