Amplitude:4
Equation of Midline: 2
Period of function:3
Function shifted left:0.5
Function shifted up: 2
From the graphed cosine function we are given, we have;
1) Amplitude = 4
2) Equation of midline; m = 2
3) Period of the function = 3π
4) The function shifted 0.5 units left.
5) The function shifted 2 units up.
1) The amplitude is the distance between the center line and the positive or negative peak of the graph. Now, the positive peak is 6 and the negative one is 2. Thus, Amplitude = 6 - 2 = 42) Equation of the midline is the line that divides the entire sinusoidal curve into 2 equal parts along the x-axis. Since amplitude is 4, then the equation of midline is; m = 4/2 ; m = 2.3) The period is the time it takes for the graph to repeat or complete one cycle and in this graph, it is 3π.4) Looking at the graph, ideally the coordinate (-0.5π, 6) should have been on the y-axis which is at (0π, 6). This means it was shifted by 0.5 units to the left side.5) The positive peak should be equal to the negative peak but in this case, positive is 6 and negative is 2. This means, for them to be equal, they have to each be 4. Thus, the graph was shifted by 2 units upwards .Read more; https://brainly.com/question/16280305
there are 80 students in class among them 25 are girls and remaining are boys 10 foreigners and remaining are neplese. If 62.5% of them are nepalese boys, what is the probability of selecting foreign girl?
Answer:
1/4
Step-by-step explanation:
There are 80 students.
25 are girls and 55 are boys.
10 are foreigners and 70 are Nepalese.
62.5% are Nepalese boys.
This means that the number of Nepalese boys is:
62.5/100 * 80 = 50
There are 50 nepalese boys and so there are 20 nepalese girls.
The probability of selecting a Nepalese girl is therefore:
20 / 80 = 1/4
What is (6b +4) when b is 2?
Answer:
16
Step-by-step explanation:
6*2 = 12
12 + 4 = 16
The brand name of a certain chain of coffee shops has a 53% recognition rate in the town of Coffeeton. An executive from the company wants to verify the recognition rate as the company is interested in opening a coffee shop in the town. He selects a random sample of 7 Coffeeton residents. Find the probability that exactly 4 of the 7 Coffeeton residents recognize the brand name
Answer:
0.287
Step-by-step explanation:
Use binomial probability:
P = nCr p^r q^(n-r)
where n is the number of trials,
r is the number of successes,
p is the probability of success,
and q is the probability of failure (1-p).
P = ₇C₄ (0.53)⁴ (0.47)³
P ≈ 0.287
Suppose that prices of a certain model of new homes are normally distributed with a mean of $150,000. Find the percentage of buyers who paid:
between $150,000 and $152,400 if the standard deviation is $1200.
Answer:
The percentage is [tex]P(x_1 < X < x_2) = 47.7 \%[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = \$ 150000[/tex]
The standard deviation is [tex]\sigma = \$ 1200[/tex]
The prices we are considering is [tex]x_1 = \$150000 \to \ x_2 = \$ 152400[/tex]
Given that the price is normally distributed , the percentage the percentage of buyers who paid between $150,000 and $152,400 is mathematically represented as
[tex]P(x_1 < X < x_2) = P(\frac{x_1 - \mu}{\sigma } < \frac{X - \mu}{\sigma } < \frac{x_2 - \mu}{\sigma })[/tex]
So [tex]\frac{X - \mu}{\sigma }[/tex] is equal to z (the standardized value of X )
So
[tex]P(x_1 < X < x_2) = P(\frac{x_1 - \mu}{\sigma } <Z < \frac{x_2 - \mu}{\sigma })[/tex]
substituting values
[tex]P(x_1 < X < x_2) = P(\frac{150000 - 150000}{1200 } <Z < \frac{152400 - 150000}{1200 })[/tex]
[tex]P(x_1 < X < x_2) = P(0<Z < 2)[/tex]
[tex]P(x_1 < X < x_2) = P( Z < 2) - P( Z < 0 )[/tex]
From the standardized normal distribution table [tex]P(Z < 2 ) = 0.97725[/tex] and
[tex]P(Z < 0) = 0.5[/tex]
So
[tex]P(x_1 < X < x_2) = 0.97725 - 0.5[/tex]
[tex]P(x_1 < X < x_2) = 0.47725[/tex]
The percentage is [tex]P(x_1 < X < x_2) = 47.7 \%[/tex]
What is the quotient matches 22/33 divided by 6/9
Hey there! I'm happy to help!
