Hey there! I'm happy to help!
We see that light travels 186,000 miles per second. How many miles is this per minute. Well, there are 60 seconds a minute, so we multiply by 60!
186,000×60=11160000
And there are 60 minutes in an hour, so we multiply by sixty again!
11160000×60=669600000
Now, we need to write this in scientific notation. To do this, we move the decimal back enough places to have a one digit number, and we multiply that one digit number by 10 to the power of how many places you moved the decimal back.
In the number 669600000 we can move the decimal point back 8 times which gives us 6.696 (we don't need the zeroes after a decimal) multiplied by 10 to the 8th power because we moved the decimal back eight places.
This can be written as 6.696×10^8, which is closest to the answer option 6.7×10^8 miles.
Have a wonderful day! :D
A drawer contains 3 white shirts, 2 blue shirts, and 5 gray shirts. A shirt is randomly
selected from the drawer and set aside. Then another shirt is randomly selected from the
drawer.
What is the probability that the first shirt is white and the second shirt is gray?
Answer:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]
Step-by-step explanation:
Given that
3 white, 2 blue and 5 gray shirts are there.
To find:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = ?
Solution:
Here, total number of shirts = 3+2+5 = 10
First of all, let us learn about the formula of an event E:
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]
[tex]P(First\ White) = \dfrac{\text{Number of white shirts}}{\text {Total number of shirts left}}[/tex]
[tex]P(First\ White) = \dfrac{3}{10}[/tex]
Now, this shirt is set aside.
So, total number of shirts left are 9 now.
[tex]P(First\ White\ and\ second\ gray) = P(First White) \times P(Second\ Gray)\\\Rightarrow P(First\ White\ and\ second\ gray) = P(First White) \times \dfrac{\text{Number of gray shirts}}{\text{Total number of shirts left}}\\\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{3}{10} \times \dfrac{5}{9}\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{1}{2} \times \dfrac{1}{2}\\\Rightarrow P(First\ White\ and\ second\ gray) = \bold{\dfrac{1}{4} }[/tex]
So, the answer is:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]
Bill shops in a candy store where chocolate bars are $1 and lollipops are $0.50 He can spend at most $5 and he wants to buy at least 3 more lollipops than chocolate bars. Which of the following graphs represent the possible candy combinations?
Answer:
Step-by-step explanation
Write an equation for the amount of money, m, that will be collected if C- chocolate bars are sold and L- lollipops. Which is the independent variable and which is the dependent variable?
taking a test- Which expression represents the surface area of the cone? A cone with diameter 12 inches, height 8 inches, and slant height 10 inches. S A = pi r l + pi r squared (pi) (6) (10) + (pi) (6 squared) (pi) (8) (10) + (pi) (8 squared) (pi) (12) (10) + (pi) (12 squared) (pi) (10) (12) + (pi) (10 squared)
Answer:
[tex]SA = \pi (6) * 10+\pi ( 6)^2[/tex]
Step-by-step explanation:
The surface area of a cone is given by
[tex]SA = \pi rl +\pi r^2[/tex]
r is the radius and l is the slant height.
The diameter is 12 inches, the radius is 12/2 = 6 inches.
The slant height is 10 inches.
[tex]SA = \pi (6) * 10+\pi ( 6)^2[/tex]
Answer:
SA of cone = [tex](\pi )(6)(8) + (\pi )(6)^2[/tex]
Step-by-step explanation:
Surface Area of cone = [tex]\pi rh+\pi r^2[/tex]
Where r = 6 inches (Diameter = 12 inches) , h = 8 inches (We'll not consider the slant height)
SA of cone = [tex](\pi )(6)(8) + (\pi )(6)^2[/tex]
Verify the Cauchy-Schwarz Inequality and the triangle inequality for the given vectors and inner product.
p(x)=5x , q(x)= -2x^2+1, (p,q)= aobo+ a1b1+ a2b2
Required:
a. Compute (p,q)
b. Compute ||p|| and ||q||
Answer:
To verify the Cauchy-Bunyakovsky-Schwarz Inequality, (p,q) must be less than (or equal to) ||p|| • ||q||
(1,1,1) is not equal to (-10,5)
Step-by-step explanation:
a°b° + a^1b^1 + a^2b^2 < 5x (-2x^2 + 1)
Any algebra raised to the power of zero is equal to 1.
a°b° = 1 × 1 = 1
1 + ab + a^2b^2 < -10x^3 + 5x
The vectors:
(1,1,1) < (-10,5)
This verifies the Cauchy-Schwarz Inequality
Triangle Inequality states that for any triangle, the sum of the lengths of two sides must be greater than or equal to the length of the third side.
