1. 15.78 grams of Cl2 are produced from 45 grams of AuCl3.
2. 15.31 grams of AgCl are produced from 4.75 grams of AlCl3.
3. 3.55 grams of NaOH are needed to produce 25.2 grams of Na2SO4.
4. 34.40 grams of CO2 are produced from 25 grams of O2.
Steps1. To determine how many grams of Cl2 are produced from 45 grams of AuCl3, we need to use the balanced chemical equation for the reaction:
2 AuCl3 + 3 Cl2 → 2 AuCl5
From this equation, we can see that 3 moles of Cl2 are produced for every 2 moles of AuCl3. To calculate the number of moles of AuCl3 in 45 grams, we divide the mass by the molar mass:
45 g AuCl3 x (1 mol AuCl3 / 303.33 g AuCl3) = 0.1482 mol AuCl3
Using the mole ratio from the balanced chemical equation, we can calculate the number of moles of Cl2 produced:
0.1482 mol AuCl3 x (3 mol Cl2 / 2 mol AuCl3) = 0.2223 mol Cl2
Finally, we can convert the number of moles of Cl2 to grams by multiplying by the molar mass:
0.2223 mol Cl2 x 70.906 g/mol = 15.78 g Cl2
Therefore, 15.78 grams of Cl2 are produced from 45 grams of AuCl3.
2. The balanced chemical equation for the reaction between aluminum chloride (AlCl3) and silver nitrate (AgNO3) is:
3 AgNO3 + AlCl3 → 3 AgCl + Al(NO3)3
From this equation, we can see that 3 moles of AgCl are produced for every 1 mole of AlCl3. To calculate the number of moles of AlCl3 in 4.75 grams, we divide the mass by the molar mass:
4.75 g AlCl3 x (1 mol AlCl3 / 133.34 g AlCl3) = 0.0356 mol AlCl3
Using the mole ratio from the balanced chemical equation, we can calculate the number of moles of AgCl produced:
0.0356 mol AlCl3 x (3 mol AgCl / 1 mol AlCl3) = 0.1068 mol AgCl
Finally, we can convert the number of moles of AgCl to grams by multiplying by the molar mass:
0.1068 mol AgCl x 143.32 g/mol = 15.31 g AgCl
Therefore, 15.31 grams of AgCl are produced from 4.75 grams of AlCl3.
3. The balanced chemical equation for the reaction between NaOH and Na2SO4 is:
2 NaOH + Na2SO4 → 2 Na2SO4 + 2 H2O
From the balanced equation, we see that 2 moles of NaOH react with 1 mole of Na2SO4 to produce 2 moles of Na2SO4 and 2 moles of H2O. To calculate the mass of NaOH needed to produce 25.2 grams of Na2SO4, we need to use the molar mass of Na2SO4:
Molar mass of Na2SO4 = 142.04 g/mol
First, we need to calculate the number of moles of Na2SO4 produced from 25.2 grams:
25.2 g Na2SO4 x (1 mol Na2SO4 / 142.04 g Na2SO4) = 0.1774 mol Na2SO4
Since 2 moles of NaOH react with 1 mole of Na2SO4, we need half that amount, or 0.0887 mol NaOH, to react completely with the given amount of Na2SO4. Finally, we can calculate the mass of NaOH needed using its molar mass:
0.0887 mol NaOH x 40.00 g/mol = 3.55 g NaOH
Therefore, 3.55 grams of NaOH are needed to produce 25.2 grams of Na2SO4.
4. To determine the mass of CO2 produced from 25 grams of O2, we need to use the balanced chemical equation for the combustion of carbon:
C + O2 → CO2
From this equation, we can see that 1 mole of O2 reacts with 1 mole of carbon to produce 1 mole of CO2. To calculate the number of moles of O2 in 25 grams, we divide the mass by the molar mass:
25 g O2 x (1 mol O2 / 32.00 g O2) = 0.78125 mol O2
Since the mole ratio of O2 to CO2 is 1:1, we know that 0.78125 moles of CO2 are produced. Finally, we can convert the number of moles of CO2 to grams by multiplying by the molar mass:
0.78125 mol CO2 x 44.01 g/mol = 34.40 g CO2
Therefore, 34.40 grams of CO2 are produced from 25 grams of O2.
learn more about mass here
https://brainly.com/question/24191825
#SPJ1
How many particles of gold is 2.7 moles of gold?
