Rank in order, from largest to smallest, the magnitudes of the electric field at the black dot. A. 2, 1, 3, 4 B. 1, 4, 2, 3 C. 3, 2, 1, 4 D. 3, 1, 2, 4

Answers

Answer 1

Given that,

Rank in order from largest to smallest the magnitude of the electric field at block dot.

Electric field :

Electric field is proportional to the charge divided by square of distance.

In mathematically,

[tex]E\propto\dfrac{q}{r^2}[/tex]

Where, q = charge

r = distance

If the charge is greater then electric field will be greater.

If the distance is greater then electric field will be smaller.

We need to find the electric field at black dot

According to figure,

(I). The electric field at black dot due to positive charge point q to left. the distance is r.

The electric field will be

[tex]E=\dfrac{kq}{r^2}[/tex]

The electric field will be largest.

(II). The electric field at black dot due to positive charge point 2q to left. The distance is 2r.

Then, the electric field will be

[tex]E=\dfrac{k2q}{(2r)^2}[/tex]

[tex]E=\dfrac{kq}{2r^2}[/tex]

The electric field will be smallest.

(III).  The electric field at black dot due to positive charge point 2q to left. The distance is r.

Then, the electric field will be

[tex]E=\dfrac{k2q}{(r)^2}[/tex]

The electric field will be very largest.

(IV). The electric field at black dot due to positive charge point q to left. The distance is 2r.

Then, the electric field will be

[tex]E=\dfrac{kq}{(2r)^2}[/tex]

[tex]E=\dfrac{kq}{4r^2}[/tex]

The electric field will be very smallest.

So, The electric field from largest to smallest will be

[tex]E_{3}>E_{1}>E_{2}>E_{4}[/tex]

Hence, The ranking will be 3, 1, 2, 4.

(D) is correct option.

Rank In Order, From Largest To Smallest, The Magnitudes Of The Electric Field At The Black Dot. A. 2,

Related Questions

Which one of the conditions can cause a particle to move with uniform circular motion in a uniform magnetic field

Answers

Given that,

A particle to move with uniform circular motion in a uniform magnetic field.

Suppose, The conditions are,

(I). The charged particle has to be positive and it should be moving in a direction opposite to a uniform magnetic field.

(II). The charged particle  should be moving parallel to the magnetic force and perpendicular to the magnetic field.

(III). The magnetic field  should be uniform and charge particle should be moving perpendicular to the magnetic field.

We know that,

An particle to move with uniform circular motion.

Here, electric force is perpendicular to velocity of particle.

The electric field is defined as,

[tex]F_{c}=\dfrac{mv^2}{r}[/tex].....(I)

Suppose, there is magnetic field, if a charge moving with velocity and the magnetic field exerts a field.

The magnetic force is defined as,

[tex]F_{m}=qvB[/tex].....(II)

We need to find the magnetic field

Using equation (I) and (II)

[tex]F_{c}=F_{m}[/tex]

[tex]\dfrac{mv^2}{r}=qvB[/tex]

[tex]B=\dfrac{mv}{qr}[/tex]

Hence, The magnetic field should be uniform and charge particle should be moving perpendicular to the magnetic field.

(III) is correct option.

A block of mass 27.00 kg sits on a horizontal surface with, coefficient of kinetic
friction 0.50 and a coefficient of static friction 0.65. How much force is required to
get the block moving?

Answers

Answer:

The force is  [tex]F = 172 \ N[/tex]

Explanation:

From the question we are told that

    The  mass of the block is  [tex]m_b = 27.0 \ kg[/tex]

     The  coefficient of  static friction is  [tex]\mu_s = 0.65[/tex]

     The coefficient of kinetic friction is  [tex]\mu_k = 0.50[/tex]

The  normal force acting on the block is  

      [tex]N = m * g[/tex]

substituting values

     [tex]N = 27 * 9.8[/tex]

     [tex]N = 294.6 \ N[/tex]

Given that the force we are to find is the force required to get the block to start moving then the force acting against this force is the static frictional force which is mathematically evaluated as

        [tex]F_f = \mu_s * N[/tex]

substituting values

        [tex]F_f = 0.65 * 264.6[/tex]

        [tex]F_f = 172 \ N[/tex]

Now for this  block to move the force require is  equal to [tex]F_f[/tex] i.e

       [tex]F= F_f[/tex]

=>    [tex]F = 172 \ N[/tex]

       

   

Two point charges of +2.0 μC and -6.0 μC are located on the x-axis at x = -1.0 cm and x 12) = +2.0 cm respectively. Where should a third charge of +3.0-μC be placed on the +x-axis so that the potential at the origin is equal to zero?