Two buses leave a station at the same time and travel in opposite directions. One bus travels 14 kmh slower than the other. If the two buses are 1356 kilometers apart after 6 hours, what is the rate of each bus?
Answer:
106 km / hour
Step-by-step explanation:
Givens
Total time: 6 hours
Total distance: 1356 km
First bus rate: r
Second bus rate: r - 14
Formula
d = r * t
Solution
r*6 + (r - 14)*6 = 1356 Remove the brackets
6*r + 6*r - 84 = 1356 Add like terms
12r - 84 = 1356 Add 84 to both sides
12r + 84 - 84 = 1356-84 Combine
12r = 1272 Divide by 12
r = 1272/12
r = 106 km/hr
Adult men have heights that a normally distributed with a mean of 69.5 inches and a standard deviation of 2.4 inches. Adult women have heights that a normally distributed with a mean of 63.8 inches and a standard deviation of 2.6 inches. Between a man with a height of 74 inches and a women with a height of 70 inches, who is more unusually tall within his or her respective sex ?
Answer:
Step-by-step explanation:
From the information given:
For Adult Men
Mean [tex]\mu[/tex] = 69.5
Standard deviation [tex]\sigma[/tex] = 2.4
observed value X = 74
For Adult Women
Mean [tex]\mu[/tex] = 63.8
Standard deviation [tex]\sigma[/tex] = 2.6
observed value X = 70
Therefore ; the values for their z scores can be obtained in order to determine who is more unusually tall within his or her respective sex
For Adult Men :
[tex]z = \dfrac{X- \mu}{\sigma}[/tex]
[tex]z = \dfrac{74- 69.5}{2.4}[/tex]
[tex]z = \dfrac{4.5}{2.4}[/tex]
z = 1.875
For Adult Women :
[tex]z = \dfrac{X- \mu}{\sigma}[/tex]
[tex]z = \dfrac{70- 63.8}{2.6}[/tex]
[tex]z = \dfrac{6.2}{2.6}[/tex]
z = 2.3846
Thus; we can conclude that , the women is more unusually tall within his or her respective sex
Ernie deposits $5,500 into a pension fund. The fund pays a simple interest rate of 6% per year. What will the balance be after one year?
Answer:
Balance after one year will be $5830.
Cassie has test grades of 71, 78 and 83 on the first three tests in her
pre-algebra class. What are the possible scores she can make on the
fourth test in order to make at least a letter grade of B after the fourth
test? A letter grade B means an average of at least 80. Let x represent
the score on the fourth test.
Answer:
x ≥ 88
Step-by-step explanation:
In order to have at least an average of 80 after 4 tests, the sum of her scores must be at least 80 * 4 = 320 so we can write the following inequality:
71 + 78 + 83 + x ≥ 320
232 + x ≥ 320
x ≥ 88
Answer:
Your correct answer to this problem is x ≥ 88
Step-by-step explanation:
71 + 78 + 83 + x ≥ 320
232 + x ≥ 320
= x ≥ 88
A firm has 18 senior and 22 junior partners. A committee of three partners is selected at random to represent the firm at a conference. In how many ways can at least one of the junior partners be chosen to be on the committee?
Answer:
Answer is 24288.
Step-by-step explanation:
Given that there are 18 senior and 22 junior partners.
To find:
Number of ways of selecting at least one junior partner to form a committee of 3 partners.
Solution:
At least junior 1 member means 3 case:
1. Exactly 1 junior member
2. Exactly 2 junior member
3. Exactly 3 junior member
Let us find number of ways for each case and then add them.
