Answer:
no
Step-by-step explanation:
it was slower the way there and if he was going 40 it would have taken the same time to get there as it would have to go back
Answer:
Yes.
Step-by-step explanation:
Reiko's average speed was 80 miles per hour. That is more than 40 miles per hour. Even if it took him longer to drive from A to B, his speed would still be more than 40 miles per hour to have the average speed be 80 miles per hour.
Hope this helps!
Construct a 99% confidthence interval for the population mean .Assume the population has a normal distribution. A group of 19 randomly selected employees has a mean age of 22.4 years with a standard deviation of 3.8 years. Round to the nearest tenth.
A) Determine the critical value ta/2 with n-the 1 degrees of freedom
B) Determine the lower and upper bound of the confidence interval
C) Interpret the confidence interval.
Confidence interval for mean, when population standard deviation is unknown:
[tex]\overline{x}\pm t_{\alpha/2}\dfrac{s}{\sqrt{n}}[/tex]
, where [tex]\overline{x}[/tex] = sample mean
n= sample size
s= sample standard deviation
[tex]t_{\alpha/2}[/tex] = Critical t-value for n-1 degrees of freedom
We assume the population has a normal distribution.
Given, n= 19 , s= 3.8 , [tex]\overline{x}=22.4[/tex]
[tex]\alpha=1-0.99=0.01[/tex]
A) Critical t value for [tex]\alpha/2=0.005[/tex] and degree of 18 freedom
[tex]t_{\alpha/2}[/tex] = 2.8784
B) Required confidence interval:
[tex]22.4\pm ( 2.8744)\dfrac{3.8}{\sqrt{19}}\\\\=22.4\pm2.5058\\\\=(22.4-2.5058,\ 22.4+2.5058)=(19.8942,\ 24.9058)\approx(19.9,\ 24.9)[/tex]
Lower bound = 19.9 years
Uppen bound = 24.9 years
C) Interpretation: We are 99% confident that the true population mean of lies in (19.9, 24.9) .
Help please!!!!””””””””””
Answer:
Step-by-step explanation:
1. Given
2. Given
3. Reflective Property
4. SAA
The functions f(x) and g(x) are graphed.
On a coordinate plane, a curved red line with an upward arc, labeled g of x, crosses the y-axis at (0, 4) and the x-axis at (2, 0). A straight blue line with a negative slope, labeled f of x, crosses the y-axis at (0, 4) and the x-axis at (2, 0).
Which represents where f(x) = g(x)?
f(2) = g(2) and f(0) = g(0)
f(2) = g(0) and f(0) = g(4)
f(2) = g(0) and f(4) = g(2)
f(2) = g(4) and f(1) = g(1)
Answer:
[tex]f(0)=g(0)[/tex] and [tex]f(2) = g(2)[/tex]
Step-by-step explanation:
According to the question, the curved red line represents [tex]g(x)[/tex] and the straight blue line represents [tex]f(x)[/tex].
The important thing here is that the equality of functions [tex]f(x)=g(x)[/tex] is represented as a common function between their curves. So, we just need to find such a common point for both.
[tex]f(x)[/tex] has points (0, 4) and (2, 0).
[tex]g(x)[/tex] has points (0,4) and (2,0).
Notice that both functions have the same y-value for x=0 and x=2, that means
[tex]f(0)=g(0)[/tex] and [tex]f(2) = g(2)[/tex].
Therefore, the right answer is the first choice.
The correct answer is option A which is f(2) = g(2) and f(0) = g(0)
What is a function?A function in mathematics set up a relationship between the dependent variable and independent variable. on changing the value of the independent variable the value of the dependent variable also changes.
According to the question, the curved red line represents g(x) while the straight blue line represents f(x).
The important thing here is that the equality of functions f(x) = g(x) is represented as a common function between their curves. So, we just need to find a common point for both.
f(x) has points (0, 4) and (2, 0).
g(x) has points (0,4) and (2,0).
Notice that both functions have the same y-value for x=0 and x=2, which means
f(2) = g(2) and f(0) = g(0)
Therefore correct answer is option A which is f(2) = g(2) and f(0) = g(0)
To know more about function follow
https://brainly.com/question/2833285
#SPJ5
Calculate the ratios in the table using the side lengths that you recorded in Part C.
