Answer:
It burns easily & It produces a lot of energy
Explanation:
Coal burns easily and thus is ideal for use in a power plant.
• To generate electric power in the United States, the main fuel used is coal.
• It is used as it is burned easily and thus producing enormous amount of energy.
• In the power plants, the lignite, bituminous coal, or subbituminous coal is burned.
• The heat generated by the burning of the coal is used to transform water into high pressure steam that mediates a turbine, which generates electricity.
• About 23 percent of the electricity in the United States is produced by the burning of coal.
Thus, the correct answer is that coal burns easily.
To know more about:
https://brainly.com/question/3715778
state and explain the changes in stability of the beaker when the water freezes to ice
Answer:
if the question is referring to what happens when ice freezes you could say that the water molecules have lass energy so they don't move around as much
The amount of energy necessary to remove an electron from an atom is a quantity called the ionization energy, Ei. This energy can be measured by a technique called photoelectron spectroscopy, in which light of wavelength λ is directed at an atom, causing an electron to be ejected. The kinetic energy of the ejected electron (Ek) is measured by determining its velocity, υ (Ek= mυ2/2), and Ei is then calculated using the conservation of energy principle. That is, the energy of the incident light equals Ei plus Ek. What is the ionization energy of selenium atoms in kJ/mol if light with λ = 48.2 nm produces electrons with a velocity of 2.371x106 m/s? The mass, m, of an electron is 9.109x10-31 kg. (Round to the ones place.)
Answer:
The value is [tex]E_i = 1.5596 *10^{-18} \ J[/tex]
Explanation:
From the question we are told that
The wavelength is [tex]\lambda = 48.2 nm = 48.2 *10^{- 9 }\ m[/tex]
The velocity is [tex]v = 2.371*10^6 \ m/s[/tex]
The mass of electron is [tex]m_e = 9.109*10^{-31} \ kg[/tex]
Generally the energy of the incident light is mathematically represented as
[tex]E = \frac{h * c}{\lambda}[/tex]
Here c is the speed of light with value [tex]c = 3.0 *10^{8} \ m/s[/tex]
h is the Planck constant with value [tex]h = 6.62607015 * 10^{-34 } J\cdot s[/tex]
So
[tex]E = \frac{6.62607015 * 10^{-34 }* 3.0 *10^{8}}{48.2 *10^{- 9 }}[/tex]
=> [tex]E = 4.12 *10^{-18} \ J [/tex]
Generally the kinetic energy is mathematically represented as
[tex]E_k = \frac{1}{2} * m_e * v^2[/tex]
=> [tex]E_k = \frac{1}{2} * 9.109*10^{-31} * (2.371*10^6 )^2[/tex]
=> [tex]E_k = 2.56 *0^{-18} \ J [/tex]
Generally the ionization energy is mathematically represented as
[tex]E_i = 4.12 *10^{-18} - 2.56 *0^{-18}[/tex]
=> [tex]E_i = 1.5596 *10^{-18} \ J[/tex]
what happens to the matter that makes up a liquid when sound travels through it
Explanation:
The matter passes in the directions of the noise and flows from the source to a receiver like sound flows through a substance. As the sound flows through a fluid, the material is disrupted for an amount of time, but after the sound leaves, it restored to its normal location.
Delta waves occur during
Select one:
O a. awake relaxation.
O b. Stage 1 sleep.
O c. Stages sleep.
O d. wakefulness.
What happens to the oceans tides if the ocean if the Earth spins slower?
Answer:
As the earth rotates, it tries to drag/bring the tidal bulges with it. When a large amount of friction is applied, the earth spin will gradually and slow down but not all the way down.
Answer:
If the Earth spun slower the rate of tides will be higher because the moon will start revolving faster tan the Earth, creating more tides as the moon will revolve more around the Earth in a month.
If my answer helped, kindly mark me as the brainliest !!
Thank You!!
Which technology collects data for weather climate and environmental environmental monitoring from space
Answer:B) satellites
Explanation:
I just took the tests
100 POINTS HELP!!!!!!!!!!!!!
Answer:
it is whatever the temperature is at 5(I cant seem to see it clearly)
Explanation:
Find the velocity of the car after 6.9 s if its acceleration is 1.5 m/s² due south.
The velocity of the car after 6.9 s if its acceleration is 1.5 m/s² due south would be 10.35 meters / seconds.