Answer:
1.63 × 10²⁴ particles
Explanation:
The equation to find the number of particles is:
Number of particles = Number of moles × Avagadro's constant
Number of particles = 2.7 × 6.02 × 10²³
∴ Number of particles = 1.63 × 10²⁴
How many total atoms are there in 62.5 g
of carbon disulfide ( CS2)?
Total atoms:
Answer:
first molecular mass of cs2= 12+2×32=76amu
no of moles=62.5/76=0.822moles
total no of molecules=6.022×[tex]10^{23}[/tex]×0.822=4.95×[tex]10^{23}[/tex]
total no of atoms ( one carbon disulfide has 3 atoms)=3×4.95×[tex]10^{23}[/tex]=14.85×[tex]10^{23}[/tex] atoms
Explanation:
i hope you find it helpful, have a nice day
In 62.5 g of carbon disulfide (CS2), there are approximately 1.48 x 10^24 total atoms. This is calculated by first finding the number of moles in 62.5 g, then multiplying this by the number of atoms in each mole (Avogadro's number).
Explanation:To calculate the total atoms in a 62.5 g of carbon disulfide (CS2), you need to first find the molar mass of CS2 which is 76.14 g/mol (12.01 g for C + 2 * 32.06 g for S). Using Avogadro's number (6.02 x 10^23) which represents the number of entities in a mole, we can calculate the number of moles and then the total number of atoms.
First, calculate the number of moles in 62.5 g of CS2: 62.5 g / 76.14 g/mol = 0.820 moles
Second, calculate the total atoms: 0.820 moles * 3 atoms/mole * 6.02 x 10^23 = 1.48 x 10^24 atoms
Learn more about Atom Count here:https://brainly.com/question/31881632
#SPJ3
Macmillan Learning
Calculate the standard change in Gibbs free energy for the reaction at 25 °C. Standard Gibbs free energy of formation values can
be found in this table.
Fe₂O3(s) + 2Al(s)
AG=
先
Bi
B
1
Al₂O₂ (s) + 2 Fe(s)
45°F Cloudy
kJ/mol
4 ENG
9:05 PM
3/23/2003
48
4
+
B
*
The standard change in Gibbs free energy for the reaction at 25 °C is 278.0 kJ/mol for the given enthalpy of reaction .
What is Gibbs free energy ?The Gibbs free energy (or Gibbs energy as the preferred name; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of non-volume expansion work that a thermodynamically closed system can perform at constant temperature and pressure. It also serves as a prerequisite for processes like chemical reactions that may place under these conditions. The Gibbs free energy is denoted by the symbol G(p,T) = U+pV-TS = H-TS, where p denotes pressure, T denotes temperature, U denotes internal energy, V denotes volume, H denotes enthalpy, and S denotes entropy.
What is enthalpy of reaction ?A thermodynamic quantity equal to a system's entire heat content. It is equivalent to the system's internal energy plus the product of pressure and volume.
According to the table, the standard Gibbs free energy of formation values are;
Fe₂O₃ (s) = -822.1 kJ/mol
Al₂O₃ (s) = -1675.2 kJ/mol
Al (s) = -1477.7 kJ/mol
Fe (s) = 0 kJ/mol
The reaction is:
Fe₂O₃ (s) + 2 Al (s) → Al₂O₃ (s) + 2 Fe (s).
Therefore, the standard change in Gibbs free energy for the reaction at 25 °C is:
AG = -822.1 kJ/mol + (2 x -1477.7 kJ/mol) - (-1675.2 kJ/mol) - (2 x 0 kJ/mol) = 278.0 kJ/mol
To know more about Gibbs free energy ,visit ;
https://brainly.com/question/20358734
#SPJ1
The (C4H1 0)3N represents a _______ amine.
Answer:
Tertiary amine
Explanation:
An amine in which the nitrogen atom is directly bonded to three carbons of any hybridization which cannot be carbonyl group carbons.
If a negatively charged object is brought near a neutrally charged sphere what will happen
Answer:
If a negatively charged object is brought near a neutral sphere, the electrons in the neutral sphere will move away from the negatively charged object, causing one side of the sphere to become slightly negative and the other side to become slightly positive.
