Suppose you titrate 25.00 mL of 0.200 M KOBr with 0.200M H2SO4. The pH at half-equivalence point is 7.75 a). What is the initial pH of the 25.00mL of 0.200M KOBr mentioned above

Answers

Answer 1

Answer:

Approximately [tex]10.88[/tex].

Explanation:

Equilibrium constant

[tex]\rm OBr^{-}[/tex] can act as a weak Bronsted-Lowry base:

[tex]\rm OBr^{-}\; (aq) + H_2O\; (l) \rightleftharpoons HOBr\; (l) + OH^{-}\; (aq)[/tex].

(Side note: the state symbol of [tex]\rm HOBr[/tex] in this equation is [tex]\rm (l)[/tex] (meaning liquid) because [tex]\rm HOBr[/tex] is a weak acid.)

However, the equilibrium constant of this reaction, [tex]K_\text{eq}[/tex], isn't directly given. The idea is to find [tex]K_\text{eq}[/tex] using the [tex]\rm pH[/tex] value at the half-equivalence point. Keep in mind that this system is at equilibrium all the time during the titration. If temperature stays the same, then the same [tex]K_\text{eq}[/tex] value could also be used to find the [tex]\rm pH[/tex] of the solution before the acid was added.

At equilibrium:

[tex]\displaystyle K_\text{eq} = \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]}[/tex].

At the half-equivalence point of this titration, exactly half of the base, [tex]\rm OBr^{-}[/tex], has been converted to its conjugate acid, [tex]\rm HOBr[/tex]. Therefore, the half-equivalence concentration of [tex]\rm OBr^{-}[/tex] and [tex]\rm HOBr[/tex] should both be equal to one-half the initial concentration of [tex]\rm OBr^{-}[/tex].

As a result, the half-equivalence concentration of [tex]\rm OBr^{-}[/tex] and [tex]\rm HOBr[/tex] should be the same. The expression for [tex]K_\text{eq}[/tex] can thus be simplified:

[tex]\begin{aligned}& K_\text{eq} \\&= \frac{\left(\text{half-equivalence $[\rm HOBr\; (l)]$}\right)\cdot \left(\text{half-equivalence $[\rm OH^{-}\; (aq)]$}\right)}{\text{half-equivalence $[\rm OBr^{-}\; (l)]$}}\\ &=\text{half-equivalence $[\rm OH^{-}\; (aq)]$}\end{aligned}[/tex].

In other words, the [tex]K_\text{eq}[/tex] of this system is equal to the [tex]\rm OH^{-}[/tex] concentration at the half-equivalence point. Assume that [tex]\rm p\mathnormal{K}_\text{w}[/tex] the self-ionization constant of water, is [tex]14[/tex]. The concentration of [tex]\rm OH^{-}[/tex] can be found from the [tex]\rm pH[/tex] value:

[tex]\begin{aligned}& \text{half-equivalence $[\rm OH^{-}\; (aq)]$} \\ &= 10^{\rm pH - p\mathnormal{K}_\text{w}}\;\rm mol \cdot L^{-1} \\ &= 10^{7.75 - 14}\; \rm mol \cdot L^{-1}\\ &= 10^{-6.25}\; \rm mol \cdot L^{-1}\end{aligned}[/tex].

Therefore, [tex]\begin{aligned} K_\text{eq} &= 10^{-6.25}\end{aligned}[/tex].

Initial pH of the solution

Again, since [tex]\rm KOBr[/tex] is a soluble salt, all that [tex]0.200\; \rm M[/tex] of [tex]\rm KOBr[/tex] in this solution will be in the form of [tex]\rm K^{+}[/tex] and [tex]\rm OBr^{-}[/tex] ions. Before any hydrolysis takes place, the concentration of [tex]\rm OBr^{-}[/tex] should be equal to that of [tex]\rm KOBr[/tex]. Therefore:

[tex]\text{$[\rm OBr^{-}\; (aq)]$ before hydrolysis} = 0.200\; \rm M[/tex].

Let the equilibrium concentration of [tex][\rm OH^{-}\; (aq)][/tex] be [tex]x\; \rm M[/tex]. Create a RICE table for this reversible reaction:

[tex]\begin{array}{c|ccccccc} & \rm OBr^{-}\; (aq) &+&\rm H_2O\; (l)& \rightleftharpoons & \rm HOBr\; (l)& + & \rm OH^{-}\; (aq) \\ \textbf{I}& 0.200\; \rm M & & & & 0 \; \rm M & & 0\; \rm M \\ \textbf{C} & -x\; \rm M & & & & +x \; \rm M & & +x\; \rm M \\ \textbf{E}& (0.200 + x)\; \rm M & & & & x \; \rm M & & x\; \rm M \end{array}[/tex].

Assume that external factors (such as temperature) stays the same. The [tex]K_\text{eq}[/tex] found at the half-equivalence point should apply here, as well.

[tex]\displaystyle K_\text{eq} = \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]}[/tex].