What are the three equations of motion?There are three equations of motion given by Newton
v = u + at
S = ut + 1/2×a×t²
v² - u² = 2×a×s
Note that these equations are only valid for a uniform acceleration.
As given in the problem we have to find the velocity of the car we have to find the velocity of the car after 6.9 s if its acceleration is 1.5 m/s² due south,
The acceleration of the car = 1.5 m/s²
The time taken by the car = 6.9 seconds
By using the first equation of the motion,
v = u + at
v = 0 + 1.5*6.9
v = 10.35 meters / seconds
Thus, the velocity of the car after 6.9 s, if its acceleration is 1.5 m/s² due south, would be 10.35 meters / seconds.
To learn more about equations of motion from here, refer to the link;
brainly.com/question/5955789
#SPJ2
The equation for water is H2 +O2 - H2O. To balance the equation, which coefficient should be placed in front of H2 and H2O?
1
2
3
4
Answer:
Question: The equation for water is H2 +O2 → H2O. To balance the equation, which coefficient should be placed in front of H2 and H2O?
Answer: B.)2
Explanation:
The coefficient that would need to be placed in front of the H2, to balance the equation would be 2. After doing this all of the atoms for their respective elements will be balanced.
To balance the equation, coefficient 2 should be placed in front of H2 and H2O.
BALANCING EQUATION:
A chemical equation is said to be balanced if the number of atoms of each element on both sides of the equation are the same. According to this question, an equation that combines hydrogen and oxygen gases to form water was given as follows:H2 + O2 → H2OTo balance the above equation, we make use of coefficient 2 to ensure that the number of atoms (4) of hydrogen are the same on both sides. The balanced equation is as follows:2H2 + O2 → 2H2OLearn more at: https://brainly.com/question/21049751?referrer=searchResults
What is the elapsed time between the 0-m mark and the 40-m mark
Answer:
a) 4.0 s
b) 16 m/s
c) The distance covered between 4 - 5 s is four times the distance covered between 4 - 5 s
d) Equal distance are covered between 0 - 4 s and 4 -5 s
Note: The question is incomplete. The complete question is as follows;
Refer to the chart below that has data about a moving object to answer the following questions.
Time Elapsed 0.0s 1.0s 2.0s 3.0s 4.0s 5.0 s
Distance Traveled 0.0m 10.0m 20.0m 30.0m 40.0m 80.0 m
a. What is the elapsed time between the 0-m mark and the 40-m mark?
b. How large is the average velocity of the object for the interval from 0-5 s ?
c. How does the interval of 3-4 s compare with the interval from 4-5 s in terms of distance?
d. How does the interval of 0-4 s compare with the interval from 4-5 s in terms of distance?
Explanation:
a. From the data provide, time elapsed between the 0 m - 40 m mark is 4.0 s
b. Average velocity = total distance/ total time
average velocity = 80 m/ 5.0 s = 16.0 m/s
c. Distance covered between 3 - 4 s = 40 m - 30 m = 10 m
Distance covered between 4 - 5 s = 80 m - 40 m = 40 m
The distance covered between 4 - 5 s is four times the distance covered between 4 - 5 s
d. Distance covered between 0 - 4 s = 40 m - 0 m = 40 m
Distance covered between 4 - 5 s = 80 m - 40 m = 40 m
Equal distance are covered between 0 - 4 s and 4 -5 s
is a guideline to help an individual write and achieve well-specified goals.
Answer:
is a guideline to help an individual write and achieve well-specified goals.
Explanation:
An action plan is a guideline to help an individual write and achieve well-specified goals.
Answer:
yes, the guideline is to help an individual write and achieve well-specified goals.
Explanation:
An object falls freely from rest on a planet
where the acceleration due to gravity is
29 m/s ^2
After 3.8 s, what will be its speed?
Answer in units of m/s.
Answer:
v=u+gt , initially u=0 and g acting in the direction of movement of body.
v=0+9.8×2
v=19.6m/s
Explanation:
sorry i dont have exact answer but hope this above equation will help you ....♡
What is the momentum of a 20.0 kg scooter traveling at 5.00 m/s?