Answers

Answer:

 x = 0.006 m

Explanation:

The potential at one point is given by

          V = k ∑ [tex]q_{i} / r_{i}[/tex]

remember that the potential is to scale, let's apply to our case

          V = k (q₁ / x₁ + q₂ / x₂ + q₃ / x)

in this case they indicate that the potential is zero

          0 = k (2 10⁻⁶ / (- 1 10⁻²) + (-6 10⁻⁶) / 2 10⁻² + ​​3 10⁻⁶ / x)

         3 / x = + 2 / 10⁻² + ​​3 / 10⁻²

         3 / x = 500

          x = 3/500

          x = 0.006 m

calculate the upthrust aciting on a body if its
true weight is 550 N and apparent weight
lis 490 N​

Answers

Answer:

As a body moving upward

T=real weight + apparent weight

T=550+490

T=1040

hope u will get the answer:)

Explanation:

The voltage and power ratings of a particular light bulb, which are its normal operating values, are 110 V and 60 W. Assume the resistance of the filament of the bulb is constant and is independent of operating conditions. If the light bulb is operated at a reduced voltage and the power drawn by the bulb is 36 W. What is the operating voltage of the bulb?

a. 78 V
b. 72 V
c. 66 V
d. 90 V
e. 85 V

Answers

Answer:

c. 66 V

Explanation:

p =IV

I =P/V

P1/V1=P2/V2

60/110=36/V2

0.55 = 36/V2

V2 =36/0.55 = 65.5V

V2 = 66V

There are fiber optic telephone cables connecting North America and Europe, lying on the bottom of the Atlantic ocean. The wire is 4,500 km long how long and has an index of refraction of 1.5. How long will it take for the signal to cross the ocean? Give your answer in milliseconds.

Answers

Answer:

The time taken is [tex]t = 0.0225 \ s[/tex]

Explanation:

From the question we are told that

    The length of the wire is [tex]l = 4500 \ km = 4500000 \ m[/tex]

      The  refractive index is  [tex]n_f = 1.5[/tex]

The velocity of the signal is mathematically represented as

       [tex]v = \frac{c}{n_f }[/tex]

Where c is the speed of light with value [tex]c = 3.0 *10^{8} \ m/s[/tex]

 substituting values  

         [tex]v = \frac{3.0 *10^{8}}{1.5}[/tex]

         [tex]v = 2.0*10^{8} \ m/s[/tex]

The time taken is mathematically evaluated as

      [tex]t = \frac{d}{v}[/tex]

substituting values  

      [tex]t = \frac{4500000}{2.0 *10^{8}}[/tex]

      [tex]t = 0.0225 \ s[/tex]

A solid cylinder has a diameter of 17.4 mm and a length of 50.3mm. It's mass is 49g . What is its density of the cylinder in metric tonnes per cubic metre? Give your answer to 1 significant figure.​

Answers

Answer:

4 tonne/m³

Explanation:

ρ = m / V

ρ = 49 g / (π (17.4 mm / 2)² (50.3 mm))

ρ = 0.0041 g/mm³

Converting to tonnes/m³:

ρ = 0.0041 g/mm³ (1 kg / 1000 g) (1 tonne / 1000 kg) (1000 mm / m)³

ρ = 4.1 tonne/m³

Rounding to one significant figure, the density is 4 tonne/m³.

A scientist is testing the seismometer in his lab and has created an apparatus that mimics the motion of the earthquake felt in part (a) by attaching the test mass to a spring. If the test mass weighs 13 N, what should be the spring constant of the spring the scientist use to simulate the relative motion of the test mass and the ground from part (a)?

Answers

Complete Question

The complete question is shown on the first uploaded image  

Answer:

a

 [tex]a_{max} = 0.00246 \ m/s^2[/tex]

b

   [tex]k =722.2 \ N/m[/tex]

Explanation:

From the question we are told that

     The  amplitude is [tex]A = 1.8 \ cm = 0.018 \ m[/tex]

     The period is [tex]T = 17 \ s[/tex]

    The test weight is  [tex]W = 13 \ N[/tex]

Generally the radial acceleration is mathematically represented as

        [tex]a = w^2 r[/tex]

at maximum angular acceleration

       [tex]r = A[/tex]

So  

       [tex]a_{max} = w^2 A[/tex]

Now [tex]w[/tex] is the angular velocity which is mathematically represented as

      [tex]w = \frac{2 * \pi }{T}[/tex]

Therefore

       [tex]a_{max} = [\frac{2 * \pi}{T} ]^2 * A[/tex]

substituting values

       [tex]a_{max} = [\frac{2 * 3.142}{17} ]^2 * 0.018[/tex]

       [tex]a_{max} = 0.00246 \ m/s^2[/tex]

Generally this test weight is mathematically represented as

     [tex]W = k * A[/tex]

Where k is the spring constant

Therefore

        [tex]k = \frac{W}{A}[/tex]

substituting values        

      [tex]k = \frac{13}{0.018}[/tex]

     [tex]k =722.2 \ N/m[/tex]

A spherical capacitor contains a charge of 3.40 nC when connected to a potential difference of 240.0 V. Its plates are separated by vacuum and the inner radius of the outer shell is 4.10 cm.

Calculate:
a. The capacitance
b. The radius of the inner sphere.
c. The electric field just outside the surface of the inner sphere.