At equilibrium:

[tex]\displaystyle \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]} = \frac{x^2}{0.200 + x}[/tex].

Assume that [tex]x[/tex] is much smaller than [tex]0.200[/tex], such that the denominator is approximately the same as [tex]0.200[/tex]:

[tex]\displaystyle \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]} = \frac{x^2}{0.200 + x} \approx \frac{x^2}{0.200}[/tex].

That should be equal to the equilibrium constant, [tex]K_\text{eq}[/tex]. In other words:

[tex]\displaystyle \frac{x^2}{0.200} \approx K_\text{eq} = 10^{-6.25}[/tex].

Solve for [tex]x[/tex]:

[tex]x \approx 3.35\times 10^{-4}[/tex].

In other words, the [tex]\rm OH^{-}[/tex] before acid was added was approximately [tex]3.35\times 10^{-4}\; \rm M[/tex], which is the same as [tex]3.35\times 10^{-4}\; \rm mol \cdot L^{-1}[/tex]. Again, assume that [tex]\rm p\mathnormal{K}_\text{w} = 14[/tex]. Calculate the [tex]\rm pH[/tex] of that solution:

[tex]\begin{aligned}\rm pH &= \rm p\mathnormal{K}_\text{w} + \log [\mathrm{OH^{-}}] \approx 10.88\end{aligned}[/tex].

(Rounded to two decimal places.)


Related Questions

1. Define the Law of Conservation of Mass (via text). Now that you’ve defined this law, explain what it means in your own words using an example.

Answers

Explanation:

The law of conservation of mass states that mass can neither be created nor be destroyed.

Explanation in own words = this means that in this universe no one can create or destroy mass.

No physical or chemical force.

What does the period number tell about the energy levels occupied by
electrons in an atom?
A. The period number tells how many electrons are in the highest
energy level of the atom.
B. The period number tells which is the highest energy level occupied
by the electrons.
C. The period number tells how many electrons are in each sublevel
of the atom.
D. The period number tells how many energy sublevels are occupied
in the atom.

Answers

Answer: B. The period number tells which is the highest energy level occupied by the electrons

Explanation:

The period number ( denoted by 'n' ) is the outer energy level that is occupied by electrons in an atom. The period number that an element is in, is the number of energy levels that the element has.When we move across a period from left to right in a periodic table the number of electrons in atoms increases within the same orbit.

Thus, we can say that the period number tells which is the highest energy level occupied by the electrons in an atom.

hence, the correct option is B. The period number tells which is the highest energy level occupied  by the electrons.

The period number tell about the energy levels occupied by electrons in an atom B. The period number tells which is the highest energy level occupied by the electrons. option B , second option is correct.

What are energy levels ?

The fixed distances from an atom's nucleus where electrons may be found are referred to as energy levels (also known as electron shells). Higher energy electrons have greater energy as you move out from the nucleus. A region of space within an energy level known as an orbital is where an electron is most likely to be found.

When a quantum mechanical system or particle is bound, or spatially constrained, it can only take on specific discrete energy values, or energy levels. Classical particles, on the other hand, can have any energy level.

Therefore, option B , second option is correct.

Learn more about   energy levels at;

https://brainly.com/question/20561440

#SPJ6

What element is primarily used in appliances to make electronic chips
A. Silicon (Si)
B. Nickel (Ni)
C. Copper (Cu)
D. Selenium (Se)​

Answers

Answer:

Option A

Explanation:

Silicon (Obtained from Sand (SiO2)) is the element that is primarily used in appliances to make electronic chips.

Answer:

A. Silicon (Si)

Explanation:

Silicon (Si) is primarily used as a semiconductor material to make electronic chips.

A base solution contains 0.400 mol of OH–. The base solution is neutralized by 43.4 mL of sulfuric acid. What is the molarity of the sulfuric acid solution?

Answers

Answer:

Molarity of the sulfuric acid solution is 4.61M

Explanation:

The neutralization of a base of OH⁻ with sulfuric acid, H₂SO₄, occurs as follows:

2 OH⁻ + H₂SO₄ → 2H₂O + SO₄²⁻

That means, 2 moles of base react with 1 mole of sulfuric acid.

If you add 0.400 moles of OH⁻, moles of sulfuric acid you need to neutralize this amount of OH⁻ are:

0.400 moles OH⁻ ₓ (1 mole H₂SO₄ / 2 moles OH⁻) = 0.200 moles of H₂SO₄

As you add 43.4mL = 0.0434L of sulfuric acid to neutralize this solution, molarity (Ratio between moles and liters) is:

0.200 moles H₂SO₄ / 0.0434L = 4.61M

Molarity of the sulfuric acid solution is 4.61M

Sulfuric acid is commonly used as an electrolyte in car batteries. Suppose you spill some on your garage floor. Before cleaning it up, you wisely decide to neutralize it with sodium bicarbonate (baking soda) from your kitchen. The reaction of sodium bicarbonate and sulfuric acid is

Answers

Answer:

The mass of NaHCO3 required is 235.22 g

Explanation:

*******

Continuation of Question:

2NaHCO3(s) + H2SO4(aq)  →  Na2SO4(aq) + 2CO2(g) + 2H2O(l)

You estimate that your acid spill contains about 1.4 mol H2SO4. What mass of NaHCO3 do you need to neutralize the acid?