Answer:
The ratios are;
[tex]\dfrac{BC}{AB} = \dfrac{3}{5}[/tex]
[tex]\dfrac{AC}{AB} = \dfrac{4}{5}[/tex]
[tex]\dfrac{BC}{AC} = \dfrac{3}{4}[/tex]
[tex]\dfrac{DE}{AD} = \dfrac{3}{5}[/tex]
[tex]\dfrac{AE}{AD} = \dfrac{4}{5}[/tex]
[tex]\dfrac{DE}{AE} =\dfrac{3}{4}[/tex]
Step-by-step explanation:
Given that the lengths of the sides are;
[tex]\overline {AB}[/tex] = 20
[tex]\overline {BC}[/tex] = 12
[tex]\overline {AC}[/tex] = 16
[tex]\overline {AD}[/tex] = 10
[tex]\overline {DE}[/tex] = 6
[tex]\overline {AE}[/tex] = 8
The ratios are;
[tex]\dfrac{Length \ opposite \ \angle A}{Hypothenus} = \dfrac{BC}{AB} = \dfrac{12}{20} = \dfrac{3}{5}[/tex]
[tex]\dfrac{Length \ adjacent\ \angle A}{Hypothenus} = \dfrac{AC}{AB} = \dfrac{16}{20} = \dfrac{4}{5}[/tex]
[tex]\dfrac{Length \ opposite \ \angle A}{Length \ adjacent \ \angle A} = \dfrac{BC}{AC} = \dfrac{12}{16} = \dfrac{3}{4}[/tex]
[tex]\dfrac{Length \ opposite \ \angle A}{Hypothenus} = \dfrac{DE}{AD} = \dfrac{6}{10} = \dfrac{3}{5}[/tex]
[tex]\dfrac{Length \ adjacent\ \angle A}{Hypothenus} = \dfrac{AE}{AD} = \dfrac{8}{10} = \dfrac{4}{5}[/tex]
[tex]\dfrac{Length \ opposite \ \angle A}{Length \ adjacent \ \angle A} = \dfrac{DE}{AE} = \dfrac{6}{8} = \dfrac{3}{4}[/tex]
Answer:
Step-by-step explanation:
right here press the picture
Answer:
1133.54 in.^2
Step-by-step explanation:
The answer is the area of the circle which is in white inside the square. We are not looking for the shaded area.
A = (pi)r^2
r = d/2 = 38 in./2 = 19 in.
A = (3.14)(19 in.)^2
A = (3.14)(19 in.)(19 in.)
A = 1133.54 in.^2
Answer:
1133.54 [tex] {in}^{2} [/tex]Step-by-step explanation:
Given,
Diameter ( d ) = 38
Radius ( r ) = 38/2 = 19
π = 3.14
Now, let's find the area :
[tex]\pi \: {r}^{2} [/tex]
Plug the values
[tex]3.14 \times {(19)}^{2} [/tex]
Evaluate the power
[tex]3.14 \times 361[/tex]
Calculate the product
[tex]1133.54 \: {in}^{2} [/tex]
Hope this helps..
Best regards!!
Please answer this in two minutes
Answer:
15
Step-by-step explanation:
Use the Pythagorean Thereom:
[tex]r^{2}[/tex] = [tex]9^{2}[/tex]+[tex]12^{2}[/tex]
[tex]r^{2}[/tex] = 81+144
[tex]r^{2}[/tex] = 225
[tex]r[/tex]= 15
Please mark me as Brainliest!
Does this table represent a function? Why or why not?
Answer:
A Yes, because every x value corresponds to exactly one y value
Step-by-step explanation:
A function has a one to one correspondence, or every x goes to only one y value
Since each x goes to only 1 y value this is a function
Answer: It is a function
Step-by-step explanation:
One way to tell if it is a function or not, is to look at the X and Y. While 2 different X values can get the same Y value, one X value should not have 2 different Y values. In the table you can see, there are no repeating X values that have different Y values.
EXAMPLES:
(14, 15)
(13,15)
If these two showed up in a table, it could still be a function
(14, 15)
(14, 16)
If these pairs showed up in a table, than it would not be considered a function
Can somebody plz help me 15-[7+(-6)+1]^3
Answer:
7.
Step-by-step explanation:
15 - [7 + (-6)+ 1]^3
Using PEMDAS:
= 15 - [ 7-6+1]^3
Next work out what is in the parentheses:
= 15 - 2*3
Now the exponential:
= 15 - 8
= 7.