Answer:
The answer is 100 kgm/sExplanation:
To find the momentum of an object given it's mass and velocity we use the formula
momentum = mass × velocityFrom the question
mass = 20 kg
velocity = 5 m/s
We have
momentum = 20 × 5
We have the final answer as
100 kgm/sHope this helps you
Ray runs 78 feet north, then 61 feet west. Calculate the total displacement traveled by in feet
Answer:
hdhshsisjsbrtheisebvrtctvsjusyevevrvrg eggs haushehegehs
The perception of an image first, followed by noticing individual pieces of the
image, can be described as:
A. sensation.
B. perceptual processing.
C. top-down processing.
D. bottom-up processing.
SUBMIT
Answer:
The answer is Top-Down processing
Explanation:
I had this question on a apex quiz and i got it correct.
increased force will increase acceleration true or false.
A hockey player whacks a 162-g puck with her stick, applying a 171-N force that accelerates it to 42.3 m/s. A. If the puck was initially at rest, for how much time did the acceleration last? B. The puck then hits the curved corner boards, which exert a 151-N force on the puck to keep it in its circular path. What’s the radius of the curve?
Given parameters:
Mass of puck = 162g = 0.162kg (1000g = 1kg)
Force exerted on puck = 171N
Final velocity = 42.3m/s
Unknown
A. time of the acceleration
B. radius of the curve?
Solution:
A. time of the acceleration
the initial velocity of the puck = 0m/s
We know that;
Force = mass x acceleration
Acceleration = [tex]\frac{Final velocity - Initial velocity}{time taken}[/tex]
Acceleration = [tex]\frac{42.3 - 0}{t}[/tex]
So force = mass x [tex]\frac{42.3 }{t}[/tex]
Input the parameters and solve for time;
171 = 0.162 x [tex]\frac{42.3 }{t}[/tex]
171 = [tex]\frac{6.85}{t}[/tex]
t = [tex]\frac{6.85}{171}[/tex] = 0.04s
The time of acceleration is 0.04s
B. radius of the curve;
to solve this, we apply the centripetal force formula;
F = [tex]\frac{mv^{2} }{r}[/tex]
where;
F is the centripetal force
m is the mass
v is the velocity
r is the radius
Since the force exerted on the puck is 151;
input the parameters and solve for r²;
151 = [tex]\frac{0.162 x 42.3^{2} }{r}[/tex]
151r = 0.162 x 42.3²
r = 1.92m
The radius of the circular curve is 1.92m
A solid nonconducting sphere of radius R carries a charge Q distributed uniformly throughout its volume. At a certain distance rl (r
(A) E/8
(B) E 78.
(C) E/2
(D) 2E
(E) 8E
Answer:
E ’= E / 8
therefore the correct answer is A
Explanation:
Let's calculate the electric field in an insulating sphere with a radius r <R, let's use Gauus's law, with a spherical Gaussian surface
Фi = ∫ E. dA = [tex]q_{int}[/tex] /ε₀
E (4πr²) = q_{int} / ε₀
density is
ρ = q_{int} / V
q_{int} = ρ V = ρ 4/3 π r³
we substitute
E (4π r²) = ρ 4/3 π r³ /ε₀
E = 1 /3ε₀ ρ r
let's change the density by
ρ = Q / V = Q / (4/3 π R³)
E = 1 / 4πε₀ Q r / R³
if we now distribute the same charge on a sphere of radius R' = 2R
E ’= 1 / 4pieo Q r / (2R)³
E ’= 1 / 4ft Qr / R³ ⅛
E ’= E / 8
therefore the correct answer is A
This glass of lemonade is sitting in the hot summer sun. As time passes, in which direction will heat transfer take place?
The heat transfer takes place from the Ice to lemonade (ice → lemonade).
What is heat transfer?The term “heat transfer” refers to the movement of heat. The flow of heat across a system's boundary is due to a temperature differential between the system and its surroundings.
When a temperature difference exists between states of matter, heat transfer happens solely in the direction of decreasing temperature, that is, from a hot object to a cold item.
The temperature of ice is increasing while the lemonade is decreasing. Heat transfer happens solely in the direction of decreasing temperature,
Hence, the heat transfer takes place from the Ice to lemonade (ice → lemonade.
To learn more about the heat transfer, refer to the link;
https://brainly.com/question/13433948
#SPJ2
Answer: C
Explanation:
Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you drink may eventually be converted into sweat and evaporate. If you drink a 20.0-ounce bottle of water that had been in the refrigerator at 3.8 °C, how much heat is needed to convert all of that water into sweat , knowing 1ml contains 0.03 ounces? (Note: Your body temperature is 36.6 °C. For the purpose of solving this problem, assume that the thermal properties of sweat are the same as for water.)