Answers

Answer:

A) 1.4167 × 10^(-11) F

B) r_a = 0.031 m

C) E = 3.181 × 10⁴ N/C

Explanation:

We are given;

Charge;Q = 3.40 nC = 3.4 × 10^(-9) C

Potential difference;V = 240 V

Inner radius of outer sphere;r_b = 4.1 cm = 0.041 m

A) The formula for capacitance is given by;

C = Q/V

C = (3.4 × 10^(-9))/240

C = 1.4167 × 10^(-11) F

B) To find the radius of the inner sphere,we will make use of the formula for capacitance of spherical coordinates.

C = (4πε_o)/(1/r_a - 1/r_b)

Rearranging, we have;

(1/r_a - 1/r_b) = (4πε_o)/C

ε_o is a constant with a value of 8.85 × 10^(−12) C²/N.m

Plugging in the relevant values, we have;

(1/r_a - 1/0.041) = (4π × 8.85 × 10^(−12) )/(1.4167 × 10^(-11))

(1/r_a) - 24.3902 = 7.8501

1/r_a = 7.8501 + 24.3902

1/r_a = 32.2403

r_a = 1/32.2403

r_a = 0.031 m

C) Formula for Electric field just outside the surface of the inner sphere is given by;

E = kQ/r_a²

Where k is a constant value of 8.99 × 10^(9) Nm²/C²

Thus;

E = (8.99 × 10^(9) × 3.4 × 10^(-9))/0.031²

E = 3.181 × 10⁴ N/C

If your brain is 0.4 m higher than your heart when you are standing, how much lower is your blood pressure at your brain than it is at your heart? The density of blood plasma is about 1025 kg/m3 and a typical maximum (systolic) pressure of the blood at the heart is 120 mg of Hg (= 16 kP = 1.6 × 104 N/m2). Give your answer in mg of Hg.

Answers

Answer:

The correct answer is 88.84 mmHg.

Explanation:

The pressure differential between the brain and the heart while standing up will be 120 - rho × g (gravity) × h, here h is the distance from the brain to the heart. The h is 40 cm or 0.4 m.  

rho×g×h = 1060 kg/m³×9.8 m/s²×0.4m  

= 4155 Pa  

Now converting Pa to mmHg we get:  

4155 Pa × 760 mmHg / 1.01325 × 10⁵ Pa  

= 31.16 mmHg  

Thus, the pressure in the brain now is 120 - 31.16  

= 88.84 mmHg (hypotension)  

Two charges, +9 µC and +16 µC, are fixed 1 m apart, with the second one to the right. Find the magnitude and direction of the net force (in N) on a −7 nC charge when placed at the following locations.
(a) halfway between the two
(b) half a meter to the left of the +9 µC charge
(c) half a meter above the +16 µC charge in a direction perpendicular to the line joining the two fixed charges (Assume this line is the x-axis with the +x-direction toward the right. Indicate the direction of the force in degrees counterclockwise from the +x-axis.)

Answers

Answer:

A) 1.76U×10⁻³N

B) 2.716×10⁻³N

C) 264.5⁰

Explanation:

See detailed workings for (a), (b), (c) attached.

A particle with mass m = 700 g is found to be moving with velocity v vector (-3.50i cap + 2.90j cap) m/s. From the definition of the scalar product, v^2 = v vector. v vector.
a. What is the particle's kinetic energy at this time? J If the particle's velocity changes to v vector = (6.00i cap - 5.00j cap) m/s,
b. What is the net work done on the particle? J

Answers

Answer:

Explanation:

v₁² = v₁ . v₁

= ( - 3.5 i + 2.9 j ).( - 3.5 i + 2.9 j )

= 12.25 + 8.41

= 20.66 m /s

a ) kinetic energy = 1/2 m v₁²

= 1/2 x .7 x 20.66

= 7.23 J

b )

changed velocity v₂ = v₂.v₂

= (6i - 5 j ) . (6i - 5 j )

= 36 + 25

= 61 m /s

kinetic energy = 1/2 m v₂²

= 1/2 x .7 x 61

= 21.35 J

Work done = change in energy

= 21.35 - 7.23

= 14.12 J .

A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 11 times the instantaneous velocity. Determine the equations of motion if the following is true?

a. the mass is initially released from rest from a point 1 meter below the equilibrium position
b. the mass is initially released from a point 1 meter below the equilibrium position with an upward velocity of 11 m/s

Answers

Answer:

Let [tex]x(t)[/tex] denote the position (in meters, with respect to the equilibrium position of the spring) of this mass at time [tex]t[/tex] (in seconds.) Note that this question did not specify the direction of this motion. Hence, assume that the gravity on this mass can be ignored.

a. [tex]\displaystyle x(t) = -\frac{9}{7}\, e^{-2 t} + \frac{2}{7}\, e^{-9 t}[/tex].

b. [tex]\displaystyle x(t) = \frac{2}{7}\, e^{-2 t} - \frac{9}{7}\, e^{-9 t}[/tex].

Explanation:

Let [tex]x[/tex] denote the position of this mass (in meters, with respect to the equilibrium position of the spring) at time [tex]t[/tex] (in seconds.) Let [tex]x^\prime[/tex] and [tex]x^{\prime\prime}[/tex] denote the first and second derivatives of  [tex]x[/tex], respectively (with respect to time [tex]t[/tex].)