Step-by-step explanation:
Hi,
I hope you are searching this, right.
=15[7+(-6)+1]^3
=15[7-6+1]^3
=15[2]^3
=15-8
=7...is answer.
Hope it helps..
Use the ratio of a 30-60-90 triangle to solve for the variables. Leave your answers as radicals in simplest form. x= y=
Answer:
x = 10 units, y = 5 units
Step-by-step explanation:
Given triangle ABC is a 30-60-90 triangle,
m∠C = 60°
By applying Sine rule in the given triangle,
Sin(60)°= [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]
Sin(60)° [tex]=\frac{\text{AB}}{\text{AC}}[/tex]
[tex]\frac{\sqrt{3}}{2}=\frac{\text{AB}}{\text{AC}}[/tex]
[tex]\frac{\sqrt{3}}{2}=\frac{5\sqrt{3}}{x}[/tex]
x = 10 units
Similarly, by applying Cosine rule in the given triangle,
Cos(60)° = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]
Cos(60)° = [tex]=\frac{\text{BC}}{\text{AC}}[/tex]
[tex]\frac{1}{2}=\frac{y}{x}[/tex]
y = [tex]\frac{x}{2}[/tex]
y = 5 units
Therefore, x = 10 units and y = 5 units will be the answer.
Which graph corresponds to the equation: y=−2x−6 A. graph that contains the points (0,-3) and (6,0) B. graph that contains the points (3,0) and (5,4) C. graph that contains the points (-3,0) and (-5,4) D. graph that contains the points (-6,0) and (2,-4)
Answer: C. graph that contains the points (-3,0) and (-5,4).
Step-by-step explanation:
Given equation of line: [tex]y=-2x-6[/tex]
Now, Let's check each option
A. Put (x,y)=(0,-3), i.e. x=0 and y=-3 in given equation
[tex]-3=-2(0)-6\\\\\Rightarrow\ -3=-6[/tex]
which is not true.
So, option A. is not correct.
B. Put (x,y) = (3,0), i.e. x=3 and y=0
[tex]0=-2(3)-6\\\\\Rightarrow\ 0=-6-6\\\\\Rightarrow\ 0=-12[/tex]
which is not true.
So option B. is not correct.
C. Put (x,y) = (-3,0), i.e. x=-3 and y=0
[tex]0=-2(-3)-6\\\\\Rightarrow\ 0=0[/tex] , which is true.
Put (x,y) = (-5,4) ,
[tex]4=-2(-5)-6\\\\\Rightarrow\ 4=10-6\\\\\Rightarrow\ 4=4[/tex], which is true.
So both points in option C satisfy the given equation.
That means, option C is correct.
D. Put (x,y) = (-6,0)
[tex]0=-2(-6)-6\Rightarrow\ 0=6[/tex] , which is not true.
So option D. is not correct.
simplify 3(8-4)^2+7*9
━━━━━━━☆☆━━━━━━━
▹ Answer
111
▹ Step-by-Step Explanation
[tex]3(8 - 4)^{2} + 7 * 9\\\\3 * 4^{2} + 7 * 9\\\\3 * 16 + 63\\\\48 + 63\\\\= 111[/tex]
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
find the value of x in the triangle shown below
Answer:
x=70
Step-by-step explanation:
the angles opposite 3.5 equal 55 degrees
180-55-55=70
Answer:
70°
Step-by-step explanation:
since the both size are equal which is 3.5,it is equal length, so the other angle should be 55 also. Just use the triangle =180° ,180-55-55=70°
what is the value of x if e^3+6+8
Answer:
A
Step-by-step explanation:
What is the apothem of a equilateral triangle with radius 9cm
Answer:
4.5 cm
Step-by-step explanation:
apothem=R/2=9/2=4.5 cm
By which smallast number must the following number be divided so that the quotient is a perfect cube
(A) 8640
Answer:
60
Step-by-step explanation:
8640/60 is 144. 144 is a perfect square. 12*12 is 144
Hey there! I'm happy to help!
------------------------------------------------------------------
INTRO TO PERFECT CUBES
A perfect cube is any number whose cube root is an integer. In English, that means that if you take any number without a fraction (this is called an integer, such as -7, 8, 100, none have fractions) and multiply it by itself three times, you get a perfect cube.