********\

The question requires us to calculate the mass of NaHCO3  to neutralize the acid.

From the balanced chemical equation;

1 mol of H2SO4 requires 2 mol of NaHCO3

1.4 would require x?

Upon solving for x we have;

x = 1.4 * 2 = 2.8 mol of NaHCO3

The relationship between mass and number of moles is given as;

Mass = Number of moles * Molar mass

Mass = 2.8 mol * 84.007 g/mol

Mass =  235.22 g

Write the electron configuration when Sulfur gains two electrons

Answers

Answer:

Explanation:

If sulfur gains 2 electrons then two electrons should be added to it electronic configuration.

If a bottle of olive oil contains 1.2 kg of olive oil, what is the volume, in milliliters (mL), of the olive oil?

Answers

Answer:

1.3 mL

Explanation:

First, get the density of the olive oil, which is 0.917 kg/mL. Then divide the mass by the density:

1.2kg/0.917kg/mL= 1.3086150491 mL. The kg cancel out, leaving us with mL.

It should have 2 significant figures, because 1.2kg has 2 and we are dividing.

The volume of olive oil will be nearly 1300mL or 1.30 L as per the given data.

What is volume?

Volume is a measurement of three-dimensional space that is occupied. It is frequently numerically quantified using SI derived units or various imperial units. The definition of length is linked to the definition of volume.

Volume is, at its most basic, a measure of space. The units liters (L) and milliliters (mL) are used to measure the volume of a liquid, also known as capacity.

This measurement is done with graduated cylinders, beakers, and Erlenmeyer flasks.

Here, it is given that mass of olive oil is 1.2kg.

We know that,

Density of olive oil = 0.917kg/l.

Volume = mass/density

Volume = 1.2/0.917.

Volume = 1.30 lit.

Volume = 1300mL.

Thus, the volume of olive oil will be 1300 mL.

For more details regarding volume, visit:

https://brainly.com/question/1578538

#SPJ2

4.2 mol of oxygen and 4.0 mol of NO are introduced to an evacuated 0.50 L reaction vessel. At a specific temperature, the equilibrium 2NO(g) + O 2(g) 2NO 2(g) is reached when [NO] = 1.6 M. Calculate K c for the reaction at this temperature.

Answers

Explanation:

At 593K a particular decomposition’s rate constant had a value of 5.21×10−4 and at 673K the same reaction’s rate constant was 7.42×10−3. It was noticed that when the reactant’s initial concentration was 0.2264 M (with a 593K reaction temperature), the initial reaction rate was identical to the initial rate when the decomposition was run at 673K with an initial reactant concentration of 0.05999 M. Recall that rate laws have the form rate = k [A]x and, showing work, determine the order of the decomposition reaction.

How many Liters of 0.968M solution can be made if 0.581 moles of solute are added? Group of answer choices 0.600 L 60 mL 0.562 L 1.00 L

Answers

Answer:

0.6L

Explanation:

The formula of molarity is molSolute/litreSolution

[tex]0.968M=\frac{0.581}{LitreSolution} \\\\LitreSolution=\frac{0.581}{0.968} \\LitreSolution=0.6L[/tex].

The blending of one s atomic orbital and three p atomic orbitals produces ________.

A three sp3
B four sp3
C three sp
D four sp2
E four sp

Answers

Answer:

B. four sp3

Hope that helps.

We have that for the Question "The blending of one s atomic orbital and three p atomic orbitals produces?"

Answer:

Option B = four [tex]sp^3[/tex]

Explanation:

When 1 s orbital blends with 3 p orbitals, they form a tetrahedrical shaped figure with each being a [tex]SP^3[/tex] orbital.. A total of 4 orbitals

For more information on this visit

https://brainly.com/question/17756498

How many atoms of hydrogens are found in 3.21 mol of
C3H8?​

Answers

Answer:

1.55 × 10²⁵ atoms of H  

Explanation:

3.21mol C₃H₈ × 8mol H × (6.022×10²³)

Copper was one of the earliest metals used by humans, because it can be prepared from a wide variety of copper minerals, such as cuprite (Cu2O), chalcocite (Cu2S), and malachite [Cu2CO3(OH)2]. Balance the following reactions for converting these minerals into copper metal. Place a coefficient in each gray box.
(a) Cu2O(s) + C(s) rightarrow Cu(s) + CO2(g)
(b) Cu2O(s) + Cu2 S(s) rightarrow Cu(s) + SO2(g)
(c) Cu2 CO3 (OH)2(s) rightarrow CuO(s) + CO2(g) + H2O(g)
Use the left and rightarrow keys to move the cursor out of a superscript or subscript in the module.