[tex]x^\prime[/tex] would thus represent the velocity of this mass.[tex]x^{\prime\prime}[/tex] would represent the acceleration of this mass.

Constructing the ODE

Construct an equation using [tex]x[/tex], [tex]x^\prime[/tex], and [tex]x^{\prime\prime}[/tex], with both sides equal the net force on this mass.

The first equation for the net force on this mass can be found with Newton's Second Law of motion. Let [tex]m[/tex] denote the size of this mass. By Newton's Second Law of motion, the net force on this mass would thus be equal to:

[tex]F(\text{net}) = m\, a = m\, x^{\prime\prime}[/tex].

The question described another equation for the net force on this mass. This equation is the sum of two parts:

The restoring force of the spring: [tex]F(\text{spring}) = -k\, x[/tex], where [tex]k[/tex] denotes the constant of this spring.The damping force: [tex]F(\text{damping}) = - 11\,x^\prime[/tex] according to the question. Note the negative sign in this expression- the damping force should always oppose the direction of motion.

Assume that there's no other force on this mass. Combine the restoring force and the damping force obtain an expression for the net force on this mass:

[tex]F(\text{net}) = -k\, x - 11\, x^\prime[/tex].

Combine the two equations for the net force on this mass to obtain:

[tex]m\, x^{\prime\prime} = -k\, x - 11\, x^\prime[/tex].

From the question:

Size of this mass: [tex]m = 1\; \rm kg[/tex].Spring constant: [tex]k = 18\; \rm N \cdot m^{-1}[/tex].

Hence, the equation will become:

[tex]x^{\prime\prime} = -18\, x - 11\, x^\prime[/tex].

Rearrange to obtain:

[tex]x^{\prime\prime} + 11\, x^\prime + 18\; x = 0[/tex].

Finding the general solution to this ODE

[tex]x^{\prime\prime} + 11\, x^\prime + 18\; x = 0[/tex] fits the pattern of a second-order homogeneous ODE with constant coefficients. Its auxiliary equation is:

[tex]m^2 + 11\, m + 18 = 0[/tex].

The two roots are:

[tex]m_1 = -2[/tex], and[tex]m_2 = -9[/tex].

Let [tex]c_1[/tex] and [tex]c_2[/tex] denote two arbitrary real constants. The general solution of a second-order homogeneous ODE with two distinct real roots [tex]m_1[/tex] and [tex]m_2[/tex] is:

[tex]x = c_1\, e^{m_1\cdot t} + c_2\, e^{m_2\cdot t}[/tex].

For this particular ODE, that general solution would be:

[tex]x = c_1\, e^{-2 t} + c_2\, e^{-9 t}[/tex].

Finding the particular solutions to this ODE

Note, that if [tex]x(t) = c_1\, e^{-2 t} + c_2\, e^{-9 t}[/tex] denotes the position of this mass at time [tex]t[/tex], then [tex]x^\prime(t) = -2\,c_1\, e^{-2 t} -9\, c_2\, e^{-9 t}[/tex] would denote the velocity of this mass at time

The position at time [tex]t = 0[/tex] would be [tex]x(0) = c_1 + c_2[/tex].The velocity at time [tex]t = 0[/tex] would be [tex]x^\prime(0) = -2\, c_1 - 9\, c_2[/tex].

For section [tex]\rm a.[/tex]:

[tex]\left\lbrace\begin{aligned}& x(0) = -1 \\ &x^\prime(0) = 0\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 + c_2 = -1 \\ &-2\, c_1 - 9\, c_2 = 0\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 = -\frac{9}{7} \\ &c_2 = \frac{2}{7}\end{aligned}\right.[/tex].

Hence, the particular solution for section [tex]\rm a.[/tex] will be:

[tex]\displaystyle x(t) = -\frac{9}{7}\, e^{-2 t} + \frac{2}{7}\, e^{-9 t}[/tex].

Similarly, for section [tex]\rm b.[/tex]:

[tex]\left\lbrace\begin{aligned}& x(0) = -1 \\ &x^\prime(0) = 11\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 + c_2 = -1 \\ &-2\, c_1 - 9\, c_2 = 11\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 = \frac{2}{7} \\ &c_2 = -\frac{9}{7}\end{aligned}\right.[/tex].

Hence, the particular solution for section [tex]\rm b.[/tex] will be:

[tex]\displaystyle x(t) = \frac{2}{7}\, e^{-2 t} - \frac{9}{7}\, e^{-9 t}[/tex].

Which of the following statements about stages of nuclear burning (i.e., first-stage hydrogen burning, second-stage helium burning, etc.) in a massive star is not true?
A) As each stage ends, the core shrinks further.
B) Each successive stage of fusion requires higher temperatures than the previous stages.
C) Each successive stage lasts for approximately the same amount of time.
D) Each successive stage creates an element with a higher atomic weight.

Answers

Answer:

C) Each successive stage lasts for approximately the same amount of time.

Explanation:

Nuclear burning is a series of nuclear processes through which a star gets its energy. The energy within a star is due to nuclear fusion of lighter elements (hydrogen) into more massive element (helium), with a release of a large amount of energy due to the conversion of some of the mass into energy. Each stage leads to a loss of some of the mass which is converted into energy (option A is valid).