If you cube the number 4, you get 64, which is (4×4×4). 64 is an example of a perfect cube.
You can use the cube root button on your calculator to see if a number is a perfect cube. If you do the cube root of 64, you get 4, telling you that 64 is a perfect cube. The cube root of 10 is 2.154434...... so 10 is not a perfect square because it does not give you an integer (number that does not have a fraction) as the answer.
------------------------------------------------------------------
SOLVING THE PROBLEM
So, we want to find the smallest numbers we can divide 8640 to equal a perfect cube.
I will assume that we will not be dividing by fractions but only whole numbers (positive integers).
We could try dividing by 1, but we see that 8640 is not a perfect cube because it's cube root is 20.519711....
Let's just keep counting up! The first divisor we run into that gives a quotient that it is a perfect cube is the smallest whole number possible that will give us that result.
8640÷2=4320
∛4320≈16.2865....... Not a perfect cube
8640÷3=2880
∛2880≈14.22757..... Not a perfect cube
8640÷4=2160
∛2160≈12.92660..... Not a perfect cube
8640÷5=1728
∛1728=12, a perfect cube!
Since 12 cubed is equal to 1728, this means that 1728 is a perfect square, so 5 is the smallest number we can divide 8640 by to get a perfect square.
The answer is 5.
I hope that this helps! Have a wonderful day! :D
Which shows the rational expression written using the least common denominator?
x+1/4x^2 + x+1/x^2
A) x+1/4x^2 + 4(x+1)/4x^2
B) x+1/x^2 + x+1/x^2
C) x+1/x^2 + 4(x+1)/x^2
D) x+1/4x^2 + x+1/4x^2
Answer:
(x + 1)/4x² + 4(x + 1)/4x²
Step-by-step explanation:
x+1/4x² + x+1/x²
The above can be simply as follow:
Find the least common multiple (LCM) of 4x² and x². The result is 4x²
Now Divide the LCM by the denominator of each term and multiply the result with the numerator as show below:
(4x² ÷ 4x²) × (x + 1) = x + 1
(4x² ÷ x²) × (x + 1) = 4(x + 1)
x+1/4x² + x+1/x² = [(x + 1) + 4(x + 1)]/ 4x²
= (x + 1)/4x² + 4(x + 1)/4x²
Therefore,
x+1/4x² + x+1/x² = (x + 1)/4x² + 4(x + 1)/4x²
Answer: A
Step-by-step explanation:
Please help me! I am struggling
Answer:
Oh man! I totally understand why you are struggling!
Step-by-step explanation:
You want the textbook or the cheat sheet?
Lets go with the cheat sheet.
So, notice the line segments, correct?
The way to find those is Pythagorean Theorem.
The squares of the legs of the triangle add up to the length of the hypotenuse squared. Imagine that the lengths of the sides ARE Hypotenuses. Then, form a triangle, with the legs (Other sides of the triangle except the hypotenuse) either vertically or horizontally(I explain it better below).
In other words, we need to create a right triangle with AB as the hypotenuse to use Pythagorean Theorem. How do we do that?
Count the number of units both vertically and horizontally from point A to B. Essentially, make a horizontal line segment starting at A, and stop it over B. Then, make a vertical line that goes down to B from that ending point (Remember to count the number of units along the way).
Those are your legs. Then, use those measurements in the Pythagorean Theorem:
[tex]12^{2} + 8^{2}=AB[/tex]
I'm confident you can solve this! If you know mathematics...
Then, repeat for either AD or BC.
Then, use the formula for area of the Rectangle. How do we know that it is a rectangle? Well, I'm skipping this part because it will take too long to do, but I can explain it later if you want!
Oh, well.
Hope this helps! Stay Safe!
what is the distance formula
Answer:
14.42 units
Step-by-step explanation:
Assuming that this is a right triangle (i.e ∠ACB = 90°), we can use the Pythagorean formula to solve this:
AB² = AC² + BC²
AB² = 12² + 8²
AB = √(12² + 8²)
AB = 14.42 units
if a mobile was sold for Rs.24408 after allowing 10% discount on the marked price and adding 13% VAT.Findthe discount amount.
Answer:
Hi, there!!!!
See explanation in pictures.
I hope it helps you...
