Explanation:
The tickmarks show which pieces are congruent to one another, which in turn show the segments have been bisected (cut in half). The square angle markers show we have perpendicular segments. So we have three perpendicular bisectors. The perpendicular bisectors intersect at the circumcenter. The circumcenter is the center of the circumcircle. This circle goes through all three vertex points of the triangle.
A useful application is let's say you had 2 friends and you three wanted to pick a location to meet for lunch. Each person traveling from their house to the circumcenter's location will have each person travel the same distance. We say the circumcenter is equidistant from each vertex point of the triangle. In terms of the diagram, LH = LJ = LK.
Answer: B.) Circumcenter
Step-by-step explanation:
James is measuring the temperature (1) of a plate left sitting in the sun fort
hours. Which of the following is the most appropriate domain for h(0?
O A. All positive numbers
O B. Positive integers only
O C. All real numbers
O D. All integers
Answer:
O B. Positive integers only
Step-by-step explanation:
You have that the temperature of a plate is measured respect to the number of hours that the plate has been left in the sun.
In this case you have that the independent variable is the number of hours and the dependent variable is the temperature.
Due to James would like to know how is changing the temperature of the plate, per hour, the best domain for the function, that is, the best available values for the time on which the temperature of the plate is measured, are the positive integers only.
O B. Positive integers only
What is the measure of ∠BCD?
Answer: 77 degrees
Step-by-step explanation:
interior angles on the same side of transversal are supplementary. Thus,
103+x=180
x = 77
Hope it helps <3
Answer:
Hey there!
This is a parallelogram, and we have the angles next to each other add to 180 degrees. Angle ABC+Angle BCD=180
103+x=180
x=77
BCD=77 degrees.
Let me know if this helps :)
1. 2x-y≤-6
2. 5x+4y ≥20
Answer
2x-y <or =-6
2x<or=-6+y
divide both sides by 2
x<or=1/2y+3
5(1/2y+3)+4y>or=20
5/2y+15+4y>or=20
5/2y+4y>or=20-15
13/2y>or=5
divide both sides by 2/13
y>or=10/13
2x-10/13<or=-6
2x<or=-6+10/13
2x<or=-68/13
divide both sides by 2
x< or =-34/13
Question 3
Which of the following best describes the solution to the system of equations below?
-6x + y=-3
7x-y=3
The system of equations has exactly one solution where x = 6 and y = 3.
The system of equations has no solution.
The system of equations has infinitely many solutions.
The system of equations has exactly one solution where x = 0 and y=
-3
Answer:
The system has exactly one solution where x = 0 and y = -3.
Step-by-step explanation:
-6x + y = -3
7x - y = 3
(7x - 6x) + (y - y) = 3 - 3
x + 0 = 0
x = 0
7(0) - y = 3
0 - y = 3
-y = 3
y = -3
-6(0) + y = -3
0 + y = -3
y = -3
So, the system has exactly one solution where x = 0 and y = -3.
Hope this helps!
A pile of 55 coins consisting of nickels and dimes is worth $3.90 . Find the number of each. PLZ ANSWER IN 1 MIN
Answer:
23 dimes; 32 nickel
Step-by-step explanation:
Let n = number of nickels.
Let d = number of dimes.
A nickel is worth $0.05; n nickels are worth 0.05n.
A dime is worth $0.10; d dimes are worth 0.1d.
Number of coins:
d + n = 55
Value of the coins:
0.1d + 0.05n = 3.9
Solve d + n = 55 for d:
d = 55 - n
Substitute 55 - n for d in second equation.
0.1(55 - n) + 0.05n = 3.9
5.5 - 0.1n + 0.05n = 3.9
-0.05n = -1.6
n = 32
Substitute 32 for n in d + n = 55 and solve for d.
d + 32 = 55
d = 23
Answer: 23 dimes; 32 nickel
URGENT)
In the figure, ABCDE is a regular pentagon and DEFG is a square. CD
produced and GF intersect at H. Find x.