The fusion of four hydrogen atoms into one helium atom means that there is a creation of element with a higher atomic weight (option D is valid), and the energy output of each stage exceeds its energy input, meaning that each stage will require a higher temperature than its previous stages (option B is valid).

Determine the smallest distance x to a position where 450-nm light reflected from the top surface of the glass interferes constructively with light reflected from the silver coating on the bottom. The light changes phase when reflected at the silver coating.

Answers

A wedge of glass of refractive index 1.64 has a silver coating on the bottom, as shown in the image attached below.

Determine the smallest distance x to a position where 450-nm light reflected from the top surface of the glass interferes constructively with light reflected from the silver coating on the bottom. The light changes phase when reflected at the silver coating.

Answer:

the smallest distance x  = 2.74 × 10⁻³ m or 2.74 mm

Explanation:

From the given information:

The net phase change is zero because both the light ray reflecting from the air-glass surface and silver plate undergo a phase change of [tex]\dfrac{\lambda}{2}[/tex] , as such the condition for the  constructive interference is:

nΔy = mλ

where;

n = refractive index

Δy = path length (inside the glass)

So, from the diagram;

[tex]\dfrac{y}{x}=\dfrac{10^{-5} \ m}{0.2 \ m}[/tex]

[tex]\dfrac{y}{x} = 5 \times 10^{-5}[/tex]

[tex]y = 5 \times 10^{-5} x[/tex]

Now;

Δy can now be = 2 ( 5 × 10⁻⁵ [tex]x[/tex])

Δy =1 ×  10⁻⁴[tex]x[/tex]

From nΔy = mλ

n( 1 ×  10⁻⁴[tex]x[/tex] ) = mλ

[tex]x = \dfrac{m \lambda}{n \times 1 \times 10^{-4} }[/tex]

when the thickness is minimum then m = 1

Thus;

[tex]x = \dfrac{1 \times 450 \times 10^{-9} \ m}{1.64 \times 1 \times 10^{-4} }[/tex]

x =  0.00274 m

x = 2.74 × 10⁻³ m or 2.74 mm

Answer: B. The surface of the coating is rough, so light that shines on it gets scattered in many directions.

Explanation: On Edge!!!!!!!!!!!!!!!!!!!!

which of the following is a physical change?

A. a newspaper burns when placed in a fire.
B.an iron chair rusts when left outside
C.a sample of water boils and releases gas.
D.a plant changes carbon dioxide and water into sugar

Answers

It’s C. This is because all of the other options you can’t turn back but if you boil water, the gas can turn back by condensation. If a newspaper burns it’s gone. If the chair rust you can only scrape off the rust. If the plant changes the CO2 you aren’t getting it back. At least not easily

A device called an insolation meter is used to measure the intensity of sunlight. It has an area of 100 cm2 and registers 6.50 W. What is the intensity in W/m2

Answers

Answer:

650W/m²

Explanation:

Intensity of the sunlight is expressed as I  = Power/cross sectional area. It is measured in W/m²

Given parameters

Power rating = 6.50Watts

Cross sectional area = 100cm²

Before we calculate the intensity, we need to convert the area to m² first.

100cm² = 10cm * 10cm

SInce 100cm = 1m

10cm = (10/100)m

10cm = 0.1m

100cm² = 0.1m * 0.1m = 0.01m²

Area (in m²) = 0.01m²

Required

Intensity of the sunlight I

I = P/A

I = 6.5/0.01

I = 650W/m²

Hence, the intensity of the sunlight in W/m² is 650W/m²

Martin has severe myopia, with a far point on only 17 cm. He wants to get glasses that he'll wear while using his computer whose screen is 65 cm away. What refractive power will these glasses require?

Answers

Answer:

Explanation:

Far point = 17 cm . That means he can not see beyond this distance .

He wants to see at an object at 65 cm away . That means object placed at 65 has image at 17 cm by concave lens . Using lens formula

1 / v - 1 / u = 1 / f

1 / - 17 - 1 / - 65 = 1 / f

= 1 / 65 - 1 / 17

= -  .0434 = 1 / f

power = - 100 / f

= - 100 x .0434

= - 4.34 D .

Refractive power is the measure of degree of convergence by a lens. The required refractive power for the given glasses is -4. 34 D.

Using lens formula  

[tex]\bold { \dfrac 1 v - \dfrac1 u = \dfrac {1}f}[/tex]

Where,

f-  focal point

v - distance of the image

u - distance of the object  

So,

[tex]\bold { \dfrac 1 {-17} - \dfrac1 {-65} = \dfrac {1}f}\\\\\bold { 0.434 = \dfrac {1}f}\\[/tex]

Since, [tex]\bold {power = \dfrac {- 100 }f}[/tex]

So,

[tex]\bold { power = - 100 \times 0.0434}}\\\\\bold { power = - 4.34\ D}[/tex]  

Therefore, the required refractive power for the given glasses is -4. 34 D.