When you divide fractions, you are technically multiplying by the reciprocal, which is the numerator and denominator flipped. This means that 22/33 divided by 6/9 is equal to 22/33 multiplied by 9/6.
If we multiply these together, we get an answer of 1.
I hope that this helps! Have a wonderful day!
The calculated division of the numbers 22/33 divided by 6/9 is 1
How to calculate the division of the numbersFrom the question, we have the following parameters that can be used in our computation:
22/33 divided by 6/9
When represented as an equation, we have
22/33 divided by 6/9 = 22/33 ÷ 6/9
Represent as a product expression
So, we have
22/33 divided by 6/9 = 22/33 * 9/6
So, we have the following result
22/33 divided by 6/9 = 1
Using the above as a guide, we have the following:
the result is 1
Read more about quotient at
brainly.com/question/11418015
#SPJ6
Use the interactive number line to find the difference. 4.7 - 2.3 = 4.7 + (-2.3) =
Answer:
Arrow from 0 to 4.7 and from 4.7 to 2.4
Step-by-step explanation:
4.7 is also 0+4.7
arrow from 0 to 4.7.
-2.3 from 4.7 is 4.7-2.3=2.4
arrow from 4.7 to 2.4.
Answer:
Use the interactive number line to find the difference.
4.7 - 2.3 = 4.7 + (-2.3) =
✔ 2.4
Step-by-step explanation:
The sum of two positive integers is 37. When the smaller integer is subtracted from twice the larger, the result is 41. Find the two integers.
Answer:
26 and 11
Step-by-step explanation:
When your add them you get 37, and when you multiply 26 by two you get 52. 52-11 is 41.
What is the radius of a circle given by the equation x2 + y2 – 2x + 8y – 47= 0? radius = units
Answer:
8 units
Step-by-step explanation:
We need to rewrite an equation in the standard for a circle form.
r is radius.
(x−h)²+(y−k)²= r²
x² + y² – 2x + 8y – 47= 0
x² - 2x + y² + 8y - 47 = 0
x² - 2*x *1+ 1 ²- 1² + y² + 2*4*y + 4² - 4² - 47 = 0
(x - 1)² + (y + 4)² - 1 - 16 -47 =0
(x - 1)² + (y + 4)² - 64=0
(x - 1)² + (y + 4)² = 8²
Radius is 8.
The radius of the circle is 8 units
What is radius?The radius of a circle is a line drawn from the center to the circumference of the circle
The equation of the circle is given as;
[tex]x^2 + y^2 - 2x + 8y - 47 = 0[/tex]
Rewrite the equation as:
[tex]x^2 - 2x + y^2 + 8y = 47[/tex]
Next, we rewrite the equation in the standard form
So, we have:
x^2 - 2x + 1^2 - 1^2 + y^2 + 8y + 4^2 - 4^2 = 47
Evaluate the exponents
x^2 - 2x + 1 - 1 + y^2 + 8y + 16 - 16 = 47
Rewrite the equation as follows:
x^2 - 2x + 1 + y^2 + 8y + 16 = 47 + 1 + 16
Express as perfect squares
(x - 1)² + (y + 4)² = 64
(x - 1)² + (y + 4)² = 8^2
The radius of the circle is calculated as:
r^2 = 8^2
By comparison, we have:
r = 8
Hence, the radius of the circle is 8 units
Read more about radius at:
https://brainly.com/question/15673093
50 points + brainliest!
Answer:
( x+2) ^2 = 11
x =1.32,-5.32
Step-by-step explanation:
x^2 + 4x -7 = 0
Add the constant to each side
x^2 + 4x -7+7 = 0+7
x^2 + 4x = 7
Take the coefficient of the x term
4
Divide by 2
4/2 =2
Square it
2^2 = 4
Add this to each side
x^2 + 4x +4 = 7+4
Take the 4/2 as the term inside the parentheses
( x+2) ^2 = 11
Take the square root of each side
sqrt( ( x+2) ^2) =±sqrt( 11)
x+2 = ±sqrt( 11)
Subtract 2 from each side
x = -2 ±sqrt( 11)
To the nearest hundredth
x =1.32
x=-5.32
Answer:
[tex](x+2)^2=11[/tex]
[tex]x=-2 \pm \sqrt{11}[/tex]
Step-by-step explanation:
[tex]x^2+4x-7=0[/tex]
[tex]x^2+4x=7[/tex]
[tex]x^2+4x+4=7+4[/tex]
[tex](x+2)^2=11[/tex]
[tex]x+2=\pm\sqrt{11}[/tex]
[tex]x=-2 \pm \sqrt{11}[/tex]
PLS PLSPLS HELPPP------
Answer:
Total Area = [tex]104+16\,\sqrt{13}[/tex]
Step-by-step explanation:
If T.A. stands for Total Area, then we need to add the area of two equal right angle triangles of base 6' and height 4', which give : 2 * (6' * 4'/2) = 24 square feet. tothe area of three rectangles (the lateral faces of this triangular base prism):
[tex](8')*(4')+(8')*(6')+(8')*(\sqrt{6^2+4^2})= 32+48+8\,\sqrt{52} =80+8\,*\,2\,\sqrt{13}=80+16\,\sqrt{13}[/tex]
Therefore the total area of the prism is:
[tex]24+80+16\,\sqrt{13} =104+16\,\sqrt{13}[/tex]
I NEED HELP ASAP choose one of the multiple choice
Answer:
B. Square both sides of the equation.
Step-by-step explanation:
You cannot do anything to the equation unless you square both sides to eliminate the square root on the left (squaring each individual term of the equation does not help; you need to square the entire square root to eliminate it).
Hope this helps!
20x^3+8x^2-30x-12 Rewrite the expression as the product of two binomials.
Answer:
see below
Step-by-step explanation:
20x^3+8x^2-30x-12
Factor out the greatest common factor 2
2 (10x^3+4x^2-15x-6)
Then factor by grouping
2 ( 10x^3+4x^2 -15x-6)
Factor out 2 x^2 from the first group and -3 from the second group
2 ( 2x^2( 5x+2) -3( 5x+2))
Factor out ( 5x+2)
2 ( 5x+2) (2x^2-3)
The 2 can go in either term to get binomials
( 10x +4) (2x^2-3)
or ( 5x+2) ( 4x^2 -6)
Answer:
[tex](10x+4)(2x^2 -3)[/tex]
Step-by-step explanation:
[tex]20x^3+8x^2-30x-12[/tex]
Rewrite expression (grouping them).
[tex]20x^3-30x+8x^2-12[/tex]
Factor the two groups.
[tex]10x(2x^2 -3)+4(2x^2 -3)[/tex]
Take the common factor from both groups.
[tex](10x+4)(2x^2 -3)[/tex]
how many ounces of 7% acid solution and how many ounces of a 23% acid solution must be mixed to obtain 20 oz of a 17% acid solution?
Answer: 7.5 ounces of 7% acid solution is mixed with 12.5 ounces of 23% acid solution to obtain 20 oz of a 17% acid solution.