Explanation:
This is because the negative charge repels the electrons in the neutral sphere, creating an imbalance of charges on the sphere.
What is the maximum mass of aluminum chloride that can be formed when reacting 28.0 g of aluminum with 33.0 g of chlorine?
Aluminum and chlorine react to generate aluminium chloride, according to a balanced chemical equation: 2Al + 3Cl2 2AlCl3. A quantity of aluminium chloride up to 139.5 g can be produced.
What is the most amount of aluminium chloride that can be created when 27 g of aluminium and 32 g of chlorine are combined?When the limiting reagent is totally transformed into products, the maximum amount of product is produced. Two moles of aluminium chloride are created by a full reaction between three moles of chlorine. Hence, 46.4 g of aluminium chloride is the maximum mass that can be produced.
The amount of aluminium and chlorine in the specified masses can be calculated as follows:
Number of moles of aluminum = 28.0 g / 27 g/mol = 1.04 mol
Number of moles of chlorine = 33.0 g / 35.5 g/mol = 0.93 mol
We may get the theoretical yield of aluminium chloride using the balanced equation: 2Al + 3Cl2 → 2AlCl3
1.04 mol Al × (2 mol AlCl3 / 2 mol Al) × (133.34 g AlCl3 / 1 mol AlCl3) = 139.5 g AlCl3
To know more about aluminium chloride visit:-
https://brainly.com/question/16088530
#SPJ1
2. What happens when heat is removed from a substance at a critical temperature?
O A. The substance releases heat but won't change temperature until the state changes completely.
B. The temperature of the substance will change rapidly as heat is lost until the state changes completely.
C. The heat is cycled back into the substance, causing the temperature to increase.
D. The substance changes temperature at the same rate before, during, and after the change of state.
Special rules or laws to predict predominant products for alcohols and ethers in organic chemistry
As alcohols and ethers undergo various reactions, there are a number of organic chemistry rules and principles that may be utilised to anticipate the main products that will result from those reactions.
How does Markovnikov's law relate to alcoholic beverages?Given that the water molecule can be thought of as H—OH, the Markovnikov's rule-following regioselectivity of alcohol products indicates that the hydrogen atom joins to the double bond carbon that has more hydrogen atoms, and the OH group attaches to the carbon that has fewer hydrogen atoms.
The Markovnikov rule is what?According to Markovnikov's rule, when an asymmetrical alkene is combined with an asymmetrical reagent, the reagent's negative half will connect to the carbon atom that has the fewest hydrogen atoms.
To know more about organic chemistry visit:-
https://brainly.com/question/14623424
#SPJ1
a 0.1 m acid solution at 298 k would conduct electricity best of the acid had ka value of
As the conductivity of a 0.1 M acid solution at 298 K depends on the acid's strength, a specific Ka value cannot be determined.
How can you figure out the acid's ka value, which would allow it to conduct electricity most effectively?We may utilize the following relationship between Ka and the level of ionization to estimate the Ka value that would produce the maximum conductivity for a 0.1 M acid solution at 298 K:
α²/(1-α) = Ka/[H+]
α²/(1-α) = Ka/0.1
1²/(1-1) = Ka/0.1\sKa = 0
Given that only strong acids completely breakdown into ions in solution, it follows that the acid would need to be strong with a Ka value significantly greater than zero in order to conduct electricity most effectively.
To learn more about conductivity of acid visit:
brainly.com/question/28721140
#SPJ1
Which is NOT a compound?
A. silicon dioxide
B. water
C. carbon dioxide gas
D. oxygen gas
Answer: Oxygen
Explanation: Its found on the periodic table as an element.
In studying normal and mutant forms of a particular human enzyme, a geneticist came across a very interesting mutant form of the enzyme. The normal enzyme is 227-amino acids long, but the mutant form was 312-amino acid long, having that extra 85 amino acid as the block in the middle of the normal sequence. What are possible explanations for this phenomenon? How would you distinguish among them?
Determining the underlying cause of the mutant form of the enzyme would require a combination of genetic, molecular, and biochemical techniques to identify any differences.
What is the explanation?The mutation may have resulted from an insertion of extra DNA sequence in the gene encoding the enzyme. This could occur due to a replication error or as a result of exposure to mutagens.