Answers

Answer:

a. 2 Cu₂O(s) + C(s) → 4Cu(s) + CO₂(g)

b. 2Cu₂O(s) + Cu₂S(s) → 6Cu(s) + SO₂(g)

c. Cu₂CO₃(OH)₂(s) → 2 CuO(s) + CO₂(g) + H₂O(g)

Explanation:

A reaction is balanced when you have the same amount of atoms in reactants and products.

In the reactions:

(a) Cu₂O(s) + C(s) → Cu(s) + CO₂(g)

As a general rule, you first balance oxygen and hydrogen. In products you have 2 oxygens, then:

2 Cu₂O(s) + C(s) → Cu(s) + CO₂(g)

Carbon is balanced yet. Thus, you need just to balance Cu:

2 Cu₂O(s) + C(s) → 4Cu(s) + CO₂(g)

(b) Cu₂O(s) + Cu₂S(s) → Cu(s) + SO₂(g)

Balancing oxygen:

2Cu₂O(s) + Cu₂S(s) → Cu(s) + SO₂(g)

Sulfur is balanced yet. Now you just need to balance Cu:

2Cu₂O(s) + Cu₂S(s) → 6Cu(s) + SO₂(g)

(c) Cu₂CO₃(OH)₂(s) → CuO(s) + CO₂(g) + H₂O(g)

This reaction is different because the reactant is a chemical with a lot of atoms. we will first balance Cu:

Cu₂CO₃(OH)₂(s) → 2 CuO(s) + CO₂(g) + H₂O(g)

Balancing copper, oxygen, hydrogen and carbon are balanced:

Cu₂CO₃(OH)₂(s) → 2 CuO(s) + CO₂(g) + H₂O(g)

How many grams are in 5.87 x 10^21 molecules of sulfur?

Answers

Answer:

0.312g

Explanation:

From Avogadro's hypothesis, 1mole of any substance contains 6.02x10^23 molecules. This means that 1mole of sulphur also contains 6.02x10^23 molecules

1mole of sulphur = 32g

If 1 mole(i.e 32g) of sulphur contains 6.02x10^23 molecules

Then, Xg of sulphur will contain 5.87x10^21 molecules i.e

Xg of sulphur = (32x5.87x10^21)/6.02x10^23 = 0.312g

just saying this is not my work, thank Eduard22sly

he answered it on a different page

so give him credit

here is the link

https://brainly.com/question/14966520

14. Based on your previous observations, predict the impact of changing the number of moles of a gas sample on the volume of the gas sample (if pressure and temperature are held constant). What effect would changing the number of moles of a gas sample have on the temperature of a gas sample (if pressure and volume are held constant)? Explain

Answers

Answer:

Number of moles of gas is directly proportional to the volume of the gas

Number of moles of the gas is directly proportional to the temperature of the gas

Explanation:

According to Avogadro's law, changing the number of moles of a gas changing the volume of the gas also since the volume of a gas is directly proportional to the number of moles of the gas.

Hence from Avogadro's law; V= kn where k is a proportionality constant, V is the volume of the gas and n is the number of moles of the gas.

Changing the number of moles will also lead to a change in the temperature of the gas, since volume is directly proportional to the number of moles of the gas and volume is also directly proportional to temperature (Charles law), it the follows that number of moles of the gas is directly proportional to its temperature.

230g sample of a compound contains 136.6g carbon, 26.4g hydrogen, and 31.8g nitrogen. What is masspercentif oxygen

Answers

Answer:

15.3 %

Explanation:

Step 1: Given data

Mass of the sample (ms): 230 gMass of carbon (mC); 136.6 gMass of hydrogen (mH): 26.4 gMass of nitrogen (mN): 31.8 g

Step 2: Calculate the mass of oxygen (mO)

The mass of the sample is equal to the sum of the masses of all the elements.

ms = mC + mH + mN + mO

mO = ms - mC - mH - mN

mO = 230 g - 136.6 g - 26.4 g - 31.8 g

mO = 35.2 g

Step 3: Calculate the mass percent of oxygen

%O = (mO / ms) × 100% = (35.2 g / 230 g) × 100% = 15.3 %

Choose the most appropriate indicator for the titration of a weak acid with NaOH, where the expected equivalence point of the titration is at pH 8.8.

a. methyl orange, pH range 3.2-4.4
b. methyl red, pH range 4.8 6.0
c. bromothymol blue, pH range 6.0-7.6
d. phenolphthalein, pH range 8.2-10.0
e. alizarin yellow R. pH range 10.1-12.0

Answers

Answer:

D phenolphthalein,pH range 8.2-10.0

what are the similarities between amorphous solid and crystalline solid

Answers

Answer:

solid dont know

Explanation:

so sorry ask another

Fe2O3(s) + 3CO(g) ---> 2Fe(l) + 3CO2(g) Steve inserts 450. g of iron(III) oxide and 260. g of carbon monoxide into the blast furnace. After cooling the pure liquid iron, Steve determines that he has produced 288g of iron ingots. Use the theoretical yield of liquid iron and the mass or iron ingots to calculate the percent yield of the reaction.