Grace starts with 100 milligrams of a radioactive substance. The amount of the substance decreases by 14 each week for a number of weeks, w. She writes the expression 100(14)w to find the amount of radioactive substance remaining after w weeks. Ryan starts with 1 milligram of a radioactive substance. The amount of the substance decreases by 40% each week for a number of weeks, w. He writes the expression (1 – 0.4)w to find the amount of radioactive substance remaining after w weeks. Use the drop-down menus to explain what each part of Grace’s and Ryan’s expressions mean.
Answer:
100= Initial Amount
1/4= decay factor for each week
w= number of weeks
1/4w= decay factor after w weeks
1 - 0.4= decay factor for each week
w= number of weeks
0.4= percent decrease
Step-by-step explanation:
If –3 + i is a root of the polynomial function f(x), which of the following must also be a root of f(x)?
Answer:
Step-by-step explanation:
REcall that f(x) is a polynomial whose one of its roots is -3+i. The fundamental algebra theorem states that any polynomial of degree n has n complex roots. In the real case, it can be also interpreted as any polynomial can be factored in factors of degree at most 2.
Consider that given a polynomial of degree 2 of the form [tex]ax^2+bx+c[/tex] the solutions are given by
[tex] x = \frac{-b \pm \sqrt[]{b^2-4ac}}{2a}[/tex]
In this case, the fact that x is real or complex depends on the number [tex]b^2-4ac[/tex] which is called the discriminant. When this number is negative, we have that x is a complex root. Let say that [tex]b^4-4ac<0[/tex] and that [tex]\sqrt[]{b^4-4ac}=di[/tex], so the roots are given by
[tex] x_1 = \frac{-b + di}{2a}, x_2 = x_1 = \frac{-b - di}{2a}[/tex]
this means that, whenever we have a complex root, the other root is the complex conjugate. Recall that the complex conjugate of a complex number of the form a+bi is obtained by changing the sign of the imaginary part, that is a-bi.
So, in our case since -3+i is a root, then -3-i necessarily is another root.
If -3 + i is a root then -3 - i is too.
Therefore, the answer is -3 - i
PLS HELP !! I’ll appreciate it
In a two-column proof, what would you write in the reason column for any statement that is given to
you?
Answer:
explanation
Step-by-step explanation:
the reason for your statement is just your explanation of why you think that.
In ∆ABC, AC = 15 centimeters, m B = 68°, and m C = 24°. What is BC to two decimal places?
B
C
=
16.17
(
2
d
p
)
c
m
Explanation:
In triangle ABC, side
A
C
=
15
, Angles are
∠
B
=
68
0
;
∠
C
=
24
0
and
∠
A
=
180
−
(
68
+
24
)
=
88
0
We know by sine law
A
C
sin
B
=
B
C
sin
A
or
15
sin
68
=
B
C
sin
88
or
B
C
=
15
⋅
sin
88
sin
68
=
16.17
(
2
d
p
)
c
m
Step-by-step explanation:
Answer:
16.17 cmStep-by-step explanation:
m∠B = 68°, m∠C = 24°, AC = 15 cm
m∠A = 180° - 68° - 24 = 88°
by sine law:
[tex]\dfrac{BC}{\sin(A)}=\dfrac{AC}{\sin(B)}\\\\\\BC=\dfrac{15}{\sin\left(6\big8^o\right)}\cdot \sin\left(8\big8^o\right)\\\\\\BC\approx\dfrac{15}{0.9272}\cdot 0.9994=16.168032....\\\\\\BC\approx16.17[/tex]
please helllppppp ....thx if u do
Plz plz please answer it fast urgent
Answer - 1) -6/3
2)3/20
3)3/4
Hope this may helps you
Answer:
A.-2
B.its 3/20=0.15
C.3/4=0.75
Write 4x2 + 16x - 9 in vertex form. Write 5x2 - 10x + 4 in vertex form.
Hi king,
Write [tex]4x^{2} + 16x - 9[/tex] in vertex form:
f(x)=[tex]4x^{2} + 16x - 9[/tex]
f(x)=[tex]4(x+2)^{2} -25[/tex]
Write [tex]5x^{2} - 10x + 4[/tex] in vertex form:
g(x)=[tex]5x^{2} - 10x + 4[/tex]
g(x)=[tex]5(x-1)^{2} -1[/tex]
Have a great day.
rectangleabcd is graphed in the coordinate plane. the following are the vertices of the rectangle:a(2,−6),b(5,−6),c(5,−2) andd(2,−2) What is the perimeter of rectangle
ABCd?
Answer:
14
Step-by-step explanation:
The rectangle has side lengths of 3 and 4. There are two of each length, so the total length of all the sides is ...
P = 2(l +w) = 2(4 +3) = 2(7)
P = 14 . . . . units
(sec A + tan A) (1 - sin A) = cos A prove
Answer:
(identity has been verified)
Step-by-step explanation:
Verify the following identity:
(sec(A) + tan(A)) (1 - sin(A)) = cos(A)
Write secant as 1/cosine and tangent as sine/cosine:
(1 - sin(A)) (1/cos(A) + sin(A)/cos(A)) = ^?cos(A)
Put 1/cos(A) + sin(A)/cos(A) over the common denominator cos(A): 1/cos(A) + sin(A)/cos(A) = (sin(A) + 1)/cos(A):
(sin(A) + 1)/cos(A) (1 - sin(A)) = ^?cos(A)
Multiply both sides by cos(A):
(1 - sin(A)) (sin(A) + 1) = ^?cos(A)^2
(1 - sin(A)) (sin(A) + 1) = 1 - sin(A)^2:
1 - sin(A)^2 = ^?cos(A)^2
cos(A)^2 = 1 - sin(A)^2:
1 - sin(A)^2 = ^?1 - sin(A)^2
The left hand side and right hand side are identical:
Answer: (identity has been verified)
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
Let's do this step by step.
Prove that sec A ( 1 - sin A) ( sec A + tan A) = 1
Solving L.H.S
sec A ( 1 - sin A) ( sec A + tan A)
[tex]= \frac{1}{cos A} ( 1 - sin A ) ( \frac{1}{cos A} + \frac{sin A }{cos A})[/tex]
[tex]= \frac{(1 - sin A)}{cos A} ( \frac{1 + sin A }{cos A })[/tex][tex]= \frac{( 1 - sin A)( 1 + sin A)}{cos A X cos A}[/tex]
We know that [tex]( a - b) ( a + b) = a^2 - b^2[/tex]
[tex]= \frac{( 1^2 - sin^2 A)}{cos^2 A}[/tex]
[tex]= \frac{( 1 - sin^2 A)}{cos^2 A}[/tex]
[tex]= \frac{cos^2 A}{cos^2 A}[/tex] [tex]| cos^2 A + sin^2 A = 1 | cos^2 A = 1 - sin^2 A |[/tex][tex]1 - sin^2 A = cos^2 A[/tex]
[tex]= 1[/tex]
[tex]= R . H. S[/tex]
Thus, L.H.S = R.H.S
Hence proved.
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
A pennant is shaped like a right triangle with a hypotenuse of 10feet. The length of one side of the pennant is two feet longer than the length of the other side. Find the length of the two sides of the pennant.
Answer:
6 ft and 8 ft
Step-by-step explanation:
let x be the length of one leg then (x + 2) is the other leg.
Using Pythagoras' identity in the right triangle, that is
x² + (x + 2)² = 10² ← expand left side and simplify
x² + x² + 4x + 4 = 100 ( subtract 100 from both sides )
2x² + 4x - 96 = 0 ( divide all terms by 2 )
x² + 2x - 48 = 0 ← in standard form
(x + 8)(x - 6) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 8 = 0 ⇒ x = - 8
x - 6 = 0 ⇒ x = 6
But x > 0 ⇒ x = 6
Thus the 2 sides are 6 ft and x + 2 = 6 + 2 = 8 ft
Kara mixes different colors of paint to create new colors. The table shows the amount of paint Kara mixes per batch.
Select all the batches that will create the same colors as the first batch.
A. Batch 2
B. Batch 3
C. Batch 4
D. Batch 5
E. Batch 6
Answer:
D. Batch 5.
Step-by-step explanation:
The batch should have the same proportion of blue to white to yellow.
In Batch 1, there are two parts of blue, 1.5 parts of white, and 1 part of yellow.
In Batch 5, there are four parts of blue, 3 parts of white, and 2 parts of yellow.
4 / 2 = 2
3 / 2 = 1.5
2 / 2 = 1
Since the proportions are equal to those found in Batch 1, D. Batch 5 will create the same colors as the first batch.
Hope this helps!