To distinguish this from other possibilities, one could sequence the DNA of the normal and mutant forms of the enzyme to identify the differences.
Learn more about enzyme:https://brainly.com/question/14953274
#SPJ1
Formic acid has a Ka of 1.77 * 10 - 4.1To 55.0 mL of 0.25 M solution 75.0 mL of 0.12 M NaOH is added. What is the resulting pH .
The resulting pH of the solution is calculated as to be approximately 2.97.
What is formic acid?Formic acid is the simplest carboxylic acid that has the chemical formula HCOOH and structure H−C−O−H.
Balanced equation is : HCOOH + NaOH → NaCOOH + H₂O
n(HCOOH) = V x C = 55.0 mL x 0.25 mol/L = 0.01375 mol HCOOH
And 75.0 mL of 0.12 M NaOH solution contains: n(NaOH) = V x C = 75.0 mL x 0.12 mol/L = 0.009 mol NaOH
n(HCOOH remaining) = n(HCOOH) - n(NaOH) = 0.01375 mol - 0.009 mol = 0.00475 mol
pH = pKa + log([A-]/[HA])
pKa is acid dissociation constant for HCOOH, [A-] is concentration of formate ion (HCOO-), and [HA] is concentration of unreacted formic acid.
n(HCOO-) = n(NaOH) = 0.009 mol
V = 55.0 mL + 75.0 mL = 130 mL = 0.13 L
Therefore, concentration of unreacted formic acid is: [HA] = n(HCOOH remaining) / V = 0.00475 mol / 0.13 L = 0.0365 M
pH = pKa + log([A-]/[HA]) = -log(1.77 x 10⁻⁴ + log(0.009/0.0365) = 2.97
Therefore, resulting pH of the solution is approximately 2.97.
To know more about formic acid, refer
https://brainly.com/question/10738052
#SPJ1
HCI + NaOH ->>
NaCl + H₂O
What volume of sodium hydroxide (NaOH) 0.9 M would be required to titrate 250 mL of hydrochloric acid (HCI)
0.25 M?
62.5 mL NaOH
(yellow)
69.44 mL NaOH
(purple)
90 mL NaOH
(blue)
Please help!!!!
The balanced chemical equation for the reaction between hydrochloric acid (HCI) and sodium hydroxide (NaOH) is:
HCI + NaOH -> NaCl + H2O
From the equation, we can see that 1 mole of HCI reacts with 1 mole of NaOH to produce 1 mole of NaCl and 1 mole of water.
First, let's calculate the number of moles of HCI in 250 mL of 0.25 M solution:
Molarity (M) = moles of solute / volume of solution (L)
0.25 M = moles of HCI / 0.25 L
moles of HCI = 0.25 L x 0.25 M = 0.0625 moles
Since 1 mole of NaOH reacts with 1 mole of HCI, we will need 0.0625 moles of NaOH to neutralize the HCI.
Now, let's calculate the volume of 0.9 M NaOH solution needed to provide 0.0625 moles of NaOH:
Molarity (M) = moles of solute / volume of solution (L)
0.9 M = 0.0625 moles of NaOH / volume of NaOH solution (L)
volume of NaOH solution (L) = 0.0625 moles / 0.9 M = 0.0694 L = 69.44 mL
Therefore, 69.44 mL of 0.9 M NaOH solution would be required to titrate 250 mL of 0.25 M HCI solution.
Help with homework for work sheet
The theoretical yield of the ammonia that is produced in this reaction is 43.9g.
What is the moles?The mole is commonly used to express the amount of a substance in a chemical reaction or to compare the amount of different substances.
Number of moles of N2
1 mole of N2 occupy 22.4 L
x moles of N2 occupies 29 L
x = 1.29 moles
Number of moles of H2 is;
14g/ 2 g/mol = 7 moles
Now;
1 mole of N2 reacts with 3 moles of H2
x moles of N2 reacts with 7 moles of H2
x = 2.33 moles
Then N2 is the limiting reactant
If 1 mole of N2 produces 2 moles of NH3
1.29 moles of N2 will produce 1.29 * 2/1
= 2.58 moles
Mass of NH3 = 2.58 moles * 17 g/mol
= 43.9g
Learn more about moles:https://brainly.com/question/26416088
#SPJ1
3. In your experiment, you will weigh out between 0.25 g and 0.50 g of sodium hydrogen
carbonate. If you start with 0.45 g of sodium hydrogen carbonate, how much 3.0 M
HCI should you add to get the most NaCl?
you need to add 1.79 mL of 3.0 M HCl to react with 0.45 g of NaHCO3 and produce the most NaCl.