Answers

Answer: Theoretical yield is 313.6 g and the percent yield is, 91.8%

Explanation:

To calculate the moles :

[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]    

[tex]\text{Moles of} Fe_2O_3=\frac{450}{160}=2.8moles[/tex]

[tex]\text{Moles of} CO=\frac{260}{28}=9.3moles[/tex]

[tex]Fe_2O_3(s)+3CO(g)\rightarrow 2Fe(l)+3CO_2(g)[/tex]

According to stoichiometry :

1 mole of [tex]Fe_2O_3[/tex] require 3 moles of [tex]CO[/tex]

Thus 2.8 moles of [tex]Fe_2O_3[/tex] will require=[tex]\frac{3}{1}\times 2.8=8.4moles[/tex]  of [tex]CO[/tex]

Thus [tex]Fe_2O_3[/tex] is the limiting reagent as it limits the formation of product and [tex]CO[/tex] is the excess reagent.

As 1 mole of [tex]Fe_2O_3[/tex] give = 2 moles of [tex]Fe[/tex]

Thus 2.8 moles of [tex]Fe_2O_3[/tex] give =[tex]\frac{2}{1}\times 2.8=5.6moles[/tex] of [tex]Fe[/tex]

Mass of [tex]Fe=moles\times {\text {Molar mass}}=2.6moles\times 56g/mol=313.6g[/tex]

Theoretical yield of liquid iron = 313.6 g

Experimental yield = 288 g

Now we have to calculate the percent yield

[tex]\%\text{ yield}=\frac{\text{Actual yield }}{\text{Theoretical yield}}\times 100=\frac{288g}{313.6g}\times 100=91.8\%[/tex]

Therefore, the percent yield is, 91.8%

When two molecules of methanol (CH3OH) react with oxygen, they combine with three O2 molecules to form two CO2 molecules and four H2O molecules. How many H2O molecules are formed when 94 methanol molecules react

Answers

Answer:

188

Explanation:

For every 2 molecules of methanol reacted, 4 molecules of water are formed.  Use this relationship to solve.

2/4 = 94/x

2x = 376

x = 188

188 molecules of water will be formed.

Molarity of NaOH: From the following data calculate molarity of NaOH. Molar mass of KHP is 204.23 g/mol. Show calculation. Mass of Erlenmeyer flask + KHP 84.847 g Mass of Erlenmeyer flask 84.347 g Mass of KHP ??? Final buret reading 12.25 mL Initial buret reading 0.50 mL Volume of NaOH added ???

Answers

Answer:

Explanation:

Mass of Erlenmeyer flask + KHP =  84.847 g

Mass of Erlenmeyer flask  = 84.347 g

Mass of KHP = .5 g

moles of KHP = .5 / 204.23

= 2.448 x 10⁻³ moles

moles of NaOH reacted = 2.448 x 10⁻³

Final buret reading =  12.25 mL

Initial buret reading = 0.50 mL

Volume of NaOH added=

2) 2.5 mol of an ideal gas at 20 oC under 20 atm pressure, was expanded up to 5 atm pressure via; (a) adiabatic reversible and (b) adiabatic irreversible process. Calculate the values of w, q, ΔU, ΔH for each process. (Cv = 5 cal / mol.K ≈ 5/2 R; R ≈ 2 cal / mol.K) (Please find the desired values by making the corresponding derivations

Answers

Answer:

a) for adiabatic reversible, ΔU(internal energy is constant) = 0, ΔH = 0(no heat is entering or leaving the surrounding)

workdone (w) = -8442.6 J  ≈ -8.443 KJ

heat transferred (q) of the ideal gas = - w

q = 8.443 KJ

b) For ideal gas at adiabatic reversible, Internal energy (ΔU) = 0 and enthalpy (ΔH) = 0

the workdone(w) in the ideal gas= - 4567.5 J  ≈ - 4.57 KJ

the heat transfer (q) of an ideal gas = 4.5675 KJ

Explanation:

given

mole of an ideal gas(n) = 2.5 mol

Temperature (T) = 20°C

= (20°C + 273) K  = 293 K

Initial pressure of the ideal gas(P₁) = 20 atm

Final pressure of the ideal gas(P₂) = 5 atm.

2) (a)for adiabatic reversible process,

note: adiabatic process is a process by which no heat or mass is transferred between the system and its surrounding.

Work done (w) = nRT ln[tex]\frac{P_{1} }{P_{2} }[/tex]

= 2.5 mol × 8.314 J/mol K × 293 K × ln[tex]\frac{5atm}{20atm}[/tex]

= 6090.01 J × [-1.3863]

= -8442.6 J  ≈ -8.443 KJ

So, the work done (w) of ideal gas = -8.443 KJ

For ideal gas at adiabatic reversible, Internal energy (U) = 0 and Enthalpy (H) = 0

From first law of thermodynamics:-

U = q + w

0 = q + w

q = - w

q = - (-8.443 KJ)

q = 8.443 KJ

heat transfer (q) of the ideal gas = 8.443 KJ

(b) For adiabatic irreversible, the temperature T remains constant because the internal energy U depends only on temperature T. Since at constant temperature, the entropy is proportional to the volume, therefore, entropy will increase.