Answer:
108 degrees
Step-by-step explanation:
angle CDE is 108 degrees, which is supplementary to angle EDH, so EDH must be 72 degrees
then put it into an equation
90+90+72+x=360
solve
x=108
Answer:
The answer is 108
1. What are the formulas that help determine the equation of a circle? 2. How are the center, radius and a point on the circle expressed algebraically? 3. What do you need to know in order to use the ellipse equation formulas?
Answer: see below
Step-by-step explanation:
1) The equation of a circle is: (x - h)² + (y - k)² = r² where
(h, k) represents the center of the circler represents the radius of the circle.2) If you are given a point on the circle and the center (h, k)
you can input those points into the equation of a circle to find r².
Then input (h, k) and r² to identify the equation of that particular circle.
3) If you divide each term in the equation of a circle by r², you will get:
[tex]\dfrac{(x-h)^2}{r^2}+\dfrac{(y-k)^2}{r^2}=1[/tex]
(h, k) is the center of the circler is the x-radius and y-radiusThe difference between a circle and an ellipse is that an ellipse is in the shape of an oval. In other words, the x-radius and y-radius are different.
The equation of an ellipse is:
[tex]\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1[/tex]
(h, k) is the center of the ellipsea is the x-radiusb is the y-radiusThe difference between seven times a number and 9 is equal to three times the sum of the number and 2. Find the number If x represents the number, which equation is correct for solving this problem?
Answer:
[tex]\large \boxed{\bf \sf \ \ \ 7x-9 = 3(x+2) \ \ \ }[/tex]
Step-by-step explanation:
Hello,
x represents this number and we know that
the difference between seven times this number and 9
7*x - 9
is equal to three times the sum of this number and 2
3(x+2)
So we can write
[tex]7x-9 =3(x+2) \\\\7x-9 =3x+6 \ \ \text{distributive law} \\\\7x-9-3x=3x+6-3x =6 \ \ \text{subtract 3x} \\\\4x-9+9=6+9 \ \text{add 9} \\\\4x=15 \ \ \text{divide by 4} \\\\ \boxed{x=\dfrac{15}{4}}\\[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Find the value(s) of c guaranteed by the Mean Value Theorem for Integrals for the function over the given interval. (Round your answer to four decimal places. Enter your answers as a comma-separated list.)
f(x)=5√x,[4,9]
Answer:
25/4Step-by-step explanation:
The mean value theorem for integrals for the function f(c) over a given interval [a, b] is expressed as g prime(c) = g(b) - g(a)/b-a. The idea is that there is a value c in between the interval [a, b] for the function given.
Given the function g(x) = 5√x within the interval [4,9]
g prime (c) = g(9) - g(4)/9-4
g(9) = 5√9
g(9) = 5*3 = 15
g(4) = 5√4
g(4) = 5*2 = 10
g prime c) = 15-10/9-4
g prime (c) = 5/5
g prime(c) = 1
So we are to find the number for which g prime (x) = g prime(c)
If g(x) = 5√x = [tex]5x^{1/2}[/tex]
g prime (x) = [tex]5/2 \ x^{-1/2}[/tex]
g prime (x) = 5/2√x
Since g prime (c) = 1 then;
5/2√x = 1
5 = 2√x
√x = 5/2
x = (5/2)²
x = 25/4
The value of c guaranteed by the mid value theorem is 25/4
The possible value of c for [tex]\mathbf{f(x) = 5\sqrt x\ [4,9]}[/tex] is 6.25
The function is given as:
[tex]\mathbf{f(x) = 5\sqrt x\ [4,9]}[/tex]