Case 1:
Exactly 1 junior member:
Number of ways to select 1 junior member out of 22: 22
Number of ways to select 2 senior members out of 18: 18 [tex]\times[/tex] 17
Total number of ways to select exactly 1 junior member in 3 member committee: 22 [tex]\times[/tex] 18 [tex]\times[/tex] 17 = 6732
Case 2:
Exactly 2 junior member:
Number of ways to select 2 junior members out of 22: 22 [tex]\times[/tex] 21
Number of ways to select 1 senior member out of 18: 18
Total number of ways to select exactly 2 junior members in 3 member committee: 22 [tex]\times[/tex] 21 [tex]\times[/tex] 18 = 8316
Case 3:
Exactly 3 junior member:
Number of ways to select 3 junior members out of 22: 22 [tex]\times[/tex] 21 [tex]\times[/tex] 20 = 9240
So, Total number of ways = 24288
PLEASE HELP HOW DO I TRANSLATE IT TO A PROPORTION!!
Answer:
See below.
Step-by-step explanation:
A proportion is setting two ratios equal to each other.
Look at the info you are given for price in $ and area in sq ft:
$385 for 70 sq ft
That allows you to write a ratio. The ratio of dollars to square feet is
385/70 (notice it's dollars divided by sq ft)
Now you look at the part of the problem that has an unknown, and you set up the same type of ratio (dollars to sq ft) using x for the unknown.
x dollars to 200 sq ft
The ratio is
x/200 (notice that, again, it's dollars divided by sq ft)
In both cases the ratios are dollars to sq ft.
To set up a proportion, you just set the ratios equal to each other.
385/70 = x/200
Now we solve the proportion. We can cross multiply.
385/70 = x/200
70x = 385 * 200
70x = 77,000
x = 1100
They would charge $1100 to install 200 sq ft of tile.
The unit price is obtained by dividing a cost by the corresponding area in sq ft. you can use either ratio.
unit price = ($385)/(70 sq ft) = $5.5/sq ft
($1100/200 sq ft also works since it is also equal to $5.5/sq ft)
hhhelpp meeee!! I WILL GIVE BRAINLIEST
Answer:
We're solving for CD. If we look at ΔABD we notice that it's a 30-60-90 triangle which has a side length ratio of 1:√3:2 and in this case the 1 is 300 so side BD = 300√3. Similarly, ΔABC is also a 30-60-90 triangle but this time the √3 is 300 so side BC = 100√3. We know that CD = BD - BC using PWP so the answer is 300√3 - 100√3 = 200√3 = 346.4 feet.
Which description is true about the transformation shown? It is a dilation because the transformation is isometric. It is a dilation because the transformation is not isometric. It is a stretch because the transformation is isometric. It is a stretch because the transformation is not isometric.
The true statement about the given transformation is; B: It is a dilation because the transformation is not isometric.
What is the Transformation?An isometric transformation is a shape-preserving transformation in the plane or in space. They include reflection, rotation and translation.
Now, from the given attachment showing the two figures, we can see that there is a dilation which means that it can't be isometric as the definition of Isometric transformation does not include Dilation.
Read more about Transformation at; https://brainly.com/question/4289712
#SPJ5
Answer:
b
Step-by-step explanation:
just took the test
when a stone falls freely, the time taken to hit the ground varies as the square root of the distance fallen. If it takes four seconds th fall 78.4m, find how long would it takefor a stone to fall 500m
Answer:
The stone would take approximately 10.107 seconds to fall 500 meters.
Step-by-step explanation:
According to the statement of the problem, the following relationship of direct proportionality is built:
[tex]t \propto y^{1/2}[/tex]
[tex]t = k\cdot t^{1/2}[/tex]
Where:
[tex]t[/tex] - Time spent by the stone, measured in seconds.
[tex]y[/tex] - Height change experimented by the stone, measured in meters.
[tex]k[/tex] - Proportionality constant, measured in [tex]\frac{s}{m^{1/2}}[/tex].
First, the proportionality constant is determined by clearing the respective variable and replacing all known variables:
[tex]k = \frac{t}{y^{1/2}}[/tex]
If [tex]t = 4\,s[/tex] and [tex]y=78.4\,m[/tex], then:
[tex]k = \frac{4\,s}{(78.4\,m)^{1/2}}[/tex]
[tex]k \approx 0.452\,\frac{s}{m^{1/2}}[/tex]
Then, the expression is [tex]t = 0.452\cdot y^{1/2}[/tex]. Finally, if [tex]y = 500\,m[/tex], then the time is:
[tex]t = 0.452\cdot (500\,m)^{1/2}[/tex]
[tex]t \approx 10.107\,s[/tex]
The stone would take approximately 10.107 seconds to fall 500 meters.
The slope of the line below is 5/7 Write a point-slope equation of the line
using the coordinates of the labeled point.
O A. y+2 --$(x+6)
O B. y-6--(x-2)
O C. y+6 -- (x + 2)
O D, y-2 - (x - 6)
Answer:
The option are incorrect because as its slope is only 5/7 the answer will never come like that.
Step-by-step explanation:
Here,
Given,
The dlope of a line is 5/7 and (6,2) is a point.
By one point formulae,
(y-y1)= m (x-x1).
or, (y-2)=5/7(x-1)
or, y = 5/7x -5/7+2
taking lcm of -5/7 and 2. we get,
or, y= 5/7 x -5+7/7
Therefore, the equation is y = 5/7 x -2/7.
Hope it helps..
Solve for x 90°, 45°, and x°
Answer:
x= 45
Step-by-step explanation:
In this diagram, there is an angle that is split into 2 angles.
The angle is a 90 degree angle. We know this because of the little square in the corner that denotes a right angle.
Therefore, the 2 angles inside of the right angle must add to 90 degrees. The 2 angles that make up the right angle are x and 45.
x+45=90
We want to find x. We need to get x by itself. 45 is being added on to x. The inverse of addition is subtraction. Subtract 45 from both sides.
x+45-45=90-45
x= 90-45
x=45
The measure of angle x is 45 degrees.
A) The perimeter of a rectangle is the sum of the lengths of its four sides. Write an expression for the perimeter of the rectangle and then evaluate when x=1/2 foot? B) The area of a rectangle is the product of its length and width. Write an expression for the area of the rectangle and then evaluate when x=1/2 feet?
Answer:
Below
Step-by-step explanation:
The length of this triangle is 3x+1 and the width is x.
The perimeter P is:
P= 2(3x+1)+2*x
P= 6x+2+2x
P= 8x+2
Let's evaluate it when x=1/2
●1/2 =0.5
P= 8*0.5+2 =4+2= 6 ft
●●●●●●●●●●●●●●●●●●●●●●●●
The area A is:
A = (3x+1)*x
A= 3x^2 +x
Let's evaluate it when x=0.5 feet
A= 3*0.5^2 +0.5
A= 3*0.25+0.5
A= 0.75 +0.5
A= 1.25 ft^2
Find the surface area of the solid shown or described. If necessary, round to the nearest tenth
7cm
10cm
14 cm
Answer:
616cm²or³
Step-by-step explanation:
SA = 2(lw)+2(lh)+2(hw)
SA=2(10×14) + 2(10×7) + 2(7×14)
SA= 2(140) + 2(70) + 2(98)
SA=280+140+196
SA=616cm²or³
If an office is 12 feet by 16 feet with 8 foot ceilings and I have 4 feet by 8 feet paneling sheets for the walls, not the ceiling for 4 walls. How many panels do I need?
Answer:
14 panels
Step-by-step explanation:
Area of four walls is given by 2*(length + width)*height
_______________________________________
Given dimension
Length = 16 feet
width = 12 feet
height = 8 feet
Thus, area of four walls of office = 2(16+12)8= 448
_____________________________________________
dimension of paneling sheets
length = 8 feet
width = 4 feet
area of paneling sheets = 8*4 = 32 sq. feet
Let the number of paneling sheets required by n
thus, total area of n paneling sheets = n*area of paneling sheets = 32n
This, area of paneling sheets (32n) should be same as 448 area of four walls
as given " I have 4 feet by 8 feet paneling sheets for the walls"
thus,
32n = 448
n = 448/32 = 14
Thus, 14 panels are needed.
Pecans sell for 7.95 per round. How much will 3.2 pounds cost? NEED STEP BY STEP EXPLANATION.
Answer:
$25.44
Step-by-step explanation:
if they sell for 7.95 and you get 3.2 you do 7.95 times 3.2
I NEED HELP ASAP PLEASE 20 POINTS
Answer:
B.
Step-by-step explanation:
[tex]\sqrt[4]{2x^2} * \sqrt[4]{2x^3}[/tex]
= [tex]2^{1/4}x^{2/4} * 2^{1/4}x^{3/4}[/tex]
= B. [tex]2^{2/4}x^{5/4}[/tex].
Hope this helps!
PLEASEEEEE HELPPOO
For Individual or Group Explorations
Maximizing the Total Profit
Payles at The Christmas Store very periodically with a high ef 550.000 in December
the Christmas Stove also comes the Powe, where profits reach a high of $80,000
in Aurust and a few of $20,000 in February Assume that the profit function for
Crm Store
Save
40
20
10
1 2 3 4 5 6 7 8 9 10 11 12
Month
a) Write the profit function for The Christmas Store as a function of the month
and sketch its graph
b)
Write the profit function for The Pool Store as a function of the month and
sketch its graph.
are are length
Write the total profit as a function of the month and sketch its graph. What is
the period?
are inside the
est enth of a
Use the maximum feature of a graphing calculator to find the owner's maxi-
mum total profit and the month in which it occurs.
Find the owner's minimum total profit and the month in which it occurs.
We know that y -a sin x + bcos x is a sine function. However, the sum of
two arbitrary sine or cosine functions is not necessarily a sine function. Find an
example in which the graph of the sum of two sine functions does not look like
a sine curve.
Explain.
is tangent to one
Answer:
what
Step-by-step explanation:
You have $50,000 in savings for retirement in an investment earning 5% annually. You aspire to have $1,000,000 in savings when you retire. Assuming you add no more to your savings, how many years will it take to reach your goal?
Answer: It will take you about 61 years for you to reach your goal.
Step-by-step explanation:
We will represent this situation by an exponential function. So if you earn 5% yearly then we could represent it by 1.05.So in exponential function we need to find the initial value and the common difference and in this case the common difference is 1.05 and the initial value or amount is 50,000 dollars.
We could represent the whole situation by the equation.
y= [tex]50,000(1.05)^{x}[/tex] where x is the number of years. so if you aspire to have 1,000,000 in some years then we will put in 1 million dollars for y and solve for x.
1,000,000 = 50,000(1.05)^x divide both sides by 50,000
20 = (1.05)^x
x= 61.40
please help me with this problem
Answer:
A
Step-by-step explanation:
In standard form, an ellipse's major axis is indicated by the [tex]a^{2}, b^{2}[/tex] terms like this:
[tex]\frac{{(y-k)}^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}, a>b[/tex]
[tex]\frac{{(x-h)}^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}, a>b[/tex]
In the top equation, the vertical axis is primary and in the second the horizontal axis is primary. That's a bit more info than the question asked, but I thought it may be helpful to understand the answer.
Now, a co-vertex is the intersection point between an ellipse and its minor axis. On the graph of the ellipse, the [tex]b[/tex] is the distance from the center to where the ellipse intersects its minor axis, so our answer is A.
If a graphical representation would be helpful, I would take a look at the Math Warehouse article on the Equation of an Ellipse in Standard Form.
Carle is cutting pieces of string that are exactly inches long. How many pieces can she cut from a ball of string that has 100 feet? 1 foot = 12 inches
Answer:
120 inches long in total becuase 12x10 is 120.
There are 3 times as many novels as comic books in a bookstore.If there are 2480 books altogether, how many comic books are there in the bookstore.
Answer:
there are 620 comic books
Step-by-step explanation:
let number of comic books be x
total books=3x+x
2480=4x
2480/4=x
620=x
Answer:
620Step-by-step explanation:
Let comic books be ' X '
Let Novels be ' 3x '
Now, finding the value of X
According to Question,
[tex]3x + x = 2480[/tex]
Collect like terms
[tex]4x = 2480[/tex]
Divide both sides of the equation by 4
[tex] \frac{4x}{4} = \frac{2480}{4} [/tex]
Calculate
[tex]x = 620[/tex]
Thus, There are 620 comic books in the book store.
Hope this helps...
Best regards!!
Question 1
A 16-ounce bag of sugar is supposed to weigh 16 ounces, but it is acceptable for the weight of the bag to vary as much as 0.4 ounce. Which absolute value inequality can be used to find X, the acceptable
weight of a bag of sugar?
Answer: I x - 16ozI ≤ 0.4oz
Step-by-step explanation:
The weight is supposed to be exactly 16 oz.
But we can accept a maximum error of 0.4oz.
Now, if x is the weight of the sugar bag, the error can be calculated as:
E = x - 16oz
if x is larger than 16oz, we have E positive, which means that we have more sugar than 16oz
if x is smaller than 16 oz, we have E negative, which means that we are a little bit short of sugar in the bag.
Now, we know that the maximum error acceptable is 0.4 oz (negative or positive)
So we can write:
-0.4oz ≤ E ≤ 0.4oz
-0.4 ≤ x - 16oz ≤ 0.4oz
Now, if we apply absolute value to the error, we get:
I x - 16ozI ≤ 0.4oz
So the correct option is the fourth one (or the bottom one)
Answer:
D.) |x−16|≤0.4
Step-by-step explanation:
What is the AWP used to do
Answer:
The Arctic Warfare Police (AWP) is the law enforcement variant of the series, commonly chambered for 7.62×51mm NATO. The Magnum Sniper Rifle depicted in Counter-Strike is based on the Arctic Warfare Magnum, chambered for . 338 Lapua Magnum.
a. Find the probability of randomly selecting a student who spent the money, given that the student was given four quarters. The probability is . (Round to three decimal places as needed.) b. Find the probability of randomly selecting a student who kept the money, given that the student was given four quarters. The probability is . (Round to three decimal places as needed.) c. What do the preceding results suggest?
Answer:
Hello your questions is incomplete attached below is the missing part of the question
answer : A ) 0.647 , (B) 0.353, (C) students are more likely to spend the money than to have kept it
Step-by-step explanation:
from the attached table below
Given data :
Total number of students = Number of students who spent money + number of students who kept money
Total number of students = (33+13 ) + (18 + 27 ) = 91
p(Number of students given four quarters) = (33 +18 ) / 91 = 51/91
p( number of students who spent money ) = ( 33 +13 ) / 91 = 46/91
p( number of students who saved money ) = (18 +27 ) / 91 = 45 /91
p( number of students who spent money and given four quarters ) = 33/91
p( number of students who saved money and given four quarters ) = 18/91
A) The probability of randomly selecting a student who spent the money and also given four quarters
= p ( 33/91 | 51/91 )
= 33/91 * 91/51
= 33/51 = 0.647
B ) The probability of randomly selecting a student who kept the money and given that the student was given four quarters
= p ( 18/91 | 51/91 )
= 18/91 * 91/51
= 18 /51 = 0.353
C) students are more likely to spend the money than to have kept it
find the slope for (-4,-2)(-3,-6)
Answer:
The slope is -4.
Step-by-step explanation:
The values -2 and -6 are 4 values apart.
The values -4 and -3 are 1 value apart.
Since the second coordinate is lower than the first one, the slope of this is negative.
4 / 1 = 1
Negating 1 gets us -1.
Hope this helped!
Answer:
[tex] \frac{y}{x} = \frac{ - 4}{1} = - 4[/tex]
Step-by-step explanation:
[tex]x = ( - 3) - ( - 4) = 1[/tex]
[tex]y = ( - 6) - ( - 2) = - 4[/tex]
Given: angle 1 congruent angle2 prove: p||q
Please hurry
Answer:
converse of alternate exterior angle theorem
Step-by-step explanation:
um im not sure if i should explain the full proof but