Work done (w) = -nRT(1 - ln[tex]\frac{P_{1} }{P_{2} }[/tex] )

= - 2.5 mol × 8.314 J / mol K× 293 K × [1- (5 atm /20 atm)]

= - 6090.01 J × 0.75

= - 4567.5 J  ≈ - 4.57 KJ

∴work done(w) of an ideal gas = - 4.57 KJ

For ideal gas at adiabatic Irreversible, Internal energy (U) = 0 and Enthalpy (H) = 0

From first law of thermodynamics:-

U = q + w

0 = q + w

q = - w

q = - (-4.5675 KJ)

q = 4.5675 KJ

the heat transfer (q) of an ideal gas = 4.5675 KJ

Arrange the following elements in order of decreasing first ionization energy: S, Ca, F, Rb, and Si.
Rank from largest to smallest. To rank items as equivalent, overlap them.

Answers

Answer:

The concentration of energy needed to withdraw an electron from an atom’s mole in the gas phase is known as the ionization energy of an atom. It is more accurately termed as the first ionization energy. The ionization energy upsurges from left to right through a period and from top to bottom in the groups.  

Of the given elements S, Ca, F, Rb, and Si, the S, and Si belong to the third period, and the atomic radius of S is less in comparison to Si, F belongs to the second period, Rb belongs to the fifth period, and Ca belongs to the fourth period. Thus, the decreasing order of first ionization energy, that is, from largest to smallest is F > S > S > Ca > Rb.  

Considering the definition of ionization energy,

Ionization energy, also called ionization potential, is the necessary energy that must be supplied to a neutral, gaseous, ground-state atom to remove an electron from an atom. When an electron is removed from a neutral atom, a cation with a charge equal to +1 is formed.

You should keep in mind that the electrons of the last layer are always lost, because they are the weakest attracted to the nucleus.

In a group, the ionization energy increases upwards because when passing from one element to the bottom, it contains one more layer of electrons. Therefore, the valence layer electrons, being further away from the nucleus, will be less attracted to it and it will cost less energy to pluck them.

In the same period, in general, it increases as you shift to the right. This is because the elements in this way have a tendency to gain electrons and therefore it will cost much more to tear them off than those on the left which, having few electrons in the last layer will cost them much less to lose them.

Taking into account the above, the decreasing order of first ionization energy, that is, from largest to smallest is F > S > S > Ca > Rb.  

Learn more:

https://brainly.com/question/24409114https://brainly.com/question/14158485?referrer=searchResultshttps://brainly.com/question/14454446?referrer=searchResults

Suppose there is 1.00 L of an aqueous buffer containing 60.0 mmol of formic acid (pKa=3.74) and 40.0 mmol of formate. Calculate the pH of this buffer.

Answers

Answer:

pH = 3.56

Explanation:

The pH of the buffer producing from the mixture of formic acid and formate ion can be found using H-H equation:

pH = pka + log [A⁻] / [HA]

pH = 3.74 + log [Formate] / [formic acid]

Where [] represents molar concentrations -or moles- of formate and formic acid in the solution.

Replacing knowing moles of formic acid = 0.0600 and moles formate = 0.0400:

pH = 3.74 + log [Formate] / [formic acid]

pH = 3.74 + log [0.0400] / [0.0600]

pH = 3.56

29. Which alcohol combines with carboxylic acid to produce the ester called ethyl butanoate?

A) butan-2-ol

B) propan-1-ol

C) butan-1-ol

D) ethanol

Answers

Answer:

The answer is option D.

ethanol

Hope this helps you

2HCl(aq) + Ba(OH)2(aq) → BaCl2(aq) + 2H2O(l) ΔH = –118 kJ Calculate the heat when 250.0 mL of 0.500 M HCl is mixed 500.0 mL of 0.500 M Ba(OH)2. Assuming that the temperature of both solutions was initially 25.0 oC and that the final mixture has mass of 750.0 g and a specific heat capacity of 4.18 J oC–1g–1, calculate the final temperature (in oC) of the mixture.

Answers

Answer:

Heat = 7375J

Final temperature of the mixture = 27.35°C

Explanation:

In the reaction:

2HCl(aq) + Ba(OH)₂(aq) → BaCl₂(aq) + 2H₂O(l) ΔH = –118 kJ

When 2 moles of HCl reacts with excess of Ba(OH)₂ there are released 118kJ.