To know more about  refractive power,

https://brainly.com/question/25164545

You stand near the edge of a swimming pooland observe through the water an object lying on the bottom of thepool. Which of the following statements correctly describes whatyou see?
a. The apparent depth of the object is less than thereal depth.
b. The apparent depth of the object is greater thanthe real depth.
c. There is no difference between the apparent depth and the actual depth of the object.

Answers

Answer:

a

Explanation:

The correct answer would be that the apparent depth of the object is less than the real depth.

The refractive property of light as it passes from air to water would make the depth of the pool appear less shallow than the actual depth to an observed. Hence, an object placed at the bottom of the pool will have an apparent depth that is shallower than its actual depth.

Due to the difference in the density of air and that of water, as the ray of light from an observer standing at the edge of a swimming pool travels from air into the water, it becomes refracted by bending away from the original traveling angle.

The same refraction occurs when light rays from an object inside the pool travel from water into the air. Hence, due to the refraction of the ray of light coming from the object at the bottom of the pool, the depth appears shallower than the actual depth.

Correct option: a

explain why cups of soup at a take away kiosk are often sold in white polystrene cups with a lid to stop spillage​

Answers

Answer:

polystyrene is a good insulater so less heat will escape from the cup and it will keep it warm.

the cup helps it become more insulated

Based on the graph below, what prediction can we make about the acceleration when the force is 0 newtons? A. It will be 0 meters per second per second. B. It will be 5 meters per second per second. C. It will be 10 meters per second per second. D. It will be 15 meters per second per second.

Answers

Answer:

Option A

Explanation:

From the graph, we came to know that Force and acceleration are in direct relationship.

Also,

Force = 0 when Acceleration = 0

Because Both are 0 at the origin.

Answer:

A. It will be 0 meters per second per second.

Explanation:

The force and acceleration is in a proportional relationship, that means the line goes through the origin.

On the graph, when the force is at 0, the acceleration is 0. The line passes through the origin.

A wheel rotating about a fixed axis has a constant angular acceleration of 4.0 rad/s2. In a 4.0-s interval the wheel turns through an angle of 80 radians. Assuming the wheel started from rest, how long had it been in motion at the start of the 4.0-s interval

Answers

Answer:

The  time interval is  [tex]t = 3 \ s[/tex]

Explanation:

From the question we are told that

    The angular acceleration is  [tex]\alpha = 4.0 \ rad/s^2[/tex]

     The  time taken is  [tex]t = 4.0 \ s[/tex]

      The angular displacement is  [tex]\theta = 80 \ radians[/tex]

     

The angular displacement can be represented by the second equation of motion as shown below

          [tex]\theta = w_i t + \frac{1}{2} \alpha t^2[/tex]

where  [tex]w_i[/tex] is the initial velocity at the start of the 4 second interval

So substituting values

        [tex]80 = w_i * 4 + 0.5 * 4.0 * (4^2)[/tex]

=>    [tex]w_i = 12 \ rad/s[/tex]

Now considering this motion starting from the start point (that is rest ) we have

       [tex]w__{4.0 }} = w__{0}} + \alpha * t[/tex]

Where  [tex]w__{0}}[/tex] is the angular velocity at rest which is zero  and  [tex]w__{4}}[/tex] is the angular velocity after 4.0 second which is calculated as 12 rad/s s

        [tex]12 = 0 + 4 t[/tex]

=>       [tex]t = 3 \ s[/tex]

Following are the response to the given question:

Given:

[tex]\to \alpha = 4.0 \ \frac{rad}{s^2}\\\\[/tex]

[tex]\to \theta= 80\ radians\\\\\to t= 4.0 \ s\\\\ \to \theta_0=0\\[/tex]

To find:

[tex]\to \omega=?\\\\\to t=?\\\\[/tex]

Solution:

Using formula:

[tex]\to \theta- \theta_0 = w_{0} t+ \frac{1}{2} \alpha t^2\\\\ \to 80-0= \omega_{0}(4) + \frac{1}{2} (4)(4^2)\\\\ \to 80= \omega_{0}(4) + \frac{1}{2} (4)(16)\\\\\\to 80= \omega_{0}(4) + (4)(8)\\\\\to 80= \omega_{0}(4) + 32\\\\\to 80-32 = \omega_{0}(4) \\\\\to \omega_{0}(4)= 48 \\\\\to \omega_{0}= \frac{48}{4} \\\\ \to \omega_{0} = 12 \frac{rad}{ s} \\\\[/tex]  

It would be the angle for rotation at the start of the 4-second interval.

This duration can be estimated by leveraging the fact that the wheel begins from rest.  

[tex]\to \omega = \omega_{0} + \alpha t\\\\\to 12 = 0 +4(t) \\\\\to 12 = 4(t) \\\\ \to t=\frac{12}{4}\\\\\to t= 3\ s[/tex]

Therefore, the answer is "[tex]12\ \frac{rad}{s}[/tex] and [tex]3 \ s[/tex]".

Learn more:

brainly.com/question/7464119

The time constant of an RC circuit is 2.7 s. How much time t is required for the capacitor (uncharged initially) to gain 0.63 of its full equilibrium charge

Answers

Answer:

2.7s

Explanation:

The solution of time required is shown below:-

In the RC circuit condenser charge 63 percent of the full charge from initial time to constant time

Now, the

63% that is equal to 0.63 which is full equilibrium charge

Therefore, the time required to maintain will be Equal to time (t) constant that is 2.7s

So, the correct answer is 2.7s

A force acting on an object moving along the x axis is given by Fx = (14x - 3.0x2) N where x is in m. How much work is done by this force as the object moves from x = -1 m to x = +2 m?

Answers

Answer:

72J

Explanation:

distance moved is equal to 3m.then just substitute x with 3m.

Fx = (14(3) - 3.0(3)2)) N

Fx =(42-18)N

Fx =24N

W=Fx *S

W=24N*3m

W=72J

The answer is 72J.

Distance moved is equal to 3m.

Then just substitute x with 3m.

Fx = (14(3) - 3.0(3)2)) N

Fx =(42-18)N

Fx =24N

W=Fx *S

W=24N*3m

W=72J

Is there any definition of force?

A force is a push or pulls upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects.

Learn more about force here https://brainly.com/question/25239010

#SPJ2

Suppose a proton moves to the right and enters a uniform magnetic field into the page. It follows trajectory B with radius rp. An alpha particle (twice the charge and 4 times the mass) enters the same magnetic field in the same way and with the same velocity as the proton. Which path best represents the alpha particle’s trajectory?

Answers

Answer:

   R = r_protón / 2

Explanation:

The alpha particle when entering the magnetic field experiences a force and with Newton's second law we can describe its movement

      F = m a

Since the magnetic force is perpendicular, the acceleration is centripetal.

       a = v² / R

       

the magnetic force is

       F = q v x B = q v B sin θ

the field and the speed are perpendicular so the sin 90 = 1

we substitute

          qv B = m v² / R

          R = q v B / m v²

in the exercise they indicate

the charge  q = 2 e

the mass     m = 4 m_protón

        R = 2e v B / 4m_protón v²

we refer the result to the movement of the proton

         R = (e v B / m_proton) 1/2

the data in parentheses correspond to the radius of the proton's orbit

         R = r_protón / 2

The first step to merging is entering the ramp and _____.
A. honking to indicate your location
B. matching your speed
C. signaling your intent
D. telling your passengers where you're going

Answers

Answer:

  B. matching your speed

Explanation:

To merge safely, you must identify a gap in traffic and match your speed to the speed of the gap. Before you make your move to fill the gap, you should signal your intent.*

_____

* At least one resource says "The first step ... is to make sure you're traveling at the same speed ..." Then it goes on to say "Use your indicator. Do it early ...." The accompanying animation shows blinkers being activated on the ramp before the merge lane is entered. Apparently, "the first step" is not necessarily the first thing you do.

Answer:

It's C "signaling your intent"

Explanation:

The key thing to look at is they are asking the rest of the first step and that;s C

A rectangular loop of wire carries current I in the clockwise direction. The loop is in a uniform magnetic field B that is parallel to the plane of the loop, in the direction toward the bottom of the page. The length of the rectangle is b and the width is a. What is the net force on the loop by the magnetic field

Answers

Answer:

Explanation:

Area of the loop = a b

current = I

magnetic moment of the loop M  = area x current

= ab I

Torque on the loop = MB sinθ

here θ = 90

Torque = MB

= abIB

In this case net force on the loop will be zero because here torque is created by two equal and opposite force acting on two opposite sides of the loop so net force will be zero .

When a ray of light traveling in air hits a tilted plane parallel slab (of glass, say), it emerges parallel to the original ray but shifted transversely. Carefully draw out the situation and use Snell’s law to derive the amount of the transverse shift, x, as a function of the tilt angle of the slab, θ, its thickness, d, and its index of refraction, n. Find the exact expression with no approximations. We recommend you do this out all in variables because it's a useful formula to have. Also, you will want this for the following questions. However, since the auto-grader has difficulty with these formulas, use n=1.5, d=1.0 cm, and θ = 45° and enter a numerical answer. Give your answer in cm to two significant figures.

Answers

Answer:

  x =  0.4654 cm

Explanation:

In this exercise we use the law of refraction

           n₁ sin θ₁ = n₂ sin θ₂

apply this formula to the first surface, where n₁ is the index of refraction of air (n₁ = 1) and n₂ is the index of refraction of glass (n₂ = n)

            θ₂ = sin⁻¹ (sin θ₁ / n)         (1)

having this angle we use trigonometry to find the value of the point where it comes out when we reach the other side

refracted ray

            tan θ₂ = x₂ / d

            x₂ = d tan θ₂

this value is the distance displaced by the refracted ray

now let's find the distance at which the incident beam should exit

           tan θ₁ = x₁ / d

           x₁ = d tan θ₁

the displacement of the ray is the difference between these two distances, we will call it x

           x = x₁ - x₂

            x = d tan θ₁ - d tan θ₂

           x = d (tan θ₁ - tan θ₂)        (2)

the easiest way to do the calculations is to find tea2 from the binding 1 and then perform the calculation with equation 2

calculate

            θ₂ = sin⁻¹ (sin 45 /1.5)

             θ₂ = 28.13º

             x = 1.0 (tan 45 - tan 28.13)

             x =  0.4654 cm

What is the requirement for the photoelectric effect? Select one: a. The incident light must have enough intensity b. The incident light must have a wavelength shorter than visible light c. The incident light must have at least as much energy as the electron work function d. Both b and c

Answers

Answer:

c. The incident light must have at least as much energy as the electron work function

Explanation:

In photoelectric effect, electrons are emitted from a metal surface when a light ray or photon strikes it. An electron either absorbs one whole photon or it absorbs none. After absorbing a photon, an electron either leaves the surface of metal or dissipate its energy within the metal in such a short time  interval that it has almost no chance to absorb a second photon. An increase in intensity of light source  simply increase the number of photons and thus, the number of electrons, but the energy of electron  remains same. However, increase in frequency of light increases the energy of photons and hence, the

energy of electrons too.

Therefore, the energy of photon decides whether the electron shall be emitted or not. The minimum energy required to eject an electron from the metal surface, i.e. to overcome the  binding force of the nucleus is called ‘Work Function’

Hence, the correct option is:

c. The incident light must have at least as much energy as the electron work function

A physics professor wants to perform a lecture demonstration of Young's double-slit experiment for her class using the 633-nm light from a He-Ne laser. Because the lecture hall is very large, the interference pattern will be projected on a wall that is 4.0 m from the slits. For easy viewing by all students in the class, the professor wants the distance between the m
What slit separation is required in order to produce the desired interference pattern?
d=________m

Answers

Note: if the professor wants the distance between the m = 0 and m = 1 maxima to be 25 cm

Answer:

d = 1.0128×10⁻⁵m

Explanation:

given:

length L = 4.0m

maximum distance between m = 0 and m = 1 , y = 25cm = 0.25m

wavelength λ = 633nm = 633×10⁻⁹m

note:

dsinθ = mλ (constructive interference)

where d is slit seperation, θ is angle of seperation , m is order of interference , and λ is wavelength

for small angle

sinθ ≈ tanθ

[tex]d (\frac{y}{L}) =[/tex] mλ

[tex]d (\frac{y}{L}) = (1)(633nm)[/tex]

[tex]d(\frac{0.25}{4} ) = (1)(633nm)[/tex]

d = 1.0128×10⁻⁵m

Other Questions
Which of the following best describes the relationship between (x-3) and thepolynomial x3 + 4x2 + 2? During the month of April, it is permissible for an institution's basketball coach to lecture at a non institutional, privately owned basketball camp that is operated under restrictions applicable to institutional camps. True or False Ignoring air resistance, if you throw a baseball from first base upwards toward a friend in left field, and the baseball leaves your hand at a speed of 15 meters per second, how fast will the ball be going when your friend catches it? A. 15 m/s B. less than 15 m/s C. more than 15 m/s D. It would depend on the distance the friend is from you. Laws that allow a person to anonymously leave a newborn at a hospital, police station, or other designated place without fear of prosecution are called __________ laws. Group of answer choices If ABC~DEF and the scale factor from ABC to DEF is 3/4, what is the length of DF? What technology will examine the current state of a network device before allowing it can to connect to the network and force any device that does not meet a specified set of criteria to connect only to a quarantine network? Group of answer choices Find the value of x in the triangleshown below.X8567 what is the measure of SR? what were the effects of rapid industrialisation in Russia which of the following individual freedoms is protected under the bill of rights Recording: "Thank you for leaving a message for us at ABC Company. Your call ________ as soon as possible." Question 91 options: a) will return b) will be return c) will returning d) will be returned I'm marking answers as brainliest. The solution to the following system is ________. -9x + 6y = -30, -7x + 12y = -16 * I I (0,2) (4,1) (-4,7) (2,1) Think about Cyrus and Darius as leaders. Now, imagine that you are the leader of a vast empire in ancient times. Would you look to Cyrus and Darius as role models for your reign? Why or why not? Write one or two paragraphs to explain your answer. Which is the recommended method for reading your math textbook most effectively? a. read, question, summarize, practice b. highlight, skim, ask, and review c. preview, read, summarize, and review Describe the orientation of magnetic field lines by drawing a bar magnet, labeling the poles, and drawing several lines indicating the direction of the forces. A positive integer is 2 less than another. If the sum of the reciprocal of the smaller and twicethe reciprocal of the larger is 11/15,then find the two integers. WHAT ARE THE CONTENTS THAT WE SHOULD USE FOR THE PRESENTATION OF DIGITAL WORLD Alonso went to the market with $55 to buy eggs and sugar. He knows he needs a package of 12 eggs that costs $2.75. After getting the eggs, he wants to buy as much sugar as he can with his remaining money. The sugar he likes comes in boxes that each cost $11.50 Write an inequality. Also, after getting the eggs, how many boxes of sugar can Alonso afford? Thanks. Can a broker arbitrarily penalize an independent contractor based on varying factors, such as the sales agent's difficulty in closing a deal or failure to produce paperwork in a timely fashion? What interval includes all possible values of x, where 3(6 2x) 4x + 12? (, 3] [3, ) (, 15] [15, ) SORRY THIS IS THE FULL QUESTION