Step-by-step explanation:
Let x = Ounces of 7% acid solution
y= Ounces of 23% acid solution
According to the question , we have two linear equations:
x+y=20
i.e. y=20-x ...(i)
0.07 x+ 0.23y =0.17 (20)
i.e. 0.07x+0.23y= 3.4 ...(ii)
Substitute value of y from (i) in (ii) , we get
0.07x+0.23(20-x)= 3.4
⇒ 0.07x+4.6-0.23x=3.4 [distributive property]
⇒ 0.07x-0.23x=3.4-4.6 [subtract 4.6 from both sides]
⇒ -0.16x=-1.2
⇒ x = 7.5 [divide both sides by-0.16]
put value of x in (i) , we get y= 20-7.5 =12.5
Hence, 7.5 ounces of 7% acid solution is mixed with 12.5 ounces of 23% acid solution to obtain 20 oz of a 17% acid solution.
What is the formula for the area A of a trapezoid with parallel sides of length B and D, nonparallel sides of length A and C and height H?
A. A = 1/2h (a+c)
B. A = 1/2h (b + d)
C. A = a+b + c + d
D. A= abcd
E. A = 1/2h (a+b+c+d)
Answer:
[tex](B) \dfrac12H (B+D)[/tex]
Step-by-step explanation:
[tex]\text{Area of a trapezoid }= \dfrac12 ($Sum of the parallel sides) \times $Height\\Parallel Sides = B and D\\Height =H\\Therefore:\\\text{Area of the trapezoid }= \dfrac12 (B+D) H[/tex]
The correct option is B.
Which relation is a function?
Answer:
D
Step-by-step explanation:
a function is a relation of two sets that associates to every number of the first set only one number of the second set. Typical examples are functions from integers to integers or from the real numbers to real numbers.
Answer:
D. the quadratic equation
Step-by-step explanation:
This is because in a function, there can not be multiple solutions for one x value. Each of the graphs display points in which the answer to x is multiple values of y, which is not a characteristic of a function.
You can see this by doing a vertical line test. Place and guide your pencil or any straight edge along the beginning of a graph to the end. If the line crosses x at two or more points, the graph is not a function. The quadratic equation is the only one that is a function because as your pencil moves along, you will see that each point has its own x value and nothing overlaps.
You randomly select an integer from 0 to 24 (inclusively) and then randomly select an integer from 0 to 7 (inclusively). What is the probability of selecting a 5 both times?
Answer:
1/200
Step-by-step explanation:
There are 24 - 0 + 1 = 25 integers from 0 - 24 (inclusive) and 7 - 0 + 1 = 8 integers from 0 - 7 (inclusive) so there are 25 * 8 = 200 possible outcomes from selecting a random integer from each interval. Of these outcomes, there is only one where you select a 5 both times, so the probability is 1/200.
The probability of selecting a 5 both times is 0.005
Given:
integer from 0 to 24
integer from 0 to 7
Now let determine the probability of selecting a 5 both times
P(getting 5 both times)=?
P(1st time 5)=1/25
P(2nd time 5)=1/8
Hence:
P(getting 5 both times) =(1/25)(×1/8)
P(getting 5 both times)=0.04×0.125
P(getting 5 both times)=0.005
Inconclusion The probability of selecting a 5 both times is 0.005
Learn more here:
https://brainly.com/question/17764361
Find the slope of the line that passes through the points (-2, 4) and (-5, -6).
-217
10/3
-2/3
Answer:
10/3.
Step-by-step explanation:
To find the slope, we do the rise over the run.
In this case, the rise is 4 - (-6) = 4 + 6 = 10.
The run is -2 - (-5) = -2 + 5 = 3.
So, the slope is 10/3.
Hope this helps!
10/3
Step-by-step explanation:
gradient=y²-y¹
x²-x¹
= -6-4
-5-(-2)
= -10
-5+2
= -10
-3
=10/3
Sally can paint a room in 9 hours while it takes Steve 6 hours to paint the same room. How long would it take them to paint the room if they worked together?
Answer:
3.6
Step-by-step explanation:
1/9+1/6
1/3^2+1/2x3=1/x
2+3/3^2x2=1/x
5/3^2x2=1/x
x.5=18
5x=18
5x/5= 18/5
x=18/5
x=3.6
To paint the room if they worked together in 4 hours 14 min.
To find time if they work together.
What is arithmetic?science that deals with the addition, subtraction, multiplication, and division of numbers and properties and manipulation of numbers.An arithmetic sequence is a sequence where the difference between each successive pair of terms is the same. The explicit rule to write the formula for any arithmetic sequence is this:
an = a1 + d (n - 1).
Given that:
(1 room/Sally's time) + (1 room/Steve's time) = (1 room)/(time working together)
1/9+1/6+=+1/x
Multiply both sides by 54x
6x+9x=54
15x=54
x=3.6hours
Working together, they can paint the room in 3 hours 6 min.
So, to paint the room if they worked together in 3 hours 6 min.
Learn more about arithmetic here:
https://brainly.com/question/17114329
#SPJ2
Find the rate of change of total revenue, cost, and profit with respect to time. Assume that R(x) and C(x) are in dollars. R(x)equals60 x minus 0.5 x squared, C(x)equals3 x plus 5, when xequals40 and dx divided by dtequals15 units per day
Answer:
Step-by-step explanation:
Given the Revenue in dollars modelled by the function R(x) = 60x-0.5x²
Cost in dollars C(x) = 3x+5
Profit function = Revenue - Cost
P(x) = R(x) - C(x)
P(x) = 60x-0.5x²-(3x+5)
P(x) = 60x-0.5x²-3x-5
P(x) = -0.5x²+57x-5
The rate of change of total revenue = dR(x)/dt
dR(x)/dt = dR(x)/dx * dx/dt
dR(x)/dx = 60-2(0.5)x²⁻¹
dR(x)/dx = 60-x
Given x = 40 and dr/dx = 15 units per day
dR(x)/dt = (60-x)dx/dt
dR(x)/dt = (60-40)*15
dR(x)/dt = 20*15
dR(x)/dt = 300dollars
Rate of change of revenue = 300dollars
For the rate of change of cost;
dC(x)/dt = dC(x)/dx * dx/dt
dC(x)/dt = 3dx/dt
dC(x)/dt when dx/dt = 15 will give;
dC(x)/dt = 3*15
dC(x)/dt = 45 dollars.
Rate of change of revenue = 45dollars
For the profit;
Profit = Rate of change of revenue - rate of change of cost
Profit made = 300-45
profit made = 255 dollars
The solutions to the inequality ys-x+1 are shaded on
the graph. Which point is a solution?
(2, 3)
(3,-2)
(2.1)
(-1,3)
Answer:
the solutions to the inequality ys-x+1 are shaded on the graph. which point is B. (3 ,-2)
Part of the proceeds from a garage sale was $440 worth of $10 and $20 bills. If there were 2 more $10 bills than $20 bills, find the number of each denomination.
Hey there! I'm happy to help!
Let's set this up a system of equations where x represents the number of 10 dollar bills and y represents the number of 20 dollar bills.
10x+20y=440
x=y+2
We see that x has a value of y+2, so we can replace the x in the first equation with y+2 so we can solve for y.
10(y+2)+20y=440
We use distributive property to undo the parentheses.
10y+20+20y=440
We combine like terms.
30y+20=440
We subtract 20 from both sides.
30y=420
y=14
Since there are 2 more $10 bills, there would be 16 of those.
Therefore, there are 16 $10 bills and 14 $20 bills.
Have a wonderful day! :D
Mitch mixes 5 parts white paint to 9 parts blue paint. If he has 4 qt of white paint, how much blue paint would he need?
He would need
qt of blue paint
Answer:
7.2 qt
Step-by-step explanation:
1. Determine how much blue paint is needed in comparison to white paint
9 ÷ 5 = 1.8
For every 1 part of white paint, 1.8 times that amount of blue paint is needed.
2. Multiply the 4 qt of white paint by 1.8
4 · 1.8 = 7.2
The number of blue paints Mitch will need given the proportion of white and blue paints is 7.2qt
Given:
Blue paints = 9
White paints = 5
Ratio of blue paints to white paints = 9 : 5
If Mitch has 4 qt of white paintNumber of blue paints needed is xRatio of blue paints to white paints = x : 4
Equate the ratio9 : 5 = x : 4
9/5 = x/4
cross product
9 × 4 = 5 × x
36 = 5x
x = 36/5
x = 7.2 qt
Learn more about ratio:
https://brainly.com/question/1781657
A physics class has students. Of these, students are physics majors and students are female. Of the physics majors, are female. Find the probability that a randomly selected student is female or a physics major. The probability that a randomly selected student is female or a physics major is nothing.\
Answer:
The probability that a randomly selected student is female or a physics major is 0.65.
Step-by-step explanation:
Note: This question is not complete. A complete is therefore provided before answering the question as follows:
A physics class has 40 students. Of these, 14 students are physics majors and 18 students are female. Of the physics majors, six are female. Find the probability that a randomly selected student is female or a physics major. The probability that a randomly selected student is female or a physics major is_______.
The Step-by-step explanation is therefore provided now as follows:
The probability that a randomly selected student is female or a physics major can be calculated using the following formula:
P(PM or F) = P(PM) + P(F) - P(PMF)
Where;
P(PM or F) = Probability of student selected is Physics Major or Female = ?
P(PM) = Probability of student selected is Physics Major = Number of Physics Major / Total number of students in the Physics class = 14 / 40 = 0.35
P(F) = Probability of student selected is Female = Number of female students in the Physics class / Total number students in the Physics class = 18 / 40 = 0.45
P(PMF) = Probability of student selected is Physics Major and Female = Number Physics Major that female in the Physics class / Total number students in the Physics class = 6 / 40 = 0.15
Substituting the values into equation (1), we have:
P(PM or F) = 0.35 + 0.45 - 0.15 = 0.65
Therefore, the probability that a randomly selected student is female or a physics major is 0.65.
Answer:
what is the physics question
Step-by-step explanation:
Write a short statement that expresses a possible function between the given variables. (price of a DVD player, demand f for DVD player)
Answer:
The relation PriceVSDemand usually is an inverse relationship.
This means that, as the price of the object increases, the demand will decrease.
An inverse relationship is:
D = k/P
Where D is the demand, P is the price and K is a constant that depends on the situation.
Of course this relationship also can be something like:
D = k/P^n
With n ≥ 1.
If n = 1 we have the same as above, and if n > 1, the demand decreases faster as the price increases.
If
WHY CAN'T ANYONE HELP ME :( Solve the formula for the specified variable. tex]D=\frac{1}{4}fk for f.
Answer:
4d/k or [tex]\frac{4d}{k}[/tex]
Step-by-step explanation:
first multiply both sides by four
you will have 4d=fk
then divide by k
4d/k=f
Determine whether the outcome of the following hypothesis test was a correct decision, a type I error, or a type II error. Claim: "Less than 40% of college students graduate with student loan debt." A hypothesis test of this claim resulted in the decision to reject H0. The actual percentage of college graduates with student loan debt is 45%.
Answer:
Step-by-step explanation:
The claim: "Less than 40% of college students graduate with student loan debt."
The null hypothesis: more than 40% of college students graduate with student loan debt." p >= 40%
If the actual percentage of college graduates with student loan debt is 45%. The researcher was supposed to fail to reject the null but since he rejected it when it was actually true, it is a type I error.
A type I error occurs when the research rejects the null when it is actually true.
A company has five employees on its health insurance plan. Each year, each employee independently has an 80% probability of no hospital admissions. If an employee requires one or more hospital admissions, the number of admissions is modeled by a geometric distribution with a mean of 1.50. The numbers of hospital admissions of different employees are mutually independent. Each hospital admission costs 20,000.
Calculate the probability that the company's total hospital costs in a year are less than 50,000.
Answer:
the probability that the company's total hospital costs in a year are less than 50,000 = 0.7828
Step-by-step explanation:
From the given information:
the probability that the company's total hospital costs in a year are less than 50,000 will be the sum of the probability of the employees admitted.
If anyone is admitted to the hospital, they have [tex]\dfrac{1}{3}[/tex] probability of making at least one more visit, and a [tex]\dfrac{2}{3}[/tex] probability that this is their last visit.
If zero employee was admitted ;
Then:
Probability = (0.80)⁵
Probability = 0.3277
If one employee is admitted once;
Probability = [tex](0.80)^4 \times (0.20)^1 \times (^5_1) \times (\dfrac{2}{3})[/tex]
Probability = [tex](0.80)^4 \times (0.20)^1 \times (\dfrac{5!}{(5-1)!}) \times (\dfrac{2}{3})[/tex]
Probability = 0.2731
If one employee is admitted twice
Probability = [tex](0.80)^3 \times (0.20)^2 \times (^5_2) \times (\dfrac{2}{3})^2[/tex]
Probability = [tex](0.80)^3 \times (0.20)^2 \times (\dfrac{5!}{(5-2)!}) \times (\dfrac{2}{3})^2[/tex]
Probability = 0.1820
If two employees are admitted once
Probability = [tex](0.80)^4\times (0.20)^1 \times (^5_1) \times (\dfrac{1}{3}) \times (\dfrac{2}{3})[/tex]
Probability = [tex](0.80)^4 \times (0.20)^1 \times (\dfrac{5!}{(5-1)!}) \times (\dfrac{1}{3}) \times (\dfrac{2}{3})[/tex]
Probability = 0.0910
∴
the probability that the company's total hospital costs in a year are less than 50,000 = 0.3277 + 0.2731 + 0.1820
the probability that the company's total hospital costs in a year are less than 50,000 = 0.7828
It takes an older pump 3 times as long to drain a certain pool as it does a newer pump. Working together, it takes the two pumps 3 hours to
drain the pool. How long will it take the older pump to drain the pool working alone?
Do not do any rounding.
Answer:
it takes approximately 3 hours
Step-by-step explanation:
Find the current I flowing through a square with corners at (0,0,0), (2,0,0), (2,0,2), (0,0,2). The current density is: bold italic J equals bold y with bold hat on top open parentheses y squared plus 5 close parentheses space space space space space open parentheses straight A divided by straight m squared close parentheses
Parameterize the square (call it S) by
[tex]\mathbf s(u,v)=2u\,\mathbf x+2v\,\mathbf z[/tex]
with both [tex]u\in[0,1][/tex] and [tex]v\in[0,1][/tex].
Take the normal vector pointing in the positive y direction to be
[tex]\dfrac{\partial\mathbf s}{\partial v}\times\dfrac{\partial\mathbf s}{\partial u}=4\,\mathbf y[/tex]
Then the current is
[tex]\displaystyle\iint_S(y^2+5)\,\mathbf y\cdot4\,\mathbf y\,\mathrm dA=20\int_0^1\int_0^1\mathrm dA=\boxed{20\,\mathrm A}[/tex]
where [tex]y^2+5[/tex] reduces to just 5 because [tex]y=0[/tex] for all points in S.
Identify the level of measurement of the data, and explain what is wrong with the given calculation. In a survey, the hair colors hair colors of respondents are identified as 100100 for brown hair commabrown hair, 200200 for blond hair commablond hair, 300300 for black hair commablack hair, and 400400 for anything else. The average (mean) is calculated for 503503 respondents and the result is 256.1 .256.1. The data are at the ▼ ordinal interval nominal ratio level of measurement.
Answer:
Nominal level of measurement
Step-by-step explanation:
The level of measurements used in this study is the nominal level of measurements. The nominal level of measurements involves the use of numbers to help classify the categories in an experiment.
In this case study, values were gotten for each categories which are brown hair, blonde hair, black hair and other hair colors. Thus, the level of measurements used is the nominal level of measurement.
There is something wrong with the calculation because data was gotten for a total of 600 respondents while the mean that was calculated involved only 503 omitting about 97 respondents.