In the reaction, moles of HCl and Ba(OH)₂ that reacts are:

Moles HCl = 0.250L ₓ (0.500 moles / L) = 0.125 moles HCl

Moles Ba(OH)₂ = 0.500L ₓ (0.500 moles / L) = 0.250 moles Ba(OH)₂

For a complete reaction of 0.125 moles of HCl you need:

0.125 mol HCl ₓ (1 mole Ba(OH)₂ / 2 moles HCl) = 0.0625 moles Ba(OH)₂

As you have 0.250 moles of Ba(OH)₂, this reactant is in excess

2 moles of HCl that react release 118kJ, 0.125 moles of HCl release:

0.125 moles HCl ₓ (118kJ / 2 moles) = 7.375kJ =

7375J

The heat released can be obtained with the formula:

Q = C×m×ΔT

Where Q is heat, C specific heat of the solution, m its mass and ΔT change in temperature.

Replacing:

Q = C×m×ΔT

7375J = 4.18J/g°C×750.0g×ΔT

2.35°C = ΔT

As ΔT = Final T - Initial T:

2.35°C = Final T - 25.0°C

27.35°C = Final temperature of the mixture

A cell was prepared by dipping a Cu wire and a saturated calomel electrode into 0.10 M CuSO4 solution. The Cu wire was attached to the positive terminal of a potentiometer and the calomel electrode was attached to the negative terminal.(a) Write a half-reaction for the Cu electrode. (Use the lowest possible coefficients. Omit states-of-matter.)
(c) Calculate the cell voltage.

Answers

Answer:

(a)  Cu²⁺ +2e⁻ ⇌ Cu

(c) 0.07 V  

Explanation:

(a) Cu half-reaction

Cu²⁺ + 2e⁻ ⇌ Cu

(c) Cell voltage

The standard reduction potentials for the half-reactions are+

                                              E°/V

Cu²⁺ + 2e⁻ ⇌ Cu;                  0.34  

Hg₂Cl₂ + 2e⁻ ⇌ 2Hg + 2Cl⁻; 0.241

The equation for the cell reaction is

                                                                            E°/V

Cu²⁺(0.1 mol·L⁻¹) + 2e⁻ ⇌ Cu;                               0.34  

2Hg + 2Cl⁻ ⇌ Hg₂Cl₂ + 2e⁻;                             -0.241

Cu²⁺(0.1 mol·L⁻¹) + 2Hg + 2Cl⁻ ⇌ Cu + Hg₂Cl₂;   0.10

The concentration is not 1 mol·L⁻¹, so we must use the Nernst equation

(ii) Calculations:  

T = 25 + 273.15 = 298.15 K

[tex]Q = \dfrac{\text{[Cl}^{-}]^{2}}{ \text{[Cu}^{2+}]} = \dfrac{1}{0.1} = 10\\\\E = 0.10 - \left (\dfrac{8.314 \times 298.15 }{2 \times 96485}\right ) \ln(10)\\\\=0.010 -0.01285 \times 2.3 = 0.10 - 0.03 = \textbf{0.07 V}\\\text{The cell potential is }\large\boxed{\textbf{0.07 V}}[/tex]

 

Green plants use light from the Sun to drive photosynthesis. Photosynthesis is a chemical reaction in which water and carbon dioxide chemically react to form the simple sugar glucose and oxygen gas . What mass of simple sugar glucose is produced by the reaction of 4.9 of carbon dioxide?

Answers

Answer:

3.3 g of glucose, C6H12O6.

Explanation:

We'll begin by writing the balanced equation for the reaction. This is given below:

6CO2 + 6H2O —> C6H12O6 + 6O2

Next, we shall determine the mass of CO2 that reacted and the mass of C6H12O6 produced from the balanced equation.

This is illustrated below:

Molar mass of CO2 = 12 + (2x16) = 44 g/mol

Mass of CO2 from the balanced equation = 6 x 44 = 264 g

Molar mass of C6H12O6 = (12x6) + (12x1) + (16x6) = 180 g/mol

Mass of C6H12O6 from the balanced equation = 1 x 180 = 180 g

From the balanced equation above,

264 g of CO2 reacted to produce 180 g of C6H12O6.

Finally, we shall determine the mass of C6H12O6 produced by reacting 4.9 g of CO2 as follow:

From the balanced equation above,

264 g of CO2 reacted to produce 180 g of C6H12O6.

Therefore, 4.9 g of CO2 will react to produce = (4.9 x 180)/264 = 3.3 g of C6H12O6.

Therefore, 3.3 g of glucose, C6H12O6 were obtained from the reaction.

Why is it important that the primary standard chemical be non-hygroscopic and pure? Why is it important to dry the primary standard to a constant weight?

Answers

Answer:

It is extremely important for the primary standard chemical to be non – hygroscopic and pure and to also have a constant weight because you don't want any moisture or any impurities to alter the stoichiometric point in the reaction

It is important that the primary standard chemical be non-hygroscopic and pure to calculate the exact calculation of the reaction.

What is non hygroscopic chemicals?

Non hygroscopic chemicals are those compounds which will not absorb water or mositure from the outside.

If we take any substance which are hygroscopic in nature and during the chemical reaction if they absorb water content or moisture then the mass of that substance will alter and changes all the calculation of the reaction.

So, to maintain the stability of calculation we use non hygroscopic materials.

To know more about non hygroscopic materials, visit the below link:

https://brainly.com/question/1757597

Which of these substances has the highest pOH? 0.10 M HCl, pH = 1 0.001 M HNO3, pH = 3 0.01 M NaOH, pH = 12 The answer is 0.10 M HCI, pH=1

Answers

Answer:On these combined scales of pH and pH it can be shown that because for water when pH = pH = 7 that pH + pH = 14. This relationship is useful in the inter conversion of values. For example, the pH at a 0.01 M solution of sodium hydroxide is 2, the pH of the same solution must be 14-2 = 12.

Explanation:

The 0.10M HCI, pH = 1 solution has the highest pOH. Therefore, option (1) is correct.

What is the pOH?

pOH of a solution can be determined from the negative logarithm of the hydroxide ions concentration in the solution.

The mathematically pOH of the solution can be expressed as:

pOH = -log [OH⁻]                                                          ..............(1)

Where [OH⁻] represents the concentration of hydroxide ions in an aqueous solution.

Given, the pH = 1 of HCl

pH + pOH = 14

1 + pOH = 14

pOH = 14 - 1

pOH = 13

Given, the pH = 3 of HNO₃

pH + pOH = 14

3 + pOH = 14

pOH = 14 - 3

pOH = 11

Given, the pH = 12 of NaOH = 0.01 M

pH + pOH = 14

12 + pOH = 14

pOH = 14 - 12

pOH = 2

Learn more about pOH, here:

brainly.com/question/17144456

#SPJ2

Use 1-Butanol as the only organic compound, design a method to synthesize 5-Nonanone. You may use any other inorganic reagents. Any organic reagents have to be made from 1-butanol.

Answers

Answer:

See attached picture.

Explanation:

Hello,

In this case, starting by 1-butanol, we can make it react with hydrogen bromide (1st step) in order to yield 1-bromobutane. Next, the formed alkyl halide is treated magnesium in the presence of an ether in order to yield butyl magnesium bromide which is a Grignard reagent (2nd step). Finally, by adding carbon dioxide, water and extra hydrogen chloride, a carbonyl group can be formed between two butyl radicals in order to form the 5-nonanone (3rd step) as shown on the attached picture.

Best regards.

Other Questions
what does a 9 round up to in the decimal when in the tenths place? for example if it is 30.98 and it says to round to the nearest tenths place what would the decimal be now? Through which vascular tissue do water and nutrients get transported to reach the leaves during transpiration? cuticle parenchyma xylem phloem Which of the following was not a tactic used by business leaders against labor unions? a. quota systems b. hiring scabs c. yellow-dog contracts d. blacklists Plot 1 1/3 and 2 7/9 Find the square root of the following using division method . iv) 36360 Please come and answer this question quickly..... "How can we maintain a balance between the demand for consumption of resources of the present generation and that of the future generation?" Answer this question......... A line passes through the point (6,1)and has a slope of 3/2. write an equation in slope intercept form A merger where one company purchases another as a way to reduce competition, is an example of a type of market activity that governments pass laws against. These types of regulations are described as ______________. Summarize the process of PCR in a diagram. Include all the steps, labeled and in the right order. What is the domain of F(x) = In (x)?A: all real numbers except 0B: all real numbersC: all real numbers less than 0D: all real numbers greater than 0 2/7 DIVIDED by 3=please help me The fourth and fifth graders at Jackson Elementary had a competition to see who couldrecycle the most newspaper in a 3-day period. Use the chart to answer the question,The students at Lee Elementary collected 3 times as much as the students at Jackson. Howmany pounds did the students at Lee recycle? Hurry!!State the domain of the glven relation. Write the following numbers in decreasing order: 4; 1 2 3 ; 0.5; 1 3 4 ; 0.03; 1; 1; 0; 10; 54 help on radical functions Three books are at rest, in equilibrium, on a horizontal table asshown. The weight of each book, which is equal to the forcegravity exerts in the downward direction, is given. What is thenet force on the middle book? In her poem In a Queens Domain, what does Piatt seem to be inferring about the world in these lines"And my subject, the dove, coos on,Though my hand creep close to her nest.What aspects of realism do these lines reveal? What comment is Piatt making about the world in which she lives? The Library is a new bar in town. Unlike the other bars in town, it charges no cover charge. The new bar has also priced its beer at $3 less per pitcher than its competition. Given what you know about pricing strategies, which pricing strategy is the owner of the new bar using How to do this question plzzz Planets near the Sun are composed of mainly rock and iron. How does the Solar Nebula theory account for this? Select one: a. The planets that today are near the Sun were captured. b. The forming Suns heat prevented substances such as ices from condensing in the inner Solar System. c. The Suns magnetic field attracted all of the iron in the nebula into the inner Solar System. d. As the planets were captured, denser ones were pulled closer to the Sun by gravity. e. The planets that today are far from the Sun were captured. Clear my choice