Calculate f(4) and f(9)
[tex]\mathbf{f(4) = 5\sqrt 4 = 10}[/tex]
[tex]\mathbf{f(9) = 5\sqrt 9 = 15}[/tex]
Substitute c for x in f(x)
[tex]\mathbf{f(c) = 5\sqrt c }[/tex]
Calculate f'(c)
[tex]\mathbf{f'(c) = \frac{f(b) - f(a)}{b - a}}[/tex]
So, we have:
[tex]\mathbf{f'(c) = \frac{f(9) - f(4)}{9 - 4}}[/tex]
[tex]\mathbf{f'(c) = \frac{f(9) - f(4)}{5}}[/tex]
This gives
[tex]\mathbf{f'(c) = \frac{15 -10 }{5}}[/tex]
[tex]\mathbf{f'(c) = \frac{5 }{5}}[/tex]
[tex]\mathbf{f'(c) = 1}[/tex]
Also, we have:
[tex]\mathbf{f'(x) = \frac 52x^{-1/2}}[/tex]
Substitute c for x
[tex]\mathbf{f'(c) = \frac 52c^{-1/2}}[/tex]
Substitute 1 for f'(c)
[tex]\mathbf{\frac 52c^{-1/2} = 1}[/tex]
Multiply through by 2/5
[tex]\mathbf{c^{-1/2} = \frac 25}[/tex]
This gives
[tex]\mathbf{c^{1/2} = \frac 52}[/tex]
Square both sides
[tex]\mathbf{c = \frac{25}4}[/tex]
[tex]\mathbf{c = 6.25}[/tex]
Hence, the possible value of c is 6.25
Read more about mean value theorem at:
https://brainly.com/question/3957181
After Keith picked 9 lemons, he wanted to share them with his fellow classmates. If Keith wants to give 1 1/8 lemons to each of his classmates, then how many classmates will get some lemon?
Answer:
8 classmates
Step-by-step explanation:
[tex]9/1\frac{1}{8}=\\9/\frac{9}{8}=\\9*\frac{8}{9}=\\\frac{72}{9}=\\8[/tex]
If the wavelength of the violet color is 400 nm, what is the value of its frequency?
Hi there! Hopefully this helps!
-------------------------------------------------------------------------------------------------- The frequency is ~7.5*1014 Hz
Since visible light has a wavelength spectrum of ~400 nm to ~700 nm, Violet light has a wavelength of ~400 nm and a frequency of ~7.5*1014 Hz.
Step-by-step explanation:
Speed = wavelength × frequency
3×10⁸ m/s = (400×10⁻⁹ m) f
f = 7.5×10¹⁴
CAN I GET SOME HELP OVER HERE? Ina Crespo rowed 12 miles down the Habashabee River in 2 hours, but the return trip took her 3 hours. Find the rate Ina rows in still water and the rate of the current. Let x represent the rate Ina can row in still water and let y represent the rate of the current. Ina can row ? mph in still water
Answer: The speed of Ina in still water is 5mph
Step-by-step explanation:
If the speed of Ina on still water is x, and the speed of the river is y:
The total speed of Ina when she goes along with the current is:
S = x + y
when she goes against the current we have:
St = x - y.
Now we can use the relation:
speed = time/velocity.
along with the current, we have:
x + y = 12mi/2h = 6mi/h
against the current we have:
x - y = 12mi/3h = 4mi/h
So we have the equations
x + y = 6mi/h
x - y = 4mi/h
in the first equation we can isolate x
x = 6mi/h - y
now we replace this in the second equation:
(6mi/h - y) - y = 4mi/h
6mi/h - 2y = 4mi/h
-2*y = 4mi/h - 6mi/h = -2mi/h
y = 1mi/h
now we replace this in the first equation:
x + 1mi/h = 6mi/h
x = 5mi/h.
The speed of Ina in still water is 5mph
An ecologist wishes to mark off a circular sampling region having radius 10 m. However, the radius of the resulting region is actually a random variable R with the following pdf.
f(r)={34(1−(14−r)2)13≤r≤150 otherwise
What is the expected area of the resulting circular region?
Answer:
the expected area of the resulting circular region is 616.38 m²
Step-by-step explanation:
Given that:
[tex]f(r) = \left \{ {{\dfrac{3}{4}(1-(14-r)^2)} \atop {0 }} \right. \ \ 13 \leq r \leq 15[/tex] otherwise
The expected area of the resulting circular region is:
= [tex]E(\pi r^2)[/tex]
= [tex]\pi E (r^2)[/tex]
To calculate [tex]E(r^2)[/tex]
[tex]E(r^2) = \int\limits^{15}_{13} {r^2} \ f(r) \ dr[/tex]
[tex]E(r^2) = \int\limits^{15}_{13} \ \dfrac{3r^2}{4}(1-(14-r)^2)dr[/tex]
[tex]E(r^2) = \dfrac{3}{4} \int\limits^{15}_{13} \ r^2 (1-196-r^2+28r) dr[/tex]
[tex]E(r^2) = \dfrac{3}{4} \int\limits^{15}_{13} \ r^2 (28r^3-r^4-195r^2)dr[/tex]
[tex]E(r^2) = \dfrac{3}{4}[\dfrac{28 r^4}{4}-\dfrac{r^5}{5}-\dfrac{195r^3}{3}]^{^{15}}}__{13}[/tex]
[tex]E(r^2) = \dfrac{3}{4} [ \dfrac{28 \times 50625}{4} - \dfrac{759375}{5} - \dfrac{195 \times 3375}{3} ]-[ \dfrac{28 \times 28561}{4} - \dfrac{371293}{5} - \dfrac{195 \times 2197}{3} ][/tex]
[tex]E(r^2) = \dfrac{3}{4} [ 354375-151875-219375-199927+74258.6+142805][/tex]
[tex]E(r^2) = \dfrac{3}{4} [261.6][/tex]
[tex]E(r^2) = 196.2[/tex]
Recall:
The expected area of the resulting circular region is:
= [tex]E(\pi r^2)[/tex]
= [tex]\pi E (r^2)[/tex]
where;
[tex]E(r^2) = 196.2[/tex]
Then
The expected area of the resulting circular region is:
= [tex]\pi \times 196.2[/tex]
= 616.38 m²
What’s this? I’m stuck!
Answer:
68 degrees
Step-by-step explanation:
Y=56,
56+56=112
180-112=68
Hope this helps, if you have any other questions, feel free to ask me to explain more
Have a good day! :)
Which of the following is the standard form of y =3/7 x-1 a)3/7x-y=1 b) y-3/7x= - 1 c) 7y-3x= -7 d) 3x - 7y= 7
Answer:
d)
Step-by-step explanation:
the general form is ax + by = c
The current l in an electrical conductor varies inversely as the resistance R of the conductor. The current is 1/6 ampere when the resistance is 32400 ohms. What is the current when the resistance is 22500 ohms
Answer:
I=0.24ampere
Step-by-step explanation:
Assuming that the voltage is the same:
I=V/R (V- voltage, I-current, R-resistance)
1/6ampere=V/3240ohms
V=1/6*3240
= 5400v
Voltage across =V=5400v
Since the voltage is the same when the resistance is 22500ohms
I=V/R
=5400/22500
=6/25
=0.24ampere
If f (x) = -9x - 9 and g (x) = Vx - 9, what is (f ° g) (10)?
Answer: [tex](f \circ g) (10)= -18\ .[/tex]
Step-by-step explanation:
Given: [tex]f (x) = -9x - 9[/tex] and [tex]g (x) = \sqrt{x - 9}[/tex]
To find : (f o g) (10)
For this we first find (f o g) (x)= [tex]f(g(x))[/tex]
[tex]=f(\sqrt{x-9})\\\\=-9(\sqrt{x-9})-9[/tex]
Now,
[tex](f \circ g) (10)=-9(\sqrt{10-9})-9\\\\=-9\sqrt{1}-9\\\\=-9-9=-18[/tex]
Hence, the value of [tex](f \circ g) (10)= -18\ .[/tex]
RVLC2019] IC/Off
In AMNO, m = 20, n = 14, and mZM = 51°. How many distinct triangles can be formed given these measurements?
O There are no triangles possible.
VX
O There is only one distinct triangle possible, with m N= 33º.
O There is only one distinct triangle possible, with mZN 147º.
O There are two distinct triangles possible, with m2N 33° or mZN-147º.
Done
) Intro
DO
There is only one distinct triangle possible, with m N= 33º. Therefore, option B is the correct answer.
What is sine rule?Law of Sines In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles.
The formula for sine rule is sinA/a=sinB/b=sinC/c
Given that, in ΔMNO, m = 20, n = 14, and m∠M = 51°.
Now, sin51°/20=sinN/14
0.7771/20=sinN/14
0.038855=sinN/14
sinN=14×0.038855
sinN=0.54397
N=33°
Therefore, option B is the correct answer.
Learn more about the sine rule here:
https://brainly.com/question/22288720.
#SPJ7
You and your best friend are both on the swim team. You want to beat your friend at the next swim meet so you decide to swim 151515 minutes longer than she does one day at practice. Write an equation for the number of minutes you swim, yyy, when your friend swims xxx number of minutes. Y
Answer:
yyy = xxx + 151515
Step-by-step explanation:
Since you want to swim 151515 minutes longer one day at practice (note this time is actually 105 days), you simply need to swim the same amount of time as your friend, plus the extra time. Hence, your time will be equal to your friends time plus the extra time you plan to swim.
Which equation represents the function graphed
coordinate plane?
Answer:
b. y = |x+4| - 10
Step-by-step explanation:
When you see a v-shaped graph, it could very well relate to an absolute-value function.
The value of the absolute value function has the vertex at x= -4, meaning that it has a minimum value when x=-4, which means that the absolute value function is of the form |x+4| giving a zero when x= -4.
Also, the minimum of the function occurs at y = -10, meaning that the function has been translated by -10.
Therefore the function is
y = |x+4| - 10
Answer:
B
Step-by-step explanation:
EDGE unit review
Solve for X. pls help asap
Answer:
x=3
Step-by-step explanation:
Use the Pythagorean Theorem to write an equation.
x^2+y^2=z^2
Substitute values from the problem.
x^2 + 6^2 = 9^2
Solve for what you know.
x^2 + 36 = 81
Square root it.
x+6=9
Subtract 6 from both sides.
x=3
In the future, if you see a right triangle with an unknown side, and the other two sides are either 3, 6, or 9, you know that the other one is the missing value out of 3/6/9. This is called a 3/6/9 triangle.
Answer:
6.7Step-by-step explanation:
Hypotenuse (h) = 9
base (b) = X
Perpendicular (p) = 6
Now,
Using Pythagoras theorem:
[tex] {h}^{2} = {p}^{2} + {b}^{2} [/tex]
[tex] {b}^{2} = {h}^{2} - {p}^{2} [/tex]
[tex] {b}^{2} = {(9)}^{2} - {(6)}^{2} [/tex]
[tex] {b}^{2} = 81 - 36[/tex]
[tex] {b}^{2} = 45[/tex]
[tex]b = \sqrt{45} [/tex]
[tex]b = 6.7[/tex]
Hope this helps...
Good luck on your assignment..
A deep-sea diver is in search of coral reefs.he finds a beautiful one at an elevation of -120 4/7feet. While taking pictures of the reef he catches sight of a manta ray. He swims up 25 3/7feet to check it out.what is the diver's new elevation?
Answer:-95 1/7 feet
Step-by-step explanation:
-120 4/7+25 3/7=-95 1/7 feet
Solve for X. Pls help asap
Answer:
[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{12}}}}}[/tex]
Step-by-step explanation:
hypotenuse ( h ) = x
Peendicular ( p ) = 10
base ( b ) = 22
Using the Pythagoras theorem
[tex] \boxed{ \sf{ {h}^{2} = {p}^{2} + {b}^{2} }}[/tex]
[tex] \dashrightarrow{ \sf{ {x}^{2} = {10 }^{2} + {22}^{2} }}[/tex]
[tex] \dashrightarrow{ \sf{ {x}^{2} = 100 + 44}}[/tex]
[tex] \dashrightarrow{ \sf{ {x}^{2} = 144}}[/tex]
[tex] \dashrightarrow{ \sf{ \sqrt{ {x}^{2} } = \sqrt{144}}} [/tex]
[tex] \dashrightarrow{ \sf{x = 12}}[/tex]
Hope I helped!
Best regards! :D
Write these numbers in standard form 0.000 04
Answer:
4/ 100000
hope it was useful for you
stay at home stay safe
pls mark me as brain.....m
keep rocking
Find X. Please help.
Answer:
x = 18.08°Step-by-step explanation:
To find the value of x we use sine
sin ∅ = opposite / hypotenuse
From the question
29 is the hypotenuse
9 is the opposite
sin x = 9/29
x = sin-¹ 9/29
x = 18.08°
Hope this helps you
Answer:
Angle=71.9°
using the trig inverse formula sec(angle)= hypotenuse/adjacent
Ashley has 500 songs in his music player. Every week he adds 10 songs to his collection. How many songs will he have in his music player after 20 weeks ?
At the end of n weeks, the number of songs is given by the function
f(n) =500 +10n
Or
f(n) = 10 +20b
The output of the function is 700
or
600
when the input is 20.
Answer:
700
Step-by-step explanation:
500+10*20=700
it's f(n) = 500+10n
Choose the correct equation for the parabola based on the given information. Given: Focus:(2,8) Directrix: y = 4 a. 2(y-2)= (x- 6)^2 b. 8(x -2) = (y -6)^2 c. 8(y - 6)= (x-2)^2 d. 2(x-2)= (y-8)^2
Explanation:
The directrix is horizontal, so the axis of symmetry is vertical. We'll have an x^2 term. The vertical distance from y = 4 to y = 8 is 4 units. Cut this in half to get 2, which is the focal distance p = 2.
The point (2,4) is directly below (2,8), and the point is on the directrix. The midpoint between (2,4) and (2,8) is (2,6). This is the vertex.
(h,k) = (2,6)
4p(y-k) = (x-h)^2
4*2(y-6) = (x-2)^2
8(y-6) = (x-2)^2
Function f is shown on the graph below where two points are marked. If function f is horizontally compressed by a factor of 2, plot the two corresponding points that would lie on the transformed function.
Answer:
If you have
[tex]f(x) = x^2[/tex]
The point (2,4) would be transformed to (1,1)
Step-by-step explanation:
If your compression is horizontal then the transformation you are making is the following
[tex]g(x) = f(x/2)[/tex]
Therefore, if you have
[tex]f(x) = x^2[/tex]
The point (2,4) would be transformed to (1,1)
Solve for x. please help me its urgent
Answer:
x = 25
Step-by-step explanation:
The sum of the angles of a quadrilateral are 360 degrees
3x+x+10 + 4x+6x = 360
Combine like terms
14x+10 = 360
Subtract 10 from each side
14x +10-10 = 360-10
14x = 350
Divide each side by 14
14x/14 = 350/14
x = 25
Wina drove 282 miles on 10 gallons of gas. At this same rate, how many miles could she drive on 12 gallons of gas?
Hey there! I'm happy to help!
Let's set this up a proportion (two equal ratios) to find out how many miles Wina can drive on 12 gallons gas.
[tex]\frac{miles}{gallons} =\frac{282}{10} =\frac{m}{12}[/tex]
What do we multiply the bottom 10 by to get to 12? Well, to find out, we can divide 12 by 10 below.
12÷10=1.2
This means that we multiply the numbers in the first fraction by 1.2 to have the same numerator and denominator as the second fraction.
If we multiplied our 10 b y 1.2 to get the denominator in the second fraction, we should be able to multiply 282 by 1.2 to get the numerator in the second fraction!
282×1.2=338.4
If you use 338.4 in this proportion, the ratios will be equal.
Therefore, Wina could drive 338.4 miles on 12 miles of gas at this same rate.
Have a wonderful day!