StepsTo determine how much 3.0 M HCl is needed to react with 0.45 g of sodium hydrogen carbonate (NaHCO3) and get the most NaCl, you need to first calculate the number of moles of NaHCO3 that you have:
molar mass of NaHCO3 = 84.01 g/mol
moles of NaHCO3 = mass / molar mass = 0.45 g / 84.01 g/mol = 0.00536 mol
Next, you need to determine the stoichiometry of the reaction between NaHCO3 and HCl. The balanced chemical equation for this reaction is:
NaHCO3 + HCl → NaCl + H2O + CO2
From this equation, you can see that one mole of NaHCO3 reacts with one mole of HCl to produce one mole of NaCl. Therefore, you need 0.00536 moles of HCl to react with 0.00536 moles of NaHCO3.
To calculate the volume of 3.0 M HCl needed to provide 0.00536 moles of HCl, you can use the following equation:
moles of solute = concentration x volume of solution (in liters)
Rearranging this equation to solve for the volume of solution gives:
the volume of solution = moles of solute/concentration
Plugging in the values gives:
volume of solution = 0.00536 mol / 3.0 mol/L = 0.00179 L or 1.79 mL
Therefore, you need to add 1.79 mL of 3.0 M HCl to react with 0.45 g of NaHCO3 and produce the most NaCl.
learn more about sodium hydrogen carbonate here
https://brainly.com/question/14240995
#SPJ1
if equal 20g of both So2 and O2 are reacted. which substance is alimiting reacted ? how many grams of are formed ?
Answer: The balanced chemical equation for the reaction between SO2 and O2 is:
2 SO2 + O2 → 2 SO3
According to the equation, 1 mole of O2 reacts with 2 moles of SO2 to form 2 moles of SO3.
To determine which substance is the limiting reactant, we need to calculate the amount of product that can be formed by each reactant and choose the reactant that produces the least amount of product.
First, we need to determine the number of moles of SO2 and O2 present:
Number of moles of SO2 = mass / molar mass = 20 g / 64.06 g/mol = 0.312 moles
Number of moles of O2 = mass / molar mass = 20 g / 32.00 g/mol = 0.625 moles
Now we can calculate the amount of product formed by each reactant:
Amount of SO3 formed from SO2 = 0.312 moles × (2 moles SO3 / 2 moles SO2) × (80.06 g/mol SO3) = 12.48 g SO3
Amount of SO3 formed from O2 = 0.625 moles × (2 moles SO3 / 1 mole O2) × (80.06 g/mol SO3) = 100.10 g SO3
From the calculations, we can see that the limiting reactant is SO2, as it produces the least amount of product (12.48 g of SO3). Therefore, 12.48 g of SO3 is formed when 20 g of both SO2 and O2 are reacted.
Explanation:
use particle diagram to present the reactant and products of a reaction between aluminium and hydrochloric acid
pls draw
During the reaction, the hydrochloric acid molecules break apart into hydrogen ions (H+) and chloride ions (Cl-), which then react with the aluminium atoms to form aluminium chloride (AlCl₃) and hydrogen gas (H₂).
Calculation-HCl HCl
| |
Al Al aluminium
| |
HCl HCl
| |
H₂ Cl₂
Here's a particle diagram to represent the reaction between aluminium and hydrochloric acid.In the diagram, the reactants (hydrochloric acid and aluminium) are shown on the left-hand side, while the products (hydrogen gas and aluminium chloride) are shown on the right-hand side. The circles represent individual particles, with the blue circles representing aluminium atoms, the green circles representing chlorine atoms from hydrochloric acid, and the white circles representing hydrogen atoms from hydrochloric acid.
to know more about aluminium and hydrochloric acid here:
brainly.com/question/31305643
#SPJ1
what is steam distillation ?
Answer:
Steam distillation is a specialized method of distillation used to extract essential oils, aromatic compounds, and other volatile substances from plants or other materials that are sensitive to high temperatures. This technique involves passing steam through the plant material, which vaporizes the volatile compounds, and then condensing the steam and the vaporized compounds into a liquid form.
The steam distillation process is typically carried out in a distillation apparatus, which consists of a boiling flask, a condenser, and a receiver. The plant material is placed in the boiling flask and steam is introduced into the flask from a separate boiler or steam generator. The steam then passes through the plant material, vaporizing the essential oils and other volatile compounds. The steam and the vaporized compounds then pass through the condenser, where they are cooled and condensed into a liquid form, which is collected in the receiver.
Steam distillation is particularly useful for extracting essential oils and aromatic compounds from plant materials that are too delicate to withstand the high temperatures required for traditional distillation techniques. It is commonly used in the production of essential oils for use in perfumes, aromatherapy, and other applications. Additionally, steam distillation is a relatively simple and inexpensive method of extracting volatile compounds from plant materials, making it a popular choice for small-scale producers and hobbyists.
The lethal dose of aspirin is 50 mg per kg of body weight. How many 325 mg tablets would be deadly for a 60 lb child?
To determine the number of 325 mg tablets of aspirin that would be deadly for a 60 lb child, we first need to convert the weight to kg.
1 lb is equal to 0.453592 kg. Therefore, a 60 lb child weighs approximately 27.2155 kg (60 x 0.453592).
The lethal dose of aspirin is 50 mg per kg of body weight. Therefore, for a 27.2155 kg child, the lethal dose would be 1,360.775 mg (27.2155 x 50).
Each aspirin tablet is 325 mg. Therefore, the number of tablets that would be deadly for the child would be 4.19 (1,360.775 / 325).
However, it is important to note that even a slightly higher dose of aspirin can be harmful to a child, and it is never recommended to give aspirin to children without consulting a doctor first.
To know more about aspirin, visit :
https://brainly.com/question/29133232
#SPJ1
A sample of hydrogen nitrite or nitrous acid, HNO2 contains 8.8 x 1022 atoms. a. How many moles of nitric acid are in the sample? b. How much mass of nitric acid are in the sample?
Answer: The formula for nitrous acid is HNO2, not nitric acid (HNO3).
a. To find the number of moles of HNO2, we need to divide the number of atoms by Avogadro's number (6.022 x 10^23 atoms per mole):
moles = 8.8 x 10^22 atoms / 6.022 x 10^23 atoms/mol
moles = 0.146 mol HNO2
b. To find the mass of HNO2, we need to multiply the number of moles by the molar mass. The molar mass of HNO2 is:
1(1.008) + 1(14.01) + 2(15.99) = 63.01 g/mol
mass = 0.146 mol x 63.01 g/mol
mass = 9.20 g HNO2
Explanation:
Which equation would be used to calculate the rate constant from initial
concentrations?
O A. Kea
OB. PV = nRT
O C. k=
[Cror
[A] [B]
O D.
Rate
[A] [BY
-Ea
k = Ae RT
The equation that would be used to calculate the rate constant from initial concentrations is option C:
k = [C] / ([A] [B])
What is Concentration?
It is a measure of how much of a particular substance is dissolved in a given volume of a solution.
where [A] and [B] are the initial concentrations of the reactants and [C] is the concentration of the product at a given time. This equation is known as the rate law for a second-order reaction.
The other equations listed are:
A. Kea - This is not a standard equation used to calculate rate constants from initial concentrations.
B. PV = nRT - This is the ideal gas law, which relates the pressure, volume, temperature, and number of moles of an ideal gas.
Learn more about Concentration from given link
https://brainly.com/question/26255204
#SPJ1
Martha has a large amount of 1.25 M H₂SO4 in her lab. She needs 36 grams of H₂SO4
for a chemical reaction she wants to perform. How many liters of the solution should she use?
Show work to receive credit.
Martha needs to use 0.294 liters or 294 milliliters of the 1.25 M H₂SO4 solution to obtain 36 grams of H₂SO4.
What is Chemical Reaction?
In a chemical reaction, the atoms and molecules of the reactants are rearranged to form new compounds or products. Chemical reactions involve the breaking and forming of chemical bonds between atoms and molecules, which involves the absorption or release of energy.
We can use the formula:
to find the volume of the 1.25 M H₂SO4 solution that contains 36 grams of H₂SO4.
First, we need to calculate the number of moles of H₂SO4 in 36 grams:
molar mass of H₂SO4 = 2 x atomic mass of H + atomic mass of S + 4 x atomic mass of O
= 2 x 1.008 + 32.06 + 4 x 16.00
= 98.08 g/mol
moles of H₂SO4 = mass / molar mass
= 36 g / 98.08 g/mol
= 0.3675 mol
Now we can use the formula above to solve for the volume of the solution:
1.25 M = 0.3675 mol / volume (in liters)
volume (in liters) = 0.3675 mol / 1.25 M
= 0.294 L
= 294 mL
Learn more about Chemical Reaction from given link
https://brainly.com/question/25769000
#SPJ1
The energy diagram shows the changes in energy during a chemical reaction.
Which statement best describes the total energy change of the system?
Potential energy
Reaction progress
A. The reactants have lower potential energy, and energy is
absorbed.
B. The reactants have lower potential energy, and energy is released.
C. The reactants have higher potential energy, and energy is released.
• D. The reactants have higher potential energy, and energy is
absorbed.
Answer: D.
Explanation:
In an exothermic reaction, the reactants have higher potential energy than the products, and energy is released. In an endothermic reaction, the reactants have lower potential energy than the products, and energy is absorbed. In this case, the statement that best describes the total energy change of the system is D. The reactants have higher potential energy, and energy is absorbed.
I hope this helps. Let me know if you have any other questions!
Suppose 7.64g of iron(II) iodide is dissolved in 250. mL of a 0.20M aqueous solution of silver nitrate.
Calculate the final molarity of iodide anion in the solution. You can assume the volume of the solution doesn't change when the iron(II) iodide is dissolved in it.
Be sure your answer has the correct number of significant digits.
Iodide anion's final molarity in the solution is 0.13388 M.
We can utilise the molarity formula, which is [tex]molarity =\frac{ moles of solute}{liters of solution}[/tex], to solve this problem.
First, we need to calculate the moles of iron(II) iodide.
Use the formula to accomplish this. [tex]moles =\frac{ mass}{molar mass}[/tex]. The molar mass of iron(II) iodide is 227.88 g/mol,
so the moles of iron(II) iodide is [tex]\frac{7.64 g }{227.88 g/mol }= 0.03347 moles[/tex]
Now, we can calculate the molarity of iodide anion.[tex]Molarity of iodide anion = \frac{moles of iodide anion}{liters of solution}[/tex].Since each mole of iron(II) iodide contains 1 mole of iodide anion, the moles of iodide anion is 0.03347 moles.
The liters of solution is 0.250 liters, so the molarity of iodide anion is [tex]\frac{0.03347 moles}{0.250 liters }= 0.13388 M.[/tex]
Therefore, the final molarity of iodide anion in the solution is 0.13388 M.
learn more about iodide anion Refer:brainly.com/question/16751517
#SPJ1
Given the complex [Fe(en)2(NO2)2]NO2
1) What is the oxidation state of the metal?
2) What is the coordination number for the complex ion?
3) What is the shape of the complex ion?
4) Are the ligands strong or weak?
5) Is the compound high or low spin?
6) Is the Epairing < or > delta?
7) Using Crystal Field splitting to show many unpaired electrons are present in the compound?
8) Draw all geometric isomers if they exist.
9) Draw all optical isomers if they exist.
The oxidation state of the iron ion in the complex [Fe(en)2(NO2)2]NO2 is +1.
What is Oxidation State?
Oxidation state, also known as oxidation number, is a number assigned to an atom in a chemical compound that represents the number of electrons that atom has gained or lost relative to its neutral state.
In other words, oxidation state is a measure of the degree of oxidation of an atom in a molecule or ion. An atom is considered to be oxidized if it loses electrons, and reduced if it gains electrons.
In the given complex [Fe(en)2(NO2)2]NO2, the metal is iron (Fe). To determine the oxidation state of the iron ion in the complex, we can use the oxidation states of the other atoms and the charge of the complex.
The en ligand is ethylenediamine (C2H8N2), which has a neutral charge. The NO2 ligand is nitrite, which has a -1 charge. The overall charge of the complex is -1 due to the NO2^- counterion.
Let x be the oxidation state of the iron ion.
From the ethylenediamine ligands, we have a total charge of +4 (2 x +2).
From the nitrite ligands, we have a total charge of -4 (2 x -1 x 2).
From the complex charge, we have a total charge of -1.
Setting the sum of these charges equal to the charge of the iron ion (x) gives us:
+4 - 4 - 1 = x
Simplifying the equation gives us:
-x = -1
Solving for x gives us:
x = +1
Learn more about Oxidation State from given link
https://brainly.com/question/25551544
#SPJ1
Which of the chemicals in the equation below is acting as a base?
b. [tex]C_5N_4H_4O_3[/tex] is the chemical in the equation which acts as a base.
A base that can dissolve in water is referred to as being alkali. These chemicals produce salts when they interact chemically with acids. Red litmus can turn blue when bases are present. Depending on the specific way that the qualities of acidity and basicity are examined, the terms acid and base have been defined in a variety of ways.A base is defined as a compound which is capable of accepting a proton or a hydrogen ion in a chemical reaction.
Chemically, the equation is [tex]C_3N_2H_4+C_5N_4H_4O_3 \rightarrow C_3N_2H_5^+ +C_5N_4H_3O_3^-[/tex]
In this equation, [tex]C_5N_4H_4O_3[/tex] is the compound that is accepting a proton (or hydrogen ion) to form [tex]C_3N_2H_5^{+[/tex] and [tex]C_5N_4H_3O_3^-[/tex]. Therefore, [tex]C_5N_4H_4O_3[/tex] is the base in this equation.
learn more about hydrogen ion Refer:brainly.com/question/15082545
#SPJ1
A 0.5998g sample of a new compound has been analyzed and found to contain the following masses of elements: carbon = 0.1.565g ; hydrogen = 0.02627g ; oxygen = 0.4170g. Calculate the empirical formula of the compound.
The empirical formula of a novel compound is CH2O if an analysis of a 0.5998g sample reveals that it contains the following masses of elements: carbon (0.1.565g), hydrogen (0.02627g), and oxygen (0.4170g).
What's in a 23.0 g sample of a substance?You need to be aware of a compound's molar mass in order to ascertain its molecular formula. You can then decide which multiple of the empirical formula corresponds to the right molecular formula. 12.0g of carbon, 3.0g of hydrogen, and 8.0g of oxygen make up a compound in a 23.0g sample.
Which chemical has an empirical formula that is 92.3% carbon and 7.7% hydrogen?In a hydrocarbon, carbon makes up 92.3% of the mass and hydrogen makes up 7.7%.
To know more about empirical formula visit:-
https://brainly.com/question/14044066
#SPJ1
A solution prepared by dissolving 66.0 g of urea (NH2)2CO in 950 g of water
had a density of 1.018 g mL–1. Express the concentration of urea in
a- weight-percent; b- mole fraction; c- molarity; d- molality.
How is an oxbow lake and a deep meander different? its for 14 points.
Answer: Oxbow-shaped meanders have two sets of curves: one curving away from the straight path of the river and one curving back. An oxbow lake starts out as a curve, or meander, in a river.
Explanation:
20.00 moles of helium are mixed with 5.00 mole of oxygen gas in a 15.00 L container at 22.0 0C. Calculate the mole fraction of oxygen gas in the mixture.
The total Mole fraction of oxygen is 0.20 or 20% .
What is the gas mixture's formula?P=n(RTV)=n×const. Only the quantity is affected by the gas's nature in the calculation. Let's assume that we have a mixture of two ideal gases that are present in equal quantities based on this supposition.
The total moles of gas in the combination must first be determined:
Total moles of gas = moles of helium + moles of oxygen
Total moles of gas = 20.00 + 5.00
Total moles of gas = 25.00 moles
Next, we need to calculate the mole fraction of oxygen gas:
Mole fraction of oxygen = moles of oxygen / total moles of gas
Mole fraction of oxygen = 5.00 / 25.00
Mole fraction of oxygen = 0.20 or 20% (rounded to two decimal places)
To know more about Mole fraction visit:-
https://brainly.com/question/29808190
#SPJ1