Answer:
The amount of heat required is [tex]H_t = 1.37 *10^{6} \ J [/tex]
Explanation:
From the question we are told that
The mass of water is [tex]m_w = 20 \ ounce = 20 * 28.3495 = 5.7 *10^2 g[/tex]
The temperature of the water before drinking is [tex]T_w = 3.8 ^oC[/tex]
The temperature of the body is [tex]T_b = 36.6^oC[/tex]
Generally the amount of heat required to move the water from its former temperature to the body temperature is
[tex]H= m_w * c_w * \Delta T[/tex]
Here [tex]c_w [/tex] is the specific heat of water with value [tex]c_w = 4.18 J/g^oC [/tex]
So
[tex]H= 5.7 *10^2 * 4.18 * (36.6 - 3.8)[/tex]
=> [tex]H= 7.8 *10^{4} \ J [/tex]
Generally the no of mole of sweat present mass of water is
[tex]n = \frac{m_w}{Z_s}[/tex]
Here [tex]Z_w[/tex] is the molar mass of sweat with value
[tex]Z_w = 18.015 g/mol[/tex]
=> [tex]n = \frac{5.7 *10^2}{18.015}[/tex]
=> [tex]n = 31.6 \ moles [/tex]
Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as
[tex]H_v = n * L_v[/tex]
Here [tex]L_v[/tex] is the latent heat of vaporization with value [tex]L_v = 7 *10^{3} J/mol[/tex]
=> [tex]H_v = 31.6 * 7 *10^{3} [/tex]
=> [tex]H_v = 1.29 *10^{6} \ J [/tex]
Generally the overall amount of heat energy required is
[tex]H_t = H + H_v[/tex]
=> [tex]H_t = 7.8 *10^{4} + 1.29 *10^{6}[/tex]
=> [tex]H_t = 1.37 *10^{6} \ J [/tex]
A ball is thrown straight upward with an initial velocity of 16m/s. What is its velocity at its highest point?
Answer:
its going very fast
Explanation:
1. What happens to the current in a series circuit as it moves through each component? a. The current stays the same throughout the circuit.
b. The current will increase or decrease depending on the resistance.
c. The current decreases with each component it goes through.
d. The current increases with each component it goes through.
2. A 10-volt power supply is placed in series with two 5-ohm resistors. What is the current in the circuit after it passes through each of the two resistors?(1 point)
a. The current will stay the same at 1 amp after passing through both resistors.
b. The current will drop to 2 amps after the first resistor and then to 1 amp after the second resistor.
c. The current will stay the same at 2 amps after passing through both resistors.
d. The current will drop to 1 amp after the first resistor and then to 0 amps after the second resistor.
3. What is the voltage that passes through R1 and R2?
a. R1: 12 V, R2: 24 V
b. R1: 8 V, R2: 4 V
c. R1: 12 V, R2: 12 V
d. R1: 6 V, R2: 6 V
4. Which of the following correctly describes the magnitude of currents I1 and I2 ?
a. I1 is equal to I2
b. I1 and I2 approach zero
c. I1 is greater than I2
d. I1 is less than I2
5. If the energy of an electric charge flowing in a circuit is conserved, which of the following obeys the Kirchhoff junction rule?
a. The sum of the current flowing in is greater than the sum of current flowing out.
b. The sum of the current flowing in is less than the sum of the current flowing out.
c. The sum of the current flowing in is equal to the sum of current flowing out.
d. The sum of the current flowing in is zero and the sum of the current flowing out is greater than zero.
Answer: sorry here’s the answers, I didn’t feel like typing it all
Explanation:
The correct answer to the 5 questions are;
1) Option A; The current stays the same throughout the circuit.
2) Option A; The current will stay the same at 1 amp after passing through both resistors.
3) Option C; R1: 12 V, R2: 12 V
4) Option A; I1 is equal to I2
5) Option C; The sum of the current flowing in is equal to the sum of current flowing out.
1) In an electrical circuit, usually as current moves through each component, it stays the same. Thus, option A is correct.
2) Formula for current is;
I = V/R
We are told that there are two resistors in series each having a resistance of 5Ω. Thus; Total resistance = 5 + 5 = 10 Ω.
Thus; Current = 10/10 = 1 A.
The current will stay same at 1 A after passing through both resistors.
3) From the circuit we are given, we see that the Voltage is 12 V. Now, the same voltage would be transmitted through both resistor R1 and R2.
Option C is correct
4) The current splits upon passing resistor 1 and as such it means the current I2 going through the second resistor would be the same. Thus; I1 = I2.
5) Kirchoff's junction rule states that all the incoming currents to a particular junction must be equal to sum of all currents going out of that same junction. Thus, option C is correct.
Read more at; https://brainly.com/question/15394172
A magnet is moved toward a coil or wire to induce an electric current. What will happen if the magnet is reversed and moved toward the coil of wire again? (Answer choices attached in photo)
Answer: the direction of the induced current will change :)
Explanation:
If you have a density of 100kg/L and a mass of 1000 units, tell me the following: second what is the volume
Answer:
volume is 0.1 L
Explanation:
you can use the equation density=mass/volume
100 = 1000 / v
divide by 1000 on both sides
0.1 = v
a torque of 100Nm is required to open a door. WHAT IS the minimum distance of the handle fromt he hinge. if the door is to be pulled open wth a force at handle not greater than 50N?
Answer:
At least [tex]2\; \rm m[/tex].
Explanation:
The torque [tex]\tau[/tex] that a force exerts on a lever is equal the product of the following:
[tex]F[/tex], the size of that force,[tex]r[/tex], the distance between the fulcrum and the point where that force is applied, and[tex]\sin\theta[/tex], the sine of the angle between the force and the lever.[tex]\tau = F\cdot r \cdot \sin\theta[/tex].
The force in this question is (at most) [tex]50\; \rm N[/tex]. That is: [tex]F = 50\; \rm N[/tex].
[tex]\sin \theta[/tex] is maximized when [tex]\theta = 90^\circ[/tex]. In other words, the force on the door gives the largest-possible torque when that force is applied perpendicular to the door. When [tex]\theta = 90^\circ\![/tex], [tex]\sin \theta =1[/tex].
If the force here is applied at a distance of [tex]r[/tex] meters away from the hinge (the fulcrum of this door,) the torque generated would be:
[tex]\begin{aligned}\tau &= F \cdot r \cdot \sin \theta \\ &= (50\, r)\; \rm N \cdot m\end{aligned}[/tex].
That torque is supposed to be at least [tex]100\; \rm N\cdot m[/tex]. That is:
[tex]50\, r \ge 100[/tex].
[tex]r \ge 2[/tex].
In other words, the force needs to be applied at a point a minimum distance of [tex]2\; \rm m[/tex] away from the hinge of this door.
when water in a brook or system of pipes flows from a wide region to a narrow region, the speed of water in the narrow region is
Answer:
more
hope this helps
plz mark brainliest
A 30-cm-diameter, 4-m-high cylindrical column of a house made of concrete ( k = 0.79 W/m⋅K, α = 5.94 × 10 −7 m2/s, rho = 1600kg/ m 3 , and c p = 0.84kJ/kg⋅K ) cooled to 14° C during a cold night is heated again during the day by being exposed to ambient air at an average temperature of 28° C with an aver-age heat transfer coefficient of 14 W/ m 2 ⋅K. Using the analyti-cal one-term approximation method, determine (a) how long it will take for the column surface temperature to rise to 27° C, (b) the amount of heat transfer until the center temperature reaches to 28° C, and (c) the amount of heat transfer until the surface temperature reaches 27° C.
Answer:
a) Time it will taken for the column surface temperature to rise to 27°C is
17.1 hours
b) Amount of heat transfer is 5320 kJ
c) Amount of heat transfer until the surface temperature reaches 27°C is 4660 kJ
Explanation:
Given that;
Diameter D = 30 cm
Height H = 4m
heat transfer coeff h = 14 W/m².°C
thermal conductivity k = 0.79 W/m.°C
thermal diffusivity α = 5.94 × 10⁻⁷ m²/s
Density p = 1600 kh/m³
specific heat Cp = 0.84 Kj/kg.°C
a)
the Biot number is
Bi = hr₀ / k
we substitute
Bi = (14 W/m².°C × 0.15m) / 0.79 W/m.°C
Bi = 2.658
From the coefficient for one term approximate of transient one dimensional heat conduction The constants λ₁ and A₁ corresponding to this Biot number are,
λ₁ = 1.7240
A₁ = 1.3915
Once the constant J₀ = 0.3841 is determined from corresponding to the constant λ₁
the Fourier number is determined to be
[ T(r₀, t) -T∞ ] / [ Ti - T∞] = A₁e^(-λ₁²t') J₀ (λ₁r₀ / r₀)
(27 - 28) / (14 - 28) = (1.3915)e^-(17240)²t (0.3841)
t' = 0.6771
Which is above the value of 0.2. Therefore, the one-term approximate solution (or the transient temperature charts) can be used. Then the time it will take for the column surface temperature to rise to 27°C becomes
t = t'r₀² / ₐ
= (0.6771 × 0.15 m)² / (5.94 x 10⁻⁷ m²/s)
= 23,650 s
= 7.1 hours
Time it will taken for the column surface temperature to rise to 27°C is
17.1 hours
b)
The heat transfer to the column will stop when the center temperature of column reaches to the ambient temperature, which is 28°C.
Maximum heat transfer between the ambient air and the column is
m = pV
= pπr₀²L
= (1600 kg/m³ × π × (0.15 m)² × (4 m)
= 452.389 kg
Qin = mCp [T∞ - Ti ]
= (452.389 kg) (0.84 kJ/kg.°C) (28 - 14)°C
= 5320 kJ
Amount of heat transfer is 5320 kJ
(c)
the amount of heat transfer until the surface temperature reaches to 27°C is
(T(0,t) - T∞) / Ti - T∞ = A₁e^(-λ₁²t')
= (1.3915)e^-(1.7240)² (0.6771)
= 0.1860
Once the constant J₁ = 0.5787 is determined from Table corresponding to the constant λ₁, the amount of heat transfer becomes
(Q/Qmax)cyl = 1 - 2((T₀ - T∞) / ( Ti - T∞)) ((J₁(λ₁)) / λ₁)
= 1 - 2 × 0.1860 × (0.5787 / 1.7240)
= 0.875
Q = 0.875Qmax
Q = 0.875(5320 kJ)
Q = 4660 kJ
Amount of heat transfer until the surface temperature reaches 27°C is 4660 kJ
what’s the best answer , a , b , c or d
Answer:
The Basic Concept
When we look at an object at rest, we say that it is in equilibrium since all the forces being applied on it, cancel out
now, if one of the force was slightly more than the other one in the same case. The object will start to move and NOT be in equilibrium
BUT
if an object is in a vacuum and moving on a frictionless surface, the object will attain equilibrium after some seconds since it will be moving with constant speed and all the forces acting on it will be equal
Hence, if the object is accelerating. we can say with surety that the object is not is equilibrium since from the second law of motion,
F = ma ; when a is a non-zero value, there is definitely some net force being applied on the object
Looking at the given case
in the question, we are given that the object is 'accelerating' upwards
we proved above that if an object is accelerating, there is some net force on that object and hence the object is NOT in equilibrium
Since the object is accelerating, from the second law of motion:
F = ma; m cannot be zero and if a is a non-zero value as given in the question, there is definitely some net force on the object
Since there is some force being applied on the object, the object is NOT in equilibrium
Conclusion
Since we found that the object is NOT in equilibrium and that there is some net force on the object,
The first option is correct
What is the weight of a person whose mass at sea level is 72 kg ?
Answer:
158LB
Explanation:
The person's weight is equal to 705.6 N when the mass at sea level is 72 kg.
What is the weight of the object?The weight of a body can be defined as the force acting on the body due to gravity. Weight is a vector quantity if the gravitational force is working on the object.
The unit of the weight is that of force, which (S.I. unit) is Newton. A body with a mass of one Kg has a weight of 9.8 N on the surface of the Earth or on the seal level.
The mathematical equation to determine the weight of an object is written as follows:
W = mg
Given the mass of the person, m = 72 Kg
The acceleration due to gravity on the person, g = 9.8 m/s²
The weight of the person on the earth will be equal to:
W = 72 Kg × 9.8 m/s²
W = 705.6 N
Therefore, the weight of the person is 705.6 N.
Learn more about weight, here:
brainly.com/question/13040516
#SPJ2
Why after a certain time bouncing a ball does it stop?
Answer:
If you define "bouncing" as leaving the ground for any amount of time, the ball stops bouncing when the elastic energy stored in the compression phase of the bounce is not enough to overcome the weight of the ball. ... Some energy is dissipated in the compression and decompression phases.
Explanation: