The radial velocity of the star is approximately 534.3 km/s by using the Doppler shift formula with a shift in wavelength of 0.7 nm for the observed calcium absorption line with a rest wavelength of 393.3 nm
The Doppler shift formula is Δλ/λ = v/c, where
Δλ is the shift in wavelength,
λ is the rest wavelength,
v is the radial velocity of the star, and
c is the speed of light.
The shift in wavelength is given by the observed wavelength minus the rest wavelength:
Δλ = 394.0 nm - 393.3 nm = 0.7 nm
Substituting the values into the Doppler shift formula, we get:
Δλ/λ = v/c
0.7 nm / 393.3 nm = v / 299792458 m/s
Solving for v, we get:
v = (0.7 nm / 393.3 nm) * 299792458 m/s
v ≈ 534.3 km/s
Therefore, the radial velocity of the star is approximately 534.3 km/s.
To practice more questions about 'radial velocity':
https://brainly.com/question/29569575
#SPJ11
a circuit in a home provides power to a light fixture. the homeowners want to use a compact fluorescent bulb instead of an incandescent bulb. compact fluorescent bulbs can produce as much light as incandescent bulbs but with less energy. how is this possible?(1 point) responses fluorescent bulbs have been designed to put out more energy than they receive. fluorescent bulbs have been designed to put out more energy than they receive. fluorescent bulbs produce other forms of energy, too, including heat. fluorescent bulbs produce other forms of energy, too, including heat. energy is destroyed when it passes through an incandescent bulb. energy is destroyed when it passes through an incandescent bulb. incandescent bulbs produce other forms of energy, too, including heat. incandescent bulbs produce other forms of energy, too, including heat.
A circuit in a home provides power to a light fixture. The homeowners want to use a compact fluorescent bulb instead of an incandescent bulb. compact fluorescent bulbs can produce as much light as incandescent bulbs but with less energy because: it makes them a more cost-effective choice over time.
The homeowners want to use a compact fluorescent bulb instead of an incandescent bulb. Compact fluorescent bulbs can produce as much light as incandescent bulbs but with less energy. Fluorescent bulbs have been designed to put out more energy than they receive. This makes them a more efficient light source than incandescent bulbs.
Unlike incandescent bulbs, fluorescent bulbs produce less heat and use less electricity. Fluorescent bulbs produce light by exciting mercury vapor. The mercury vapor emits ultraviolet light, which is converted into visible light by a phosphor coating on the bulb's interior. This process uses less energy than an incandescent bulb, which produces light by heating a filament until it glows.
Fluorescent bulbs can also last much longer than incandescent bulbs, which makes them a more cost-effective choice over time. Overall, fluorescent bulbs are a more efficient and environmentally friendly choice for lighting compared to incandescent bulbs.
To know more about circuits refer here:
https://brainly.com/question/12608491#
#SPJ11
If an object does not move in a straight line, which will have a greater value (be bigger)?
A. the distance and displacement will be equal
B. the distance it traveled
C. its displacement from start to finish
Answer: A
Explanation:
when a hammer thrower releases her ball, she is aiming to maximize the distance from the starting ring. assume she releases the ball at an angle of 47.9 degrees above horizontal, and the ball travels a total horizontal distance of 33.6 m. what angular velocity must she have achieved (in radians/s) at the moment of the throw, assuming the ball is 1.16 m from the axis of rotation during the spin?
In order to throw the ball to a distance of 33.6\ m, the hammer thrower must achieve an angular velocity of 15.7 rad/s.
We need to find the velocity of the ball at release. We can use the equations of projectile motion to relate the horizontal distance traveled by the ball to its initial velocity and angle of release. The horizontal distance is given by:
[tex]d = (V^2\times sin(2\theta))/g[/tex]
where d is the horizontal distance, V is the initial velocity, g is the acceleration due to gravity, and θ is the angle of release.
Given horizontal distance d = 33.6\ m and θ = 47.9°
Substituting the given values, we get:
[tex]33.6 m = (V^2sin(2\times47.9^o))/9.8\ m/s^2[/tex]
Solving for V, we get:
V = 18.21 m/s
Now, to find the angular velocity we can use the formula
[tex]\omega = V/r[/tex]
[tex]\omega=18.21/1.16\ rad/s[/tex]
[tex]\omega = 15.705\ rad/s[/tex]
Therefore, the angular velocity the hammer thrower must have achieved at the moment of the throw is [tex]15.705\ rad/s[/tex].
Learn more about angular velocity:
https://brainly.com/question/29342095
#SPJ11
a stun gun is shot towards a mugger and travels 3 meter before it hits the mugger how long does it take the stun gun to reach the mugger
A. 0.545
B. 0.06
C. 0.0848
D. 0.848
The time taken by the stun gun to reach the mugger is approximately 0.781 seconds. Answer: C. 0.0848 (rounded to 3 decimal places).
To determine the time taken by the stun gun to reach the mugger, we need to use the equation for distance traveled with constant acceleration:
distance = (1/2) x acceleration x time^2
We can rearrange this equation to solve for time:
time = sqrt((2 x distance) / acceleration)
We don't have the acceleration of the stun gun, but we can assume that it travels at a constant speed. Therefore, we can use the equation:
speed = distance / time
to calculate the speed of the stun gun, and then use the formula:
time = distance / speed
to find the time taken to travel the distance.
Assuming the stun gun travels at a constant speed, we can calculate its speed as:
speed = distance / time
speed = 3 m / time
We don't know the time yet, so we can't solve for the speed directly. However, we do know that the stun gun is moving horizontally, and we can assume that it is affected only by gravity in the vertical direction. Therefore, we can use the formula for the time taken for an object to fall a certain distance under the influence of gravity:
distance = (1/2) x acceleration due to gravity x time^2
to find the time it takes for the stun gun to fall 3 meters (the distance it travels horizontally).
We can rearrange the formula to solve for time:
time = sqrt((2 x distance) / acceleration due to gravity)
Substituting the values, we get:
time = sqrt((2 x 3) / 9.81)
time = sqrt(0.611)
time = 0.781 seconds (approx.)
Now that we know the time taken for the stun gun to fall 3 meters, we can use the formula:
time = distance / speed
to find the time taken to travel the distance:
time = 3 m / speed
Substituting the value of speed we found earlier, we get:
time = 3 m / (3 m / 0.781 s)
time = 0.781 s (approx.)
Therefore, the time taken by the stun gun to reach the mugger is approximately 0.781 seconds. Answer: C. 0.0848 (rounded to 3 decimal places).
To know more about the acceleration, visit:
https://brainly.com/question/12550364
#SPJ1
What is the quantum physics observer paradox?
Answer:
“The paradox means that if quantum theory works to describe observers, scientists would have to give up one of three cherished assumptions about the world,” said Associate Professor Eric Cavalcanti, a senior theory author on the paper.
Must an object be rotating to have a nonzero moment of inertia?
No, an object does not have to be rotating to have a nonzero moment of inertia. Moment of inertia is the property of an object that describes its resistance to rotational motion about an axis. It is calculated by summing up the product of the mass of each particle in the object and its distance from the axis squared. The formula for the moment of inertia is I = Σmr².
The moment of inertia depends on the mass distribution of an object. If the mass is evenly distributed around the axis of rotation, then the moment of inertia is the same in all directions. However, if the mass is concentrated at a distance from the axis, then the moment of inertia will be higher.Even if an object is not rotating, it still has a moment of inertia. This is because the moment of inertia depends only on the mass distribution and not on the motion of the object.
For example, a solid sphere and a hollow sphere of the same mass and radius have different moments of inertia, even though they are not rotating.The moment of inertia is an important property in physics, as it is used to calculate the torque required to produce a given angular acceleration. It is also used to predict the motion of objects in rotational motion, such as spinning tops, gyroscopes, and planets.
To know more about Moment of inertia click here
brainly.com/question/13449336
#SPJ11
the image quality of most optical telescopes is limited by differential atmospheric refraction experienced by light as it passes through the earth's atmosphere. question 45 options: true false
The statement, "The image quality of most optical telescopes is limited by differential atmospheric refraction experienced by light as it passes through the earth's atmosphere" is TRUE.
Differential atmospheric refraction is a process by which the direction of a star or celestial object can differ based on the location and height of the star, as well as the time of observation. As light from stars passes through Earth's atmosphere, it is refracted and deflected, resulting in a slight change in the location of the object. Telescopes rely on light rays to form images of distant celestial objects, which are subsequently captured by a camera or observer. This bending of light and the resulting effect on image quality and clarity is referred to as atmospheric refraction. Atmospheric refraction causes the light to curve, causing distortions and wavy patterns in the images formed by telescopes. This distortion limits the sharpness and clarity of the images produced by telescopes. Astronomers and engineers are continuously working to design telescopes that minimize the effects of atmospheric refraction, allowing for clearer images of celestial objects. However, it is still a significant issue for most optical telescopes.
#SPJ11
to learn more about atmospheric refraction : https://brainly.com/question/17710960
which of the following makes titan special? group of answer choices it is the only moon in the solar system with an atmosphere weathering of the surface cryovolcanoes that spew liquid water liquid methane lakes all of the above
All of the above make Titan special.
Titan is the only moon in the solar system with a dense atmosphere, which is mostly made up of nitrogen, and also contains some methane and other gases. The atmosphere creates weather on Titan, including winds and rain, and can cause erosion and other forms of weathering on the moon's surface.
Cryovolcanoes, which spew liquid water and other materials, have been discovered on Titan, making it one of the few places in the solar system where active volcanism has been observed. In addition to water, these cryovolcanoes can also emit liquid methane and other compounds.
Liquid methane lakes have also been observed on Titan's surface. These lakes are made possible by the low temperatures and high atmospheric pressure on the moon, which allow methane to exist in liquid form.
Overall, Titan is a unique and fascinating moon with many special features that make it of great interest to scientists studying the solar system.
For more details about Titan click here:
https://brainly.com/question/29467365#
#SPJ11
All of the above factors make Titan unique in the solar system. Therefore, the correct option is E.
Titan is a fascinating and distinctive moon of Saturn, with a number of characteristics that set it apart from other moons in the solar system. The following are the features that make titan special:
Atmosphere: Titan is the only moon in the solar system with a thick, Earth-like atmosphere. The majority of Titan's atmosphere is nitrogen, and there are traces of other gases like methane and ethane as well. The presence of an atmosphere on Titan is one of the factors that distinguish it from other moons in the solar system, which either have no atmosphere or only a thin one.
Weathering of the Surface: Titan's surface is carved with intricate patterns that are similar to those found on Earth. There are mountains, canyons, and river systems. However, the atmosphere is responsible for the weathering of Titan's surface. The temperature on Titan is too cold for liquid water to exist, so any flowing liquid on the surface is in the form of methane.
Cryovolcanoes That Spew Liquid Water: Titan has cryovolcanoes, which spew liquid methane and other substances. Volcanoes are typically associated with hot, molten rock on Earth, but on Titan, the volcanoes spew icy substances rather than molten lava. This again sets Titan apart from other moons in the solar system.
Liquid Methane Lakes: Titan is the only moon in the solar system with large bodies of liquid on its surface. However, these are not water lakes but instead contain liquid methane and other hydrocarbons. Despite the fact that the composition of the liquid is different from that of water, the presence of lakes on Titan is still highly unusual.
All of the above factors make Titan unique in the solar system. It is the only moon with an atmosphere and has distinct weathering, cryovolcanoes, and methane lakes that all make it special.
To know more about Titan refer here:
https://brainly.com/question/13500925#
#SPJ11
if the transfer orbit has a semi-major axis of 195100000 km, how long, in days, would the interplanetary trip last? hint: first, determine the period of the transfer orbit.
The interplanetary trip would last approximately 594 days, or about 1.6 years.
To find the period of the transfer orbit, we can use Kepler's third law, which states that the square of the period of an orbit is proportional to the cube of the semi-major axis,
(T_transfer)^2 / (a_transfer)^3 = (T_earth)^2 / (a_earth)^3
where T_transfer is the period of the transfer orbit, a_transfer is the semi-major axis of the transfer orbit, T_earth is the period of Earth's orbit, and a_earth is the semi-major axis of Earth's orbit.
Assuming that Earth's orbit is circular with a semi-major axis of 149.6 million km, we can substitute the given values and solve for T_transfer:
(T_transfer)^2 / (195100000 km)^3 = (365.25 days)^2 / (149.6 million km)^3
T_transfer = sqrt[(195100000 km)^3 * (365.25 days)^2 / (149.6 million km)^3] = 593.6 days
To know more about semi-major axis, here
brainly.com/question/15084490
#SPJ4
which of the following statements regarding air masses is not true? group of answer choices air masses are named for both their moisture and thermal characteristics air masses form in relatively flat locations with uniform temperature and moisture characteristics air masses always form over areas featuring complex terrain air masses can be transported by surface high- and low-pressure systems
The statement that is not true regarding air masses is: c. air masses always form over areas featuring complex terrain.
Air masses are large bodies of air with similar temperature and moisture characteristics. They form in relatively flat locations with uniform temperature and moisture conditions, as mentioned in statement b. Complex terrains, such as mountains or varied landscapes, can disrupt the formation of air masses due to uneven heating and variations in moisture levels.
As stated in statement a, air masses are named for both their moisture and thermal characteristics. There are four primary types of air masses, which are categorized based on their source regions: polar (cold), tropical (warm), maritime (moist), and continental (dry). For example, a maritime tropical air mass would be warm and humid, while a continental polar air mass would be cold and dry.
Air masses can be transported by surface high- and low-pressure systems, as mentioned in statement d. High-pressure systems typically move air masses from regions of high pressure to regions of low pressure. As air masses move, they can influence the weather conditions in the areas they pass over. For example, a cold front occurs when a cold air mass moves into an area occupied by a warmer air mass, often leading to precipitation and a drop in temperature.
In summary, air masses form in flat locations with uniform conditions, are named for their moisture and thermal characteristics, and can be transported by surface high- and low-pressure systems. The statement claiming that air masses always form over complex terrain is not true. Therefore, the correct option is C.
The Question was Incomplete, Find the full content below :
which of the following statements regarding air masses is not true?
a. air masses are named for both their moisture and thermal characteristics
b. air masses form in relatively flat locations with uniform temperature and moisture characteristics
c. air masses always form over areas featuring complex terrain
d. air masses can be transported by surface high- and low-pressure systems
Know more about Air masses here :
https://brainly.com/question/27858344
#SPJ11
UN +4 = 8M 1 Clockwise moment = fxSL 4 In the diagram, a plank weighing 120 N is supported by two trestles at points A and B. A man weighing 480 N is standing on the plank. 7134 1 m -2 m weight of man = 480 N centre of mass of plane weight of plank = 120 N B 2023/3/18 12:47 a Redraw the diagram, showing all the forces acting on the plank. Calculate the total clockwise moment of the two weights about A. c. Use the principle of moments to calculate the upward force from the trestle at B. d What is the total downward force on the trestles? e What is the upward force from the trestle at A? f The man now walks past A towards the left-hand end of the plank. What is the upward force from the trestle at B at the instant the plank starts to tip? g How far is the man from A as the plank tips? Burto atspog
The responses obtained using the principle of moments are;
(a) Please find attached the drawing of the forces acting on the plank created with MS Word
(b) 720 N·m
(c) 180 N
(d) 600 N
(e) 420 N
(f) 0
(g) 0.5 meters from A
What is the principle of moments?
The principle of moments is a fundamental physics principle that is used to explain how objects in equilibrium. The principle states that at equilibrium; The total clockwise moments = The total anticlockwise moment.
(a) Please find attached the drawing showing the weights acting on the plank, created with MS Word
(b) The total clockwise moments of the two weights about A is calculated as follows:
- The moment of the weight of the plank about A is 120 N × 3 m = 240 N·m
- The moment of the weight of the man about A is 480 N × 1 m = 480 N·m
- The total clockwise moment of the two weights about A is 240 N·m + 480 N·m = 720 N·m
(c) The anticlockwise moment about A is; Upward force from trestle B × 4 m
The principle of moments indicates;
∑(Clockwise moment) = ∑(Anticlockwise moment)
Therefore; 720 N·m = Upward force from trestle B × 4 m
Upward force from trestle B = 720 N·m/(4 m) = 180 N
The upward force at trestle B is 180 N
(d) The total downward force on the trestles is; 120 N + 480 N = 600 N
(e) The principle of equilibrium indicates that we get;
The sum of upward forces = The sum of downward forces, therefore;
180 N + The upward force at trestle A = 600 N
The upward force at trestle A = 600 N - 180 N = 420 N
(f) When the man walks past A to the left-hand end of the plank, we get;
The plank starts to be lifted upwards from trestle B such that the upward force from trestle B becomes 0
(g) When the plank tips, we get;
480 × x = 120 × 2
x = 120 × 2/480 = 0.5
The man is 0.5 m from the trestle A as the plank tips.
Learn more on the principle of moments here: https://brainly.com/question/22526369
#SPJ1
the spacing between atomic planes in a solid is of similar length-scale to the wavelength of which type of electromagnetic radiation? the spacing between atomic planes in a solid is of similar length-scale to the wavelength of which type of electromagnetic radiation? visible light radio waves gamma rays infrared radiation ultraviolet light x-rays
The spacing between atomic planes in a solid is of a similar length scale to the wavelength of X-rays.
X-rays have a very short wavelength, typically on the order of 0.1 to 10 nanometers, which is similar in length scale to the spacing between atomic planes in a solid. This makes X-rays ideal for studying the structure of crystals and other materials, as they can be diffracted by the regularly spaced planes of atoms in a crystal lattice, producing a diffraction pattern that can be analyzed to determine the crystal structure.
Learn more about wavelength:
https://brainly.com/question/25697908
#SPJ11
you are running around a track at 5 km/h and then you increase your speed to 10 km/h. by what factor did you increase your kinetic energy?
As a result, when you raised your speed form 5 km/h into 10 km/h, you increased the kinetic energy from a factor of 4.03.
What exactly is kinetic energy?The energy of motion is kinetic energy, which can be observed in the motion of an object or subatomic particle. All particles & moving objects contain kinetic energy. When something moves, whether it's a person walking, an baseball flying through the air, an piece of bread falling out of a table, or charged particles inside an electric field, it has kinetic energy.
What are the four forms of kinetic energy?Radiant, thermal, acoustic, electrical, and mechanical kinetic energy are the five main categories.
To know more about kinetic energy visit:
https://brainly.com/question/26472013
#SPJ1
Find the acceleration (in m/s^2) of a car that travels from rest, to a velocity of 60 m/s in a distance of 212.0 ft.
A. 32 m/s^2
B. 27.9 m/s
C. 27.9 ft/s^2
D. 27.9 m/s^2
Show the work for determining the acceleration of the car...show symbolic solution then numerical solution.
As the units for acceleration are metres per second squared, we must first convert the distance from feet to metres. We know that 3.28084 feet are equal to 1 metre, so we can calculate: 212.0 feet (1 m / 3.28084 ft) = 64.6218 m.Hence, the car's total distance travelled was 64.6218 metres.
What is the acceleration of a car travelling down a straight road that goes from 0 to 100 km/h in 10 seconds in terms of m/s2?How quickly does a car travelling along a straight road accelerate to reach 100 km/h in 10 seconds? 6 m/s.
What is a body starting at rest's acceleration A in MS 2?The acceleration a (in ms 2) of a body, starting from rest varies with time t (ins) following the equation a= 3t+4.
To know more about acceleration visit:-
brainly.com/question/12550364
#SPJ1
which is greater? the annual energy usage of the earth, or the energy released by the sun in 1 second?
The energy released by the sun in one second, also known as the solar luminosity, is much greater than the annual energy usage of the earth.
The solar luminosity is estimated to be about 3.8 x 10^26 watts, while the total energy usage of the earth is estimated to be around 157,481 terawatt-hours per year, or about 18 x 10^12 watts. This means that the energy released by the sun in just one second is many orders of magnitude greater than the total energy used by all human activities on earth in a year. The sun's enormous energy output is what drives most of the physical and biological processes on our planet.
To know more about solar luminosity , here
brainly.com/question/19339399
#SPJ4
which wavelength of laser light can be used with the photodiode detector in the atomic force microscope?
The wavelength of laser light that can be used with the photodiode detector in the atomic force microscope is 635nm.
A photodiode is a device that converts light energy into electrical energy by absorbing photons. When photons fall on a photodiode, electron-hole pairs are produced in it. The diode's p-n junction facilitates the flow of these pairs of electrons, which leads to the creation of photocurrent. Photodiodes are frequently employed in cameras, solar cells, medical equipment, and even in AFM machines. A photodiode is a transducer that is sensitive to light. It is made up of a p-type semiconductor and an n-type semiconductor, with a thin insulating layer in between that, is sensitive to light. Photodiodes are similar to regular diodes in terms of current flow. When light photons hit the diode, they are absorbed, resulting in a change in its electrical properties. There are a variety of wavelengths used in microscopes, depending on the type and purpose of the microscope.
The selection of the right wavelength of light to use in a microscope can enhance the contrast and resolution of the image. However, in the atomic force microscope, the 635nm wavelength is utilized with the photodiode detector to obtain a high-resolution image. The AFM microscope employs a laser to achieve high spatial resolution. The beam is directed at the sample, and the laser light is reflected off the sample's surface and onto the detector. The displacement of the cantilever is detected by the photodiode detector.
Learn more about wavelength of laser light at: brainly.com/question/30446373
#SPJ11
nflate a balloon at room temperature. leave the inflated balloon in the refrigerator overnight. what happens to the balloon? explain
When inflating a balloon at room temperature and leaving the inflated balloon in the refrigerator overnight, it will deflate.
А bаlloon will deflаte when we inflаte а bаlloon аt room temperаture аnd then leаve the inflаted bаlloon in the refrigerаtor overnight becаuse the molecules in а bаlloon аre very energetic, аnd when they аre heаted up, they move fаster аnd further аpаrt from eаch other.
When we put а bаlloon in а refrigerаtor, it cools down, аnd the molecules inside it lose some of their energy. This meаns thаt they move more slowly аnd аre closer together, so the pressure inside the bаlloon decreаses аnd the bаlloon deflаtes.Therefore, the bаlloon deflаtes becаuse the pressure inside the bаlloon decreаses аs the bаlloon cools down.
For more information about inflated balloon refers to the link: https://brainly.com/question/29730130
#SPJ11
a uniform electric field points along the x axis. if a stationary electron is placed in this field, in what direction will it be forced to sstart to move?
The stationary electron placed in a uniform electric field pointing along the x axis will be forced to move in the direction opposite to that of the field, which is along the x axis. To be more specific, the electron will be forced to move along the positive y-axis.
An electric field is defined as the force that is experienced by a charged particle when it is placed in an electric field. It is represented by an electric field line that points in the direction of the electric field's intensity. An electric field is usually created by a charged particle or an electric charge.
Electric field intensity is a vector quantity that represents the strength of the electric field at any given point in space. The electric field is represented by E, and the electric field intensity is represented by E. The electric field is usually directed from the positive charge to the negative charge.
When a stationary electron is placed in an electric field, it will move in the direction opposite to that of the electric field. Therefore, if a uniform electric field is directed along the x-axis and a stationary electron is placed in this field, it will start to move in the direction opposite to that of the electric field or along the y-axis.
Know more about electric field here:
https://brainly.com/question/19878202
#SPJ11
a 500 g rock slides across an ice covered pond and strikes a 725 g object that is at rest. is it possible for both objects to be at rest after the collision?
Yes, it is possible for both objects to be at rest after the collision. This type of collision is known as an elastic collision.
In an elastic collision, both kinetic energy and momentum are conserved. Kinetic energy is the energy that an object possesses due to its motion. In a perfectly elastic collision, the kinetic energy is completely conserved, meaning that it is transferred from one object to another. Momentum is the product of an object's mass and velocity.
In an elastic collision, momentum is conserved.To solve this problem, we can use the conservation of momentum. According to the principle of conservation of momentum, the total momentum of a system of objects is conserved if there is no external force acting on the system. In this case, both objects are on the same surface and are only subjected to the frictional force of the surface.
The momentum of the rock before the collision can be calculated as: p1 = m1v1 = 0.5 kg × 3 m/s = 1.5 kg m/s.The momentum of the object at rest before the collision can be calculated as:p2 = m2v2 = 0.The total momentum of the system before the collision is:p1 + p2 = 1.5 kg m/s.The momentum of both objects after the collision is zero, so the total momentum of the system after the collision is also zero.
Therefore: p1' + p2' = 0.p1' is the momentum of the rock after the collision, and p2' is the momentum of the object at rest after the collision. Since the total momentum of the system is conserved, we can write: p1' + p2' = p1 + p2.0.5 kg × v1' + 0.725 kg × v2' = 1.5 kg m/s.
The two unknown velocities can be solved using the two equations: p1 + p2 = p1' + p2' and 0.5 kg × v1' + 0.725 kg × v2' = 1.5 kg m/s.
More on elastic collision: https://brainly.com/question/28161369
#SPJ11
A wave has an amplitude of 0.5 meters. The wave's amplitude increases to 1.5 meters.
How does the energy transported by the wave change?
The energy transported by the wave increases by a factor of 9,
The energy transported by a wave is proportional to the square of its amplitude. Therefore, if the amplitude of the wave increases from 0.5 meters to 1.5 meters, the energy transported by the wave increases by a factor of
[tex](1.5/0.5)^2 = 9.[/tex]
Wave amplitude is the maximum displacement or distance moved by a particle of the medium from its rest position when a wave passes through it. In simpler terms, it is the height of the wave from its equilibrium position. The amplitude is usually measured in meters (m), centimeters (cm), or sometimes in units of pressure, such as Pascals (Pa) for sound waves.
Energy transferred by a wave refers to the amount of energy that the wave carries as it travels through a medium.
learn more about amplitude here:
https://brainly.com/question/2845956
#SPJ1
Which of the following is true about poles on magnets?
O A. North poles attract south poles
O B. No th poles repel south poles.
O c. North soles attract north pales
Do Both Bland Care inte
Answer: A. North Poles attract south poles
Explanation:
Opposite poles attract
Same poles repel
Grandma Dynamite accelerates her bus from a dead start to 90 m/sec in just 12 seconds. What is her acceleration?
The acceleration in this instance is 7.5 meters per second square, which is a measure of the ratio of change in velocity with regard to time.
In physics, acceleration is the rate at which the velocity of an entity changes in relation to time. According to Newton's Second Law, the sum of all forces operating on an object results in its acceleration. Meter per second squared (m s2) is the measure of acceleration used in the SI system. Accelerations add according to the parallelogram law because they are vector variables (they have a magnitude and direction). The calculated net force is a vector that is equivalent to the product of the object's acceleration and mass, both of which are scalar quantities.
We are given:- initial velocity (u) = 0m/s
Final Velocity (v)= 90m/s
Time= 12s.
Therefore the acceleration is:-
90/12= 7.5 m/s^2.
Hence the acceleration is 7.5m/s^2.
To know more about acceleration go through:-
https://brainly.com/question/460763
#SPJ4
A student places a transparent semicircular block on a sheet of paper and draws
around the block. She directs a ray of light at the centre of the flat edge of the block.
Figure 1 shows the path of the ray through the block.
Figure 1
incident ray
centre of the flat
edge of the block
transparent
semicircular block
emergent ray \ sheet of paper
[foya}(4] State why the emergent ray does not change direction as it leaves the block.
[1 mark]
The emergent ray does not change direction as it leaves the block because it is traveling perpendicular to the flat surface of the semicircular block.
What is an emergent ray?An emergent ray is described to be a refracted beam that originates from a medium or channel after refraction.
It is known that when light passes from one medium to another at a particular angle, it changes direction due to refraction, which is caused by a change in the speed of light as it travels through different media.
If light passes through a flat surface at a perpendicular angle, there is no change in speed or direction, so the emergent ray travels in a straight line without bending or changing direction.
But in this scenario, the incident ray is directed towards the center of the flat edge of the block, it enters the block perpendicular to the flat surface and emerges from the block at the same angle and direction as the incident ray, without any refraction or change in direction.
Learn more about refraction at: https://brainly.com/question/27932095
#SPJ1
Please help me with this question:
You're traveling by car to a particular destination.
Your car travels at 60mph when conditions are perfect. Sadly for you, things are not perfect this night, it is raining, and raining hard, you'll only be able to travel 20mph in the heavy rain, and 30mph in the light rain, if it is foggy, you must decrease your speed by 5mph.
You travel for 20 miles in the pouring rain before you reach a patch of fog. You travel for another 30 miles in the heavy rain/fog mixture. The rain lightens up, the fog clears, and you travel another 15 miles before reaching your destination.
How long did it take you to get there?
It took 3 hours and 15 minutes to get to the destination.
Given dataPouring rain: 20 miles, 20mph Heavy rain/fog: 30 miles, 30mph Light rain: 15 miles, 30mph Total distance: 65 milesCalculation procedures
Pouring rain (20mph): 20 miles / 20mph = 1 hour
Heavy rain/fog mixture (30mph): 30 miles / 30mph = 1 hour
Light rain (30mph): 15 miles / 30mph = 30 minutes
Total time: 1 hour + 1 hour + 30 minutes = 3 hours and 15 minutes
Traveling at night in the rain can be difficult and slow. Even with perfect conditions of 60mph, the heavy rain and fog reduced the speed to only 20mph, which added three hours and fifteen minutes to the total travel time.
It's important to drive cautiously and safely when road conditions are not ideal.
Learn more about Traveling in the rain here:
https://brainly.com/question/13009869
#SPJ1
suppose the ring rotates once every 4.20 s . if a rider's mass is 59.0 kg , with how much force does the ring push on her at the top of the ride?
The ring exerts a force on the rider at the top of the ride, which is equal to the gravitational force on the rider and is approximately 579.39 N.
The force with which the ring pushes on the rider at the top of the ride is equal to the normal force exerted by the ring on the rider, which is also equal to the gravitational force on the rider. The gravitational force on the rider can be calculated using the formula F = mg, where m is the mass of the rider and g is the acceleration due to gravity. Therefore, the force is approximately 579.39 N. At the top of the ride, the net force acting on the rider is zero, so the normal force exerted by the ring must be equal and opposite to the gravitational force. Without knowing the radius of the ring, we cannot calculate the velocity of the rider or the centripetal force. However, if the radius of the ring is very large compared to the size of the rider, then the centripetal force will be negligible, and the normal force will be approximately equal to the gravitational force.
learn more about gravitational force here:
https://brainly.com/question/12528243
#SPJ4
PLEASE PLEASE PLEASE HELP ME ANSWER THIS QUESTION!
What atoms are found in CO2?
CO2 contains one carbon atom and two oxygen atoms.
C stands for carbon
O for oxygen
an automobile tire turns at a rate of 10 full revolutions per second and results in a forward linear velocity of 17.8 m/s. what is the radius of the tire?
An automobile tire turns at a rate of 10 full revolutions per second and results in a forward linear velocity of 17.8 m/s then the radius of the tire will be 0.283m
The radius of the tire can be determined using the given data from the question.
For instance, using the equation
v = 2πr N.
Where `v` is the forward linear velocity, `r` is the radius, and `N` is the revolutions.
The value of `v` is 17.8m/s and `N` is 10 full revolutions/second.
Plugging in the values,
v = 2πr N
17.8 = 2 × 3.1416 × r × 10
17.8 = 62.8318r
Therefore,
r = 17.8/62.8318
r = 0.283m
Hence, the radius of the tire is 0.283m.
Learn more about radius at: brainly.com/question/21811870
#SPJ11
which is involved in generating electricity through nuclear fission? a positive feedback loop creation of chemical energy release of kinetic energy
"A positive feedback loop creation and release of kinetic energy are involved in generating electricity through nuclear fission. The correct option is E."
Fission is a radioactive decay process in which involves the division nucleus of an atom into two or more fragments, resulting in the release of a large amount of heat energy. It occurs when a neutron slams into a large atomic nucleus, forcing it to split into two smaller parts.
During splitting, new neutrons are released, which can promote extra fission reactions, leading to a nuclear fission chain reaction that generates an enormous amount of heat energy. This is a reference to a positive feedback loop.
1 neutron + large atomic nucleus → 2 smaller atomic nuclei + neutrons in motion (kinetic energy)
Kinetic energy is an energy that an object or a particle has due to its motion. Best choice is E.
The given question is not appropriate. The complete question is 'Which of the following is involved in generating electricity through nuclear fission? I. A positive feedback loop, II. Creation of chemical energy, III. Release of kinetic energy. (a) I only, (b) II only, (c) III only, (d) I and II, (e) I and III.'
To know more about nuclear fission:
https://brainly.com/question/16543258
#SPJ4
Please help. I need to know why B is the correct answer. I will mark you as brainiest and I can help you with something you need help with, I just really need help on this
B The glider moves to the right because the magnitude of the change in momentum of the rubber ball is greater than the magnitude of the changes in momentum of the clay ball.
How does the force occur?The magnitude of the change in momentum of an object is equal to the force exerted on it multiplied by the time during which the force acts. Since the glider has the same mass as the two balls combined, its change in momentum must be equal and opposite to the total change in momentum of the balls.
The clay ball has a smaller magnitude of change in momentum than the rubber ball because it sticks to the glider and does not rebound. Thus, the magnitude of the change in momentum of the rubber ball is greater than that of the clay ball, and since the two changes in momentum are equal and opposite, the glider must move in the direction of the rubber ball's change in momentum, which is to the right.
Learn more on collision force here: https://brainly.com/question/29462130
#SPJ1
Image transcribed:
A day hall and a rubber ball of identical mass are moving toward a gider that is at rest in a frictionless air track The balls have the same speed, with the rubber ball moving toward the left as shown above. The balls strike the glider at the same time. The day ball sticks to the glider and the rubber ball bounces off it.
Which of the following indicates the direction of motion of the glider after the collisions and explains why it moves in that direction?
A The glider moves to the left because the clay ball has more inertia when it sticks to the glider than the rubber ball does when it bounces off.
B The glider moves to the right because the magnitude of the change in momentum of the rubber ball is greater than the magnitude of the changes in momentum of the clay ball
C The glider moves to the left because the clay ball exerts a force on the glider for a longer time than the rubber ball does.
D The glider moves to the right because the collision with the rubber ball is elastic and conserves energy
explain why this is so. drag the terms on the left to the appropriate blanks on the right to complete the sentences. resethelp when the barrel is full it has a much blank moment of inertia and resistance to changes in its rotation, so it will be a blank stable moving platform than the empty barrel.target 1 of 2target 2 of 2 request answer provide feedback
Answer:
Saanvi recorded the number of math problems she did for homework each night for 10 days.
Explanation: