The specific rotation of (S)-carvone (at 20°C) is +61. A chemist prepared a mixture of (R)-carvone and its enantiomer, and this mixture had an observed rotation of -55°.
A) What is the specific rotation of (R)-carvone at 20°C?
B) Calculate the % ee of this mixture.
C) What percentage of the mixture is (S)-carvone?

Answers

Answer 1

Answer:

a) Specific Rotation of (R)-carvone = -61°

b) The enantiomeric excess of (R)-carvone in the mixture = 90.2%

c) The percentage of (S)-carvone in the mixture = 4.9%

Explanation:

a) The specific rotation of the enantiomer of a substance is given simply as the negative of the specific rotation of that substance.

Hence, the specific rotation of (R)-carvone is simply the negative of the specific rotation of (S)-carvone.

Specific Rotation of (R)-carvone = -(61°) = -61°

b) Enantiometic excess is used to measure the optical purity of an enantiomeric mixture.

The enantiomeric excess is given mathematically as

ee% = (Observed rotation × 100)/(Specific rotation)

Hence, to calculate the enantiomeric excess of (R)-carvone,

Observed rotation of the mixture = -55°

Specific Rotation of (R)-carvone = -61°

ee% = (-55×100)/(-61) = 90.16% = 90.2%

c) An enantiomeric excess of 90.2% for (R)-carvone indicates that it's actual percentage is 90.2% more than the percentage of its enantiomeric partner, (S)-carvone, in the mixture.

Let the percentage of (R)-carvone in the mixture be x

Let the percentage of (S)-carvone in the mixture be y

x + y = 100

x - y = 90.2

2x = 190.2

x = (190.2/2) = 95.1%

y = 100 - x = 100 - 95.1 = 4.9%

Hence, the percentage of (R)-carvone in the mixture = 95.1%

The percentage of (S)-carvone in the mixture = 4.9%

Hope this Helps!!!

Answer 2

a) Specific Rotation of (R)-carvone = -61°

b) The enantiomeric excess of (R)-carvone in the mixture = 90.2%

c) The percentage of (S)-carvone in the mixture = 4.9%

a) Calculation of Specific Rotation:

The specific rotation of the enantiomer of a substance is given simply as the negative of the specific rotation of that substance.

Hence, the specific rotation of (R)-carvone is simply the negative of the specific rotation of (S)-carvone.

Specific Rotation of (R)-carvone = -(61°) = -61°

b) Calculation for Enantiomeric excess:

The enantiomeric excess is given mathematically as

ee% = (Observed rotation × 100)/(Specific rotation)

Hence, to calculate the enantiomeric excess of (R)-carvone,

Observed rotation of the mixture = -55°

Specific Rotation of (R)-carvone = -61°

ee% = (-55×100)/(-61) = 90.16% = 90.2%

c) Calculation of percentage:

Let the percentage of (R)-carvone in the mixture be x

Let the percentage of (S)-carvone in the mixture be y

x + y = 100

x - y = 90.2

2x = 190.2

x = (190.2/2) = 95.1%

y = 100 - x = 100 - 95.1 = 4.9%

Hence, the percentage of (R)-carvone in the mixture = 95.1%

The percentage of (S)-carvone in the mixture = 4.9%

Find more information about Specific rotation here:

brainly.com/question/5963685


Related Questions

Using appropriate chemical reactions for illustration, show how calcium present as the dissolved bicarbonate salt in water is easier to remove than other forms of hardness such dissolved Calcium chloride​

Answers

Answer:

Explanation:

Calcium bicarbonate  dissolved in hard water can easily be removed by heating the hard water . On heating , it decomposes to give calcium carbonate which is insoluble and therefore can be filtered out .

Ca( HCO₃)₂  =  CaCO₃ + CO₂ + H₂O.

In this way hardness of water is removed .

               

Automotive antifreeze is typically a 50:50 mixture (by volume) of water and ethylene glycol. Discuss why this solution is useful for protecting automobile engines from both summer and winter temperature extremes.

Answers

Answer:

A 50:50 mixture of ethylene glycol and water is effective both summer and winter extremes in temperature because of high boiling point of 106°C and low freezing point of about -37°C. In summer when the average daily temperature rises to about 22°c, the mixture will be effective in keeping the automobile engine cool. Also in winter, when the average temperature falls below 0°C, the mixture will be effective as an antifreeze as it remains a liquid well below 0°C.

Explanation:

Ethylene glycol or antifreeze is an organic compound which is used in automobile engines as a coolant and also as an anti-freezing agent, however it does not conduct heat effectively as water due to its lower heat capacity. It has a freezing point of -12.9°C and boiling point of 197.3°C.

Water is also used as a coolant in automobile engine but it has a limited range due to its boiling point of 100°C. It is also not a good anti-freezing agent due to it high freezing point of 0.°C

However, when ethylene glycol is mixed with water in a ratio of  50:50, the property of the mixture is enhanced to both serve as a coolant and as an antifreeze. The boiling point is elevated to about 106°C while its freezing point is lowered to about -37°C.

This temperature range is effective for both summer and winter temperatures. In summer when the average daily temperature rises to about 22°c, the mixture will be effective in keeping the the automobile engine cool. Also in winter, when the average temperature falls below 0°C, the mixture will be effective as an antifreeze as it remains a liquid well below 0°C.

2,4-Dimethylpent-2-ene undergoes an electrophilic addition reaction in the presence of HBr to form 2-bromo-2,4-dimethylpentane. Complete the mechanism of this addition and draw the intermediates formed as the reaction proceeds.

Draw all missing reactants and/or products in the appropriate boxes by placing atoms on the canvas and connecting them with bonds. Add charges where needed. Electron flow arrows should start on the electron(s) of an atom or a bond and should end on an atom, bond, or location where a new bond should be created.

Answers

Answer:

the answer is in the diagram

Explanation:

when 2,4-dimethylpent-2-ene undergo electrophilic addition reaction in the presence of HBr to form 2-bromo-2,4-dimethylpentane, it firstly lead to an intermediate carbocation

A carbocation can be describe as an organic molecule, which serves as an intermediate, that has a carbon atom bearing a positive charge and three bonds instead of four

Applied Exercises (40 points) Answer the following questions in complete sentences. 1) In molecules with the same number of electron groups but different molecular geometries, discuss what happens to the bond angle? 2) What happens to the bond angle as you increase the number of bonding groups? 3) In 5 electron group molecules, what is the difference between axial and equatorial positions? Which groups are removed as lone pairs are added? 4) What is the difference between tetrahedral bent and

Answers

Answer:

See explanation

Explanation:

In molecules with the same number of electron groups but different molecular geometries, the bond angles differ markedly owing to the presence of lone pairs on the central atom. Recall that lone pairs of electrons take up more space around the central atom and causes more repulsion thus squeezing the bond angle and making it less than the value expected on the basis of the Valence Shell Electron Pair Repulsion Theory.

As the number of bonding groups increases, the bond angle increases since the repulsion due to lone pairs of electrons is being progressively removed by increase in the number of bonding groups.

For 5 electron group molecules, the axial groups are oriented at a bond angle of 90° while the equatorial groups are oriented at a bond angle of 120°. In the presence of lone pairs, the equatorial bonds are removed because the equatorial bonds often have a greater bond length than the axial bonds.

In the tetrahedral geometry, four groups are bonded to the central atom while in a bent molecular geometry, only two groups are bonded to the central atom with two lone pairs present in the molecule.

Calculate the [H+] and pH of a 0.0040 M hydrazoic acid solution. Keep in mind that the Ka of hydrazoic acid is 2.20×10−5. Use the method of successive approximations in your calculations or the quadratic formula.

Answers

Answer:

[tex][H^+]=0.000285[/tex]

[tex]pH=3.55[/tex]

Explanation:

In this, we can with the ionization equation for the hydrazoic acid ([tex]HN_3[/tex]). So:

[tex]HN_3~<->~H^+~+~N_3^-[/tex]

Now, due to the Ka constant value, we have to use the whole equilibrium because this is not a strong acid. So, we have to write the Ka expression:

[tex]Ka=\frac{[H^+][N_3^-]}{[HN_3]}[/tex]

For each mol of [tex]H^+[/tex] produced we will have 1 mol of [tex]N_3^-[/tex]. So, we can use "X" for the unknown values and replace in the Ka equation:

[tex]Ka=\frac{X*X}{[HN_3]}[/tex]

Additionally, we have to keep in mind that [tex]HN_3[/tex] is a reagent, this means that we will be consumed. We dont know how much acid would be consumed but we can express a subtraction from the initial value, so:

[tex]Ka=\frac{X*X}{0.004-X}[/tex]

Finally, we can put the ka value and solve for "X":

[tex]2.2X10^-^5=\frac{X*X}{0.004-X}[/tex]

[tex]2.2X10^-^5=\frac{X^2}{0.004-X}[/tex]

[tex]X= 0.000285[/tex]

So, we have a concentration of 0.000285 for [tex]H^+[/tex]. With this in mind, we can calculate the pH value:

[tex]pH=-Log[H^+]=-Log[0.000285]=3.55[/tex]

I hope it helps!

The [H+] and pH of a 0.0040 M hydrazoic acid solution is 0.000296648 and  3.527759

pH based problem:

What information do we have?

Hydrazoic acid solution = 0.0040 M

Ka of hydrazoic acid = 2.20 × 10⁻⁵

We know that weak acids

[H+] = √( Ka × C)

[H+] = √( 2.2 × 10⁻⁵ × 0.0040)

[H+] = 0.000296648

So,

pH = -log [H+]

pH = -log [0.000296648]

Using log calculator

pH = 3.527759

Find more information about 'pH'.

https://brainly.com/question/491373?referrer=searchResults

Prepare 10.00 mL of 0.010 M NaOH by diluting the NaOH solution used in Trial 1. (Your procedure should clearly show your calculations and the glassware used to perform the dilution.)

Answers

Answer:

= 0.2 mL.

Explanation:

Given a 0.5 M solution of NaOH as stock solution, 10.0mL of 0.010M can be prepared via dilution with distilled water, by using the formula:

[tex]C_{1} V_{1} = C_{2} V_{2}[/tex]

where C1 and V1 are initial concentration and volume respectively; same as C2 & V2 for fina.

Let C1 = 0.5M, V2 = ?

C2 = 0.010M; V2 = 10mL

⇒Volume of stock solution to be diluted, V2

= [tex]\frac{10}{0.5}[/tex] × 0.010

= 0.2 mL.

Glasswares used would be pipette (for smaller volume experiment) and measuring cylinder. 0.2mL would be measured and then made upto the 10mL mark of the measuring cylinder.

I hope this was a detailed explanation given the missing details of "Trial 1" in the question.

The SNArreaction requires 1 mmol methyl 4-fluoro-3-nitrobenzoateand 2 mmol of 4-chlorobenzyl amine. Calculate the mass (mg) of both reagents.(2

Answers

Answer: Mass of methyl 4-fluoro-3-nitrobenzoate = 199 mg;

Mass of 4-chlorobenzylamine = 282 mg

Explanation: The mass and mol of a molecule is related by its molar mass, which is given in g/mol.

The molar mass of methyl 4-fluoro-3-nitrobenzoate, which has molecular formula: [tex]C_{8}H_{6}FNO_{4}[/tex] is:

[tex]C_{8}H_{6}FNO_{4}[/tex]  = 12.8 + 6.1 + 19 + 14 + 16.4 = 199 g/mol

Since it is asking in mg: MM = 199.10³mg/mol

For 4-chlorobenzylamine, with molecular formula [tex]C_{7}H_{8}ClN[/tex]:

[tex]C_{7}H_{8}ClN[/tex] = 12.7 + 8.1 + 35 + 14 = 141 g/mol

In mg: MM = 141.10³mg/mol

The reaction requires 1 mmol of [tex]C_{8}H_{6}FNO_{4}[/tex] , then its mass is:

m = 1.10⁻³ mol * 199.10³mg/mol = 199 mg

For [tex]C_{7}H_{8}ClN[/tex], it requires 2mmol:

m = 2.10⁻³ mol * 141.10³ mg/mol = 282 mg

For the SNAr reaction, it is necessary 199 mg of methyl 4-fluoro-3-nitrobenzoate and 282 mg of 4-chlorobenzylamine

The mass of 1 mmol methyl 4-fluoro-3-nitrobenzoate is 199.14 mg and the mass of 2 mmol of 4-chlorobenzyl amine is 283.2 mg

To determine the masses of both reagents,

First we will determine their molar masses

For methyl 4-fluoro-3-nitrobenzoate (C₈H₆FNO₄)

Molar mass = 199.14 g/mol

Now, for the mass of 1 mmol of methyl 4-fluoro-3-nitrobenzoate

Using the formula

Mass = Number of moles × Molar mass

Mass = 1 mmol × 199.14 g/mol

Mass = 199.14 mg

For 4-chlorobenzyl amine (C₇H₈ClN)

Molar mass = 141.6 g/mol

Now, for the mass of 2 mmol of 4-chlorobenzyl amine

Mass = 2 mmol × 141.6 g/mol

Mass = 283.2 mg

Hence, the mass of 1 mmol methyl 4-fluoro-3-nitrobenzoate is 199.14 mg and the mass of 2 mmol of 4-chlorobenzyl amine is 283.2 mg

Learn more here: https://brainly.com/question/15839520

mechanism of 1-iodobutane reacts with pyridine

Answers

Answer:

It is an example of elimination reaction through the E2 mechanism.

Explanation:

The reaction between 1-iodobutane and pyridine is an example of an E2 (bimolecular elimination) elimination reaction.

Pyridine acts predominantly as a base and the given alkyl halide is a primary alkyl halide. Both of these two factors facilitate the E2 mechanism.

Here, both H and Cl are eliminated in a single step to produce 1-butene as the product of the reaction.

The reaction mechanism and the structure of the product are shown below.

The mechanism by which 1-iodobutane reacts with pyridine is by the E2 mechanism.

What is Bimolecular Elimination (E2 Mechanism)?

The E2 mechanism process (Bimolecular Elimination) is a one-step reaction mechanism whereby carbon-hydrogen (C-H) and carbon-halogen (C-X) bonds split to generate a double bond. (C = C πbond).

The following characteristics of the E2 reaction are:

It is a one-step elimination andHas only one transition stage.

From the information given:

Pyridine functions primarily as a base, and the alkyl iodide in question is a primary alkyl halide that helps in the E2 mechanism.

In this case, both H and Cl are removed in a single step, yielding 1-butene as the byproduct of the reaction.

Learn more about the Bimolecular Elimination reaction here:

https://brainly.com/question/13607621

Nitric acid is often manufactured from the atmospheric gases nitrogen and oxygen, plus hydrogen prepared by reforming of natural gas, in a two-step process. In the first step, nitrogen and hydrogen react to form ammonia:

Answers

Answer:

[tex]N_2~+~3H_2~+~4O_2~->~2HNO_3~+~2H_2O[/tex]

Explanation:

We can start with the reaction of hydrogen and nitrogen to produce ammonia, so:

[tex]N_2~+~H_2~->~NH_3[/tex]

When we balance the reaction we will obtain:

[tex]N_2~+~3H_2~->~2NH_3[/tex]

Now, the production of nitric acid with oxygen would be:

[tex]NH_3~+~O_2~->~HNO_3~+~H_2O[/tex]

If we balance the reaction we will obtain:

[tex]NH_3~+~2O_2~->~HNO_3~+~H_2O[/tex]

Now, if we put the reactions together we will obtain:

[tex]N_2~+~3H_2~->~2NH_3[/tex]

[tex]NH_3~+~2O_2~->~HNO_3~+~H_2O[/tex]

We can multiply the second reaction by "2":

[tex]N_2~+~3H_2~->~2NH_3[/tex]

[tex]2NH_3~+~4O_2~->~2HNO_3~+~2H_2O[/tex]

We have "[tex]2NH_3[/tex]" on both sides. In the first reaction is in the right in the second reaction is on the left. Therefore we can cancel out this compound and we will obtain:

[tex]N_2~+~3H_2~+~4O_2~->~2HNO_3~+~2H_2O[/tex]

On this reaction, we will have 2 nitrogen atoms on both sides, 6 hydrogen atoms on both sides, and 8 oxygen atoms on both sides. So, this would be the net reaction for the production of nitric acid.

Stearic acid (C18H36O2) is a fatty acid, a molecule with a long hydrocarbon chain and an organic acid group (COOH) at the end. It is used to make cosmetics, ointments, soaps, and candles and is found in animal tissue as part of many saturated fats. In fact, when you eat meat, you are ingesting some fats containing stearic acid. ( of C18H36O2 = –948 kJ/mol, CO2=-393.5kJ/mol, H2O=-241.826kJ/mol).

Calculate the heat (q) released in kcal when 2.831 g of stearic acid is burned completely.

Answers

The molar mass of stearic acid is 18*AC+36*AH+2*AO=18*12+36*1+16*2=284g/mol.

n=m/M=2.831/284=0.01 moles

C18H36O2+27O2-->18CO2+18H2O

we have 18*0.01=0.18 moles of CO2

18*0.01=0.18 moles of H2O

0.01*948=9.48kJ from stearic acid

0.18*393.5=70.83kJ from CO2

0.18*241.826=43.52kJ from H2O

9.48+70.83+43.52=123.83kJ

123.83*4.184=518.10kcal

6. Potassium hydrogen phthalate (KHP, KHC8H4O4) is also a good primary standard. 20 mL of NaOH was titrated with 0.600 M KHC8H4O4 solution. The data was graphed and the equivalence point was found when 15.5 mL of the standard 0.600 M KHP solution was added. The reaction equation is: a. What is the molar ratio of NaOH:KHC8H4O4? b. What is the molarity of the NaOH solution?

Answers

Answer:

a. 1

b. 0.465M NaOH

Explanation:

KHP reacts with NaOH as follows:

KHP + NaOH → KP⁻ + Na⁺ + H₂O

a. Molar ratio represents how many moles of NaOH reacts per mole of KHP. As you can see in the reaction, 1 mole of NaOH reacts with 1 mole of KHP. Molar ratio is:

1/1 = 1

b. With volume and molar concentration of the KHP solution you can find how many moles of KHP were added until equivalence point, thus:

15.5mL = 0.0155L ₓ (0.600 moles KHP / L) = 0.0093 moles of KHP

In equivalence point, moles of NaOH = Moles KHP. That means moles of NaOH titrated are 0.0093 moles NaOH.

The volume of the NaOH solution was 20mL = 0.020L. Molarity of the solution is:

0.0093 moles NaOH / 0.020L =

0.465M NaOH

a. The balanced equation shows a 1:1 molar ratio between NaOH and KHC₈H₄O₄. This means that for every 1 mole of NaOH, we require 1 mole of KHC₈H₄O₄. Therefore, the molar ratio of NaOH:KHC₈H₄O₄ is 1:1.

The balanced equation for the reaction:

NaOH + KHC₈H₄O₄ → NaKC₈H₄O₄ + H₂O

b. Molarity of KHP solution × volume of KHP solution = Molarity of NaOH solution × volume of NaOH solution at the equivalence point

Molarity of KHP solution = 0.600 M

Volume of KHP solution = 15.5 mL = 0.0155 L

Volume of NaOH solution at the equivalence point = 20 mL = 0.0200 L

Molarity of NaOH solution = (Molarity of KHP solution × volume of KHP solution) / volume of NaOH solution at the equivalence point

Molarity of NaOH solution = (0.600 M × 0.0155 L) / 0.0200 L

Molarity of NaOH solution ≈ 0.465 M

To learn more about the balanced equation, follow the link:

https://brainly.com/question/12192253?referrer=searchResults

#SPJ6

What is an ideal gas?

Answers

Answer:

a hypothetical gas whose molecules occupy negligible space and have no interactions, and which consequently obeys the gas laws exactly.

Drag each image to the correct location on the model. Each image can be used more than once. Apply the rules and principles of electron configuration to draw the orbital diagram of aluminum. Use the periodic table to help you.

Answers

Answer:

The answer to your question is given below.

Explanation:

Aluminium has atomic number of 13. Thus, the electronic configuration of aluminium can be written as:

Al (13) —› 1s² 2s²2p⁶ 3s²3p¹

The orbital diagram is shown on the attached photo.

Answer: screen shot

Explanation:

Predict the order of acid strengths in the following series of cationic
species: CH3CH2NH3
+, CH3CH=NH2

Answers

Answer:

CH3CH=NH2+>CH3CH2NH3+

Explanation:

If we look at the both species under review, we will realize that they are both amines hence they possess the polar N-H bond.

Electrons are ordinarily attracted towards the nitrogen atom hence making both compounds acidic. It is worthy of note that certain features of a compound may make it more acidic than another of close structural proximity. 'More acidic' simply means that the proton is more easily lost.

CH3CH=NH2+ contains an sp2 hybridized carbon atom which is highly electronegative and further withdraws electron density from the N-H bond thereby leading to a greater acidity of CH3CH=NH2+ compared to CH3CH2NH3+

Air contains nitrogen, oxygen, argon, and trace gases. Ifthe partial pressure of nitrogen is 592 mm Hg, oxygen is160 mm Hg, argon is 7 mm Hg, and trace gas is 1 mm Hg,what is the atmospheric pressure

Answers

Answer:

760 mmHg

Explanation:

Step 1: Given data

Partial pressure of nitrogen (pN₂): 592 mmHgPartial pressure of oxygen (pO₂): 160 mmHgPartial pressure of argon (pAr): 7 mmHgPartial pressure of the trace gas (pt): 1 mmHg

Step 2: Calculate the atmospheric pressure

Since air is a gaseous mixture, the atmospheric pressure is equal to the sum of the gases that compose it.

P = pN₂ + pO₂ + pAr + pt = 592 mmHg + 160 mmHg + 7 mmHg + 1 mmHg = 760 mmHg

What is the oxidation number change for the iron atom in the following reaction? 2 Fe2O3(s) + 3 C(s) → 4 Fe(s) + 3 CO2(g)

Answers

Answer:

[tex]\boxed{From \ +6 \ to \ 0}[/tex]

Explanation:

2 Fe2O3(s) + 3 C(s) → 4 Fe(s) + 3 CO2(g)

In the given reaction, Iron in the reactants side have the oxidation number of +6. This is because [tex]O_{3}[/tex] with [tex]Fe_{2}O_{3}[/tex] has oxidation state -6, So any atom with it would have an oxidation state of +6 to give the resultant of zero.

In the products side, Iron acts as a free element reacting with no other atom. So, as per the rule of oxidation states, the oxidation state of Iron in the products side will be zero.

So, the oxidation number changes from +6 to 0 .

Extra Info: Decrease in oxidation state is Reduction , So Iron is being reduced here.

The change in the oxidation number of the iron atom in the reaction is from +3 to 0

Oxidation is simply defined as the the loss of electron. However, Oxidation number simply talks about the number of electrons that is either gained or lossed during bond formation.

The change in the oxidation number of iron in the reaction can be obtained as follow:

2Fe₂O₃(s) + 3C(s) → 4Fe(s) + 3CO₂(g)

Oxidation number of Fe in Fe₂O₃

Oxidation number of Fe₂O₃ = 0 (ground state)

Oxidation number of oxygen = –2

Oxidation number of Fe =?

Fe₂O₃ = 0

2Fe + 3O = 0

2Fe + 3(–2) = 0

2Fe – 6 = 0

Collect like term

2Fe = 6

Divide both side by 2

Fe = 6/2

Fe = +3

Thus, the oxidation number of Fe in Fe₂O₃ is +3

Oxidation number of Fe (ground state) is zero

Therefore, the change in the oxidation number of the iron, Fe, atom in the reaction is from +3 to 0

Learn more: https://brainly.com/question/10079361

If the H+ concentration is 0.00001 M, what is the OH- concentration?

Answers

Answer:

1.00x10^-9

Explanation:

Which element would have the most valence electrons and also be able to react with hydrogen?

Answers

Answer:

Fluorine, Chlorine, Bromine, or Iodine

Explanation:

These all have an ALMOST full valence shell. And they need one more electron so they'd react with hydrogen

Answer:

its chlorine

Explanation:

just trust me do i look like i would lie too you ;-)

btw i just took the test :-)

How many moles of HNO3 will be produced 3 NO2+H2O=2HNO3+ NO

Answers

Answer:

2 moles of HNO3

Explanation:

The equation seems to be balanced correctly. The problem is we done know what you started with. We will assume it is 3 moles of NO2.

If that is the case then 2 moles of HNO3 will be produced.

Write a balanced equation for the single-replacement oxidation-reduction reaction described, using the smallest possible integer coefficients. The reaction that takes place when chlorine gas combines with aqueous potassium bromide. (Use the lowest possible coefficients. Omit states of matter.)

Answers

Answer:

[tex]\rm Cl_2 + 2\; KBr \to Br_2 + 2\; KCl[/tex].

One chlorine molecule reacts with two formula units of (aqueous) potassium bromide to produce one bromine molecule and two formula units of (aqueous) potassium chloride.

Explanation:

Formula for each of the species

Start by finding the formula for each of the compound.

Both chlorine [tex]\rm Cl[/tex] and bromine [tex]\rm Br[/tex] are group 17 elements (halogens.) Each On the other hand, potassium [tex]\rm K[/tex] is a group 1 element (alkaline metal.) Each

Therefore, the ratio between [tex]\rm K[/tex] atoms and [tex]\rm Br[/tex] atoms in potassium bromide is supposed to be one-to-one. That corresponds to the empirical formula [tex]\rm KBr[/tex]. Similarly, the ratio between

The formula for chlorine gas is [tex]\rm Cl_2[/tex], while the formula for bromine gas is [tex]\rm Br_2[/tex].

Balanced equation for the reaction

Write down the equation using these chemical formulas.

[tex]\rm ?\; Cl_2 + ?\; KBr \to ?\;Br_2 + ?\; KCl[/tex].

Start by assuming that the coefficient of compound with the largest number of elements is one. In this particular equation, both [tex]\rm KBr[/tex] and [tex]\rm KCl[/tex] features two elements each.

Assume that the coefficient of [tex]\rm KCl[/tex] is one. Hence:

[tex]\rm ?\; Cl_2 + 1 \; KBr \to ?\;Br_2 + ?\; KCl[/tex].

Note that [tex]\rm KBr[/tex] is the only source of [tex]\rm K[/tex] and [tex]\rm Br[/tex] atoms among the reactants of this reaction.

There would thus be one [tex]\rm K[/tex] atom and one [tex]\rm Br[/tex] atom on the reactant side of the equation.

Because atoms are conserved in a chemical equation, there should be the same number of [tex]\rm K[/tex] and [tex]\rm Br[/tex] atoms on the product side of the equation.

In this reaction, [tex]\rm Br_2[/tex] is the only product with [tex]\rm Br[/tex] atoms.

One [tex]\rm Br[/tex] atom would correspond to [tex]0.5[/tex] units of [tex]\rm Br_2[/tex].

Similarly, in this reaction, [tex]\rm KCl[/tex] is the only product with [tex]\rm K[/tex] atoms.

One [tex]\rm K[/tex] atom would correspond to one formula unit of [tex]\rm KCl[/tex].

Hence:

[tex]\displaystyle \rm ?\; Cl_2 + 1 \; KBr \to \frac{1}{2}\;Br_2 + 1\; KCl[/tex].

Similarly, there should be exactly one [tex]\rm Cl[/tex] atom on either side of this equation. The coefficient of [tex]\rm Cl_2[/tex] should thus be [tex]0.5[/tex]. Hence:

[tex]\displaystyle \rm \frac{1}{2}\; Cl_2 + 1 \; KBr \to \frac{1}{2}\;Br_2 + 1\; KCl[/tex].

That does not meet the requirements, because two of these coefficients are not integers. Multiply all these coefficients by two (the least common multiple- LCM- of these two denominators) to obtain:

[tex]\displaystyle \rm 1\; Cl_2 + 2 \; KBr \to 1\;Br_2 + 2\; KCl[/tex].

A diode has IS = 10−17 A and n = 1.05. (a) What is the diode voltage if the diode current is 70 μA? (b) What is the diode current for VD = 0.1 mV?

Answers

Answer:

(a) The diode voltage,  [tex]V_D =[/tex]  0.776 V

(b) The diode current, [tex]I_D =[/tex] 3.81 x 10⁻²⁰ A

Explanation:

Given;

saturation current in diode, [tex]I_s[/tex] = 10⁻¹⁷ A

nonideality factor, n = 1.05

(a) the diode voltage

Given diode current, [tex]I_D[/tex] = 70 μA = 7 x 10⁻⁶ A

Diode voltage is calculated as;

[tex]V_D = nV_Tln(1+ \frac{I_D}{I_S} )[/tex]

Where;

[tex]V_T[/tex] is thermal voltage at 25°C = 0.025

[tex]V_D = 1.05 * 0.025 ln(1+ \frac{70*10^{-6}}{1*10^{-17}})\\\\V_D = 0.02625ln(1+ 7*10^{12})\\\\V_D = 0.776 \ V[/tex]

b) the diode current for VD = 0.1 mV

[tex]V_D = nV_Tln(1 +\frac{I_D}{I_S} )\\\\ln(1 +\frac{I_D}{I_S} ) = \frac{V_D}{nV_T} \\\\ln(1 +\frac{I_D}{I_S} ) = \frac{0.1*10^{-3}}{1.05*0.025} \\\\ln(1 +\frac{I_D}{I_S} ) = 0.00381\\\\1 +\frac{I_D}{I_S} = e^{0.00381}\\\\1+ \frac{I_D}{I_S}= 1.00381\\\\ \frac{I_D}{I_S}=1.00381 - 1\\\\ \frac{I_D}{I_S}= 0.00381\\\\I_D = 0.00381(I_S)\\\\I_D = 0.00381(10^{-17})\\\\I_D = 3.81*10^{-20} \ A[/tex]

. Calculate ΔG for the following reaction at 25°C. Will the reaction occur (be spontaneous)? How do you know? NH3(g) + HCl(g) → NH4Cl(s) ΔH = -176.0 kJ ΔS = -284.8 J·K-1

Answers

Answer:

[tex]\triangle G = -911.296 \ kJ[/tex]

Explanation:

ΔG = ΔH-TΔS

Where ΔH = -176 kJ = -176000 J , T = 25°C + 273 = 298 K , ΔS = -284.8 JK⁻¹

=> [tex]\triangle G =-176000 - (298)(-284.8)[/tex]

=> [tex]\triangle G = -176000+84870.4[/tex]

=> [tex]\triangle G = -91129.6 \ J[/tex]

=> [tex]\triangle G = -911.296\ kJ[/tex]

Since the value is negative, the reaction is spontaneous under standard conditions at 298 K and the reactants have more free energy than the products.

If powdered platinum metal is used to speed up the following reaction: Cl2(g) 3F2(g) --> 2ClF3(g), what would you classify the platinum as

Answers

Answer:

Catalyst

Explanation:

For the reaction:

[tex]Cl_2_(_g_)~+~3F_2_(_g_)->2ClF_3_(_g_)[/tex]

We have a main observation: When platinum is added the reaction goes faster. With this in mind, we have to remember the kinetic equilibrium theory. In figure 1, we have an energy diagram. In which we have an specific energy for the reagents and the products. When the reaction takes place, the reaction has to must go through an energy peak. This energy peak is called "activation energy". When platinum is added the activation energy decreases and the reaction can go faster. Therefore, platinum is a "catalyst", a substance with the ability to reduce the activation energy.

I hope it helps!

15. Ammonium nitrate, NH4NO3, and aluminum powder react explosively producing nitrogen gas, water vapor and aluminum oxide. Write the balanced equation and calculate the enthalpy change for this reaction.

Answers

Answer:

[tex]2Al_(_S_) ~+~3NH_4NO_3_(_a_q_) ->3N_2_(_g_) ~+~6H_2O_(_g_) ~+~Al_2O_3_(_S_)[/tex]

[tex]Entalpy=-2861.9~KJ[/tex]

Explanation:

In this case, we have to start with the reagents:

[tex]Al~+~NH_4NO_3[/tex]

The compounds given by the problem are:

-) Nitrogen gas =  [tex]N_2[/tex]

-) Water vapor  =  [tex]H_2O[/tex]

-) Aluminum oxide =  [tex]Al_2O_3[/tex]

Now, we can put the products in the reaction:

[tex]Al_(_S_) ~+~NH_4NO_3_(_aq_) ->N_2_(_g_) ~+~H_2O_(_g_) ~+~Al_2O_3_(_S_) [/tex]

When we balance the reaction we will obtain:

[tex]2Al_(_S_) ~+~3NH_4NO_3_(_a_q_) ->3N_2_(_g_) ~+~6H_2O_(_g_) ~+~Al_2O_3_(_S_)[/tex]

Now, for the enthalpy change, we have to find the standard enthalpy values:

[tex]Al_(_S_)=0~KJ/mol[/tex]

[tex]NH_4NO_3_(_a_q_)=-132.0~KJ/mol[/tex]

[tex]N_2_(_g_)=0~KJ/mol[/tex]

[tex]H_2O_(_g_)=~-~241.8~KJ/mol[/tex]

[tex]Al_2O_3_(_S_)=~-~1675.7~KJ/mol[/tex]

With this in mind, if we multiply the number of moles (in the balanced reaction) by the standard enthalpy value,  we can calculate the energy of the reagents:

[tex](0*2)~+~(-132*3)=~-396~KJ[/tex]

And the products:

[tex](0*3)~+~(-241.8*6)~+~(-1675.7*1)=-3125.9~KJ[/tex]

Finally, for the total enthalpy we have to subtract products by reagents :

[tex](-3125.9~KJ)-(-396~KJ)=-2729.9~KJ[/tex]

I hope it helps!

How many grams of sodium phosphate are needed to have 1.67 moles of sodium ion?

Answers

Answer:

91.29 g of Na₃PO₄ are needed to produce 1.67 moles of sodium ions.

Explanation:

The formula for sodium phosphate is Na₃PO₄

Molar mass of sodium phosphate = 164 g/mol

The dissociation of one mole of sodium phosphate produces 3 moles of sodium ions;

Na₃PO₄ ------> 3Na⁺ + PO₄³

Number of moles of Na₃PO₄ that will produce 1.67 moles of Na⁺ = 1/3 * 1.67 = 0.556 moles  of Na₃PO₄

Mass of 0.556 moles of Na₃PO₄ = 0.556 moles * 164 g/mol = 91.29 g

Therefore, 91.29 g of Na₃PO₄ are needed to produce 1.67 moles of sodium ions.

Be sure to answer all parts. Arrange the following substances in order of increasing strength of intermolecular forces. Click in the answer box to open the symbol palette.
a. H2
b. Ne
c. O2
d. NH3

Answers

Answer:

H2<Ne<O2<NH3

Explanation:

Intermolecular forces refer to the force of attraction between molecules of a substance in any given state of matter whether solid, liquid or gas. Molecules in a substance must be held together by intermolecular forces of attraction. The magnitude of these intermolecular forces of attraction depends on many factors.

For H2, He and O2, the intermolecular force present in these gases are London forces. As the relative molecular mass of individual gas molecules becomes greater, London forces increases significantly with molecular mass. This explains the sequence shown in the answer.

NH3 has the strongest intermolecular interaction because it contains hydrogen bonds since nitrogen is an electronegative element. This a greater intermolecular interaction than dispersion forces.

Intermolecular forces are those forces that bind the molecules of the substance and the polarity of molecules. These forces range from the strongest to the weakest in ion-dipole, hydrogen bonding, and dipole to dipole.

H2 being a noble gas has a weak dispersion or a weak dipole force. Ne has an intermolecular force being a noble gas it increases the molecular weight and thus has a modest increase of dipole bounding. The O2 has a strong dipole force than Ne and is stronger due to the two Oxygen molecules. The NH3 has the strongest dipole and intermolecular interaction force. The nitrogen atom strongly pulls the electrons.

Hence the form the strongest to the weakest is NH3, 02, Ne and H2.

Learn more about the substances in order of increasing the strength of intermolecular forces.

/brainly.com/question/13071448.

This pluton occurs deep in Earth and does not cause any changes to the surface of Earth . True or False

Answers

Answer:

The given statement is false.

Explanation:

However, if the pluton exists beneath the ground, this could be conveniently shown in the illustration something from the peak such pluton appears convex in form resembling a lopolith and perhaps diapir, which would be a particular form of statistically significant pluton recognized as the sill.Mostly from the figure it could also be shown that subsurface sheets are lined or curved, throughout the pluton mold. And therefore it is inferred that such a pluton creates adjustment to something like the ground atmosphere by altering the form of the levels above it.

So that the given is incorrect.

Which of the following elements is in the same family as fluorine?
a. silicon
b. antimony
O c. iodine
O d. arsenic
e. None of these.

Answers

Answer:

c iodine

Explanation:

fluorine is a halogen group element like Bromine, Iodine,Astatine,Chloride

Which compound is composed of oppositely charged ions? A. SCl2 B. OF2 C. PH3 D. Li2O

Answers

Answer:

D.

Explanation:

If a compound is composed of oppositely charged ions, it has to be formed by metal and non-metal.

Li2O

Li - metal

O - non-metal

1. Unas de las formas de producir nitrógeno gaseoso (N2) es mediante la oxidación de metilamina (CH3NH2), tal como se muestra en la siguiente reacción: CH3NH2 + O2 → CO2 + H2O + N2 Si reaccionan 0,5 mol de metil amina (CH3NH2) con 25,6 g de O2. Determine: a) Balancee la ecuación. (2 ptos) b) ¿Cuántos gramos de nitrógeno (N2) se pueden producir? (4 ptos) c) Si experimentalmente se obtuvieron 3,5 gramos de N2. Determine el porcentaje de rendimiento de la reacción. (4 ptos) Por favor es urgente!!!

Answers

Answer:

a) 4CH₃NH₂ + 9O₂ ⇄  4CO₂ + 10H₂O + 2N₂    

b) m = 5,043 g

c) % = 69,4 %

Explanation:

a) La ecuación balanceada es la siguiente:

4CH₃NH₂ + 9O₂ ⇄  4CO₂ + 10H₂O + 2N₂              

En el balanceo, se tiene en la relación estequiométrica que 4 moles de metilamina reacciona con 9 moles de oxígeno para producir 4 moles de dióxido de carbono, 10 moles de agua y 2 moles de nitrógeno.  

b) Para determinar la masa de nitrógeno se debe calcular primero el reactivo limitante:

[tex]n_{O_{2}} = \frac{m}{M} = \frac{25,6 g}{31,99 g/mol} = 0,800 moles[/tex]      

[tex]n_{CH_{3}NH_{2}} = \frac{4}{9}*0,800 moles = 0,356 moles[/tex]

De la ecuación anterior se tiene que la cantidad de moles de metilamina necesaria para reaccionar con 0,800 moles de oxígeno es 0,356 moles, y la cantidad de moles iniciales de metilamina es 0,5 moles, por lo tanto el reactivo limitante es el oxígeno.

Ahora, podemos calcular la masa de nitrógeno producida:

[tex]n_{N_{2}} = \frac{2}{9}*n_{O_{2}} = \frac{2}{9}*0,8 moles = 0,18 moles[/tex]

[tex]m_{N_{2}} = n_{N_{2}}*M = 0,18 moles*28,014 g/mol = 5,043 g[/tex]

Por lo tanto, se pueden producir 5,043 g de nitrógeno.

c) El redimiento de la reacción se puede calcular usando la siguiente fórmula:

[tex] \% = \frac{R_{r}}{R_{T}}*100 [/tex]

Donde:

[tex]R_{r}[/tex]: es el rendimiento real

[tex]R_{T}[/tex]: es el rendimiento teórico

[tex]\% = \frac{3,5}{5,043}*100 = 69,4[/tex]

Entonces, el procentaje de rendimiento de la reacción es 69,4%.

Espero que te sea de utilidad!        

Other Questions
Even Better Products has come out with a new and improved product. As a result, the firm projects an ROE of 20%, and it will maintain a plowback ratio of 0.30. Its projected earnings are $2 per share. Investors expect a 14% rate of return on the stock. a. At what price and P/E ratio would you expect the firm to sell? (Do not round intermediate calculations. Round your answers to 2 decimal places.) Price $ P/E ratio b. What is the present value of growth opportunities? (Do not round intermediate calculations. Round your answer to 2 decimal places.) PVGO $ c. What would be the P/E ratio and the present value of growth opportunities if the firm planned to reinvest only 20% of its earnings? (Do not round intermediate calculations. Round your answers to 2 decimal places.) P/E ratio PVGO $ David is making rice for his guests based on a recipe that requires rice, water, and a special blend of spice, where the rice-to-spice ratio is 15:1. He currently has 40 grams of the spice blend, and he can go buy more if necessary. He wants to make 10 servings, where each serving has 75 grams of rice. Overall, David spends 4.50 dollars on rice. When a buyer or seller of an agricultural commodity takes action to protect against a future change in the value of the commodity, then the buyer or seller is what is a simile for the 4th amendment Triangle RST was dilated with the origin as the center of dilation to create triangle R'S'T'. The triangle was dilated using a scale factor of 34. The lengths of the sides of triangle RST are given. Enter the lengths of the sides of triangle R'S'T' below. (Decimal values may be used.) (yo idc about who answers it first, just get it right and I'll mark brainliest Which number is an irrational number? For what types of information would you use the Quick Analysis tool? Why would you choose to use the Quick Analysis tool and what other options would there be to calculate your data besides using this method? Is one method better than the other, or does it depend on what you are working with? Explain. Imagine you have the sole marketing rights to a new herbal shampoo that stops hair loss and actually causes new hair growth. You plan to sell your product on an Internet website, which you will advertise on late night television. You are also hoping to obtain free publicity to place stories in men's fashion magazines. You are planning to sell online a 15-ounce bottle for $24.99 plus $7.99 shipping and handling. Using the information provided, identify each element of your marketing mix. which characteristic of living things best describes why birds fly south for the winter? how does development occur A solenoid used to produce magnetic fields for research purposes is 2.2 mm long, with an inner radius of 30 cmcm and 1200 turns of wire. When running, the solenoid produced a field of 1.4 TT in the center. Given this, how large a current does it carry? A student mixes wants to prepare 24.1 mmol of benzamide from benzoyl chloride and NH4OH. If the student uses excess 15 M NH4OH, how many mL of Benzoyl chloride must be used Confirm if this is correct or not. If it isn't correct, please correct it. What formal command would you use with your boss for the verb trabajar? trabaja trabajas trabaje trabajes Gladstone Company issues 200,000 shares of preferred stock for $40 a share. The stock has fixed annual dividend rate of 5% and a par value of $3 per share. If sufficient dividends are declared, preferred stockholders can anticipate receiving dividends of: The equation that represents the canned goods order is 24x + 64y = 384, where x = number of minutes for producing fruit cans and y = number of minutes for producing vegetable cans. What is the meaning of the y-intercept? WILL MARK BRAINIEST FOR FIRST ONE WITH ANSWER!1. Come up with a statistical study where a measurement error is likely. Describe the example. Give at least one reason why the error is likely. Determine a better method of measurement for the study.2. Come up with a statistical study where the units of measure used were not appropriate for the situation. Describe the example. Explain why it was not appropriate. Determine a more appropriate unit of measure for the study. Which equation can be used to solve for m, the greater integer? m(m 3) = 108 m(m + 3) = 108 (m + 3)(m 3) = 108 (m 12)(m 9) = 108 The formula for working out the cost of hiring a canoe is : cost=15+6* number of hours. Megan paid 27 to hire a canoe. How long did she hire the canoe for Please answer this correctly without making mistakes