Answer: 1.09 is closer to 1
The average rate of change of f(x) = x² = x + 4 from x= 2 to x = 4 is
A)2
B)10
C)5
D)3
Answer: 7
Step-by-step explanation: The average rate of change of a function f(x) over an interval [a,b] is defined as the ratio of “change in the function values” to the "change in the endpoints of the interval"1. In other words, it is the slope of the line that passes through two points on the graph of f(x)2.
To find the average rate of change of f(x) = x² + x + 4 from x = 2 to x = 4, we can use this formula:
Average rate of change = [f(4) - f(2)] / (4 - 2)
First, we need to plug in x = 4 and x = 2 into f(x) and simplify:
f(4) = (4)² + (4) + 4 f(4) = 16 + 8 f(4) = 24
f(2) = (2)² + (2) + 4 f(2) = 4 + 6 f(2) = 10
Next, we need to subtract f(2) from f(4), and divide by (4 - 2):
Average rate of change = [24 - 10] / (4 - 2) Average rate of change = 14 / 2 Average rate of change = 7
The rate of change of f(x) = 2(2) is __ the rate of change of the function in the graph:
A. equal to
B. less than
C. greater than
The rate of change of f(x) = 2(2) is equal to the rate of change of the function in the graph.
What is a function?A function is a relation between two sets of values in mathematics. It is a mathematical process that takes an input and produces an output. It is represented as an equation which describes the relationship between the input and the output. A function can also be used to represent a mathematical rule or procedure that takes a set of inputs and produces a set of outputs.
The rate of change, or slope, is the measure of how quickly one variable changes when the other changes. In the graph, the rate of change is a constant, meaning that for every one unit the x-value increases the y-value increases by two. This is the same as the rate of change of f(x) = 2(2), as for every two units the x-value increases the y-value increases by four. Both the graph and the equation of the function have a constant rate of change which is equal to two, so the rate of change of f(x) = 2(2) is equal to the rate of change of the function in the graph.
For more questions related to slope
https://brainly.com/question/3493733
#SPJ9
degree = 7, zeroes of multiplicity 2 at x=3 and x=-4, a zero of mutiplicity at x=-1 and y-intercept =(0,4)
The equation of the polynomial is f(x) = (1/36)(x - 3)2(x + 4)2(x + 1)3.
The equation of the polynomial can be found using the given information about the degree, zeroes, and y-intercept. The general form of a polynomial is:
f(x) = a(x - x1)n1(x - x2)n2...(x - xk)nk
Where x1, x2, ..., xk are the zeroes of the polynomial, n1, n2, ..., nk are the multiplicities of the zeroes, and a is the leading coefficient.
Using the given information, we can plug in the values for the zeroes and their multiplicities:
f(x) = a(x - 3)2(x + 4)2(x + 1)3
The degree of the polynomial is 7, which is the sum of the multiplicities of the zeroes. So, the equation is correct in terms of the degree.
Now, we need to find the value of a using the y-intercept. The y-intercept is the point where the graph of the polynomial crosses the y-axis, which means that x = 0. So, we can plug in x = 0 and the given y-intercept (0,4) into the equation and solve for a:
4 = a(0 - 3)2(0 + 4)2(0 + 1)3
4 = a(9)(16)(1)
4 = 144a
a = 4/144
a = 1/36
Now, we can plug in the value of a back into the equation to get the final answer:
f(x) = (1/36)(x - 3)2(x + 4)2(x + 1)3
Therefore, the equation of the polynomial is f(x) = (1/36)(x - 3)2(x + 4)2(x + 1)3.
Learn about Polynomial
brainly.com/question/11536910
#SPJ11
The mapping diagram represents a relation where x represents the independent variable and y represents the dependent variable.
Is the relation a function? Explain.
A. No, because for each input there is not exactly one output
B. No, because for each output there is not exactly one input
C. Yes, because for each input there is exactly one output
D. Yes, because for each output there is exactly one input
No function exists in this relation. No, since there isn't always a single output for every input.
What is a function?
Each element of X receives exactly one element of Y when a function from one set to the other is used. The sets X and Y are collectively referred to as the function's domain and codomain, respectively. Initially, functions represented the idealized relationship between two changing quantities.
Here, we have
Given: The mapping diagram represents a relation where x represents the independent variable and y represents the dependent variable.
We have to show the relation between a function.
The x-values are entered into the function machine. The function machine generates the y-values after its operations are complete. Any internal function is possible.
A mapping diagram with arrows pointing from negative 3 to 0, negative 1 to 2, 1 to 0, 3 to 2, and 5 to 5, as well as two circles with the numbers 0, and labels for the x and y values, respectively
but according to the definition of y, it should give only one value
Hence, it is not a function.
To learn more about the function
https://brainly.com/question/10439235
#SPJ1
The Johnsons framed a family picture to hang on the wall. The perimeter of the frame is 42 inches.
By answering the above question, we may state that We are unable to solve this equation for both l and w since it has only one solution and two unknowns.
what is function?Mathematicians research numbers, their variants, equations, forms, and related structures, as well as possible locations for these things. The relationship between a group of inputs, each of which has a corresponding output, is referred to as a function. Every input contributes to a single, distinct output in a connection between inputs and outputs known as a function. A domain, codomain, or scope is assigned to each function. Often, functions are denoted with the letter f. (x). The key is an x. There are four main categories of accessible functions: on functions, one-to-one capabilities, so many capabilities, in capabilities, and on functions.
We are aware of the frame's 42-inch circumference but are unaware of the picture's or frame's shape, as well as if the frame's breadth fluctuates or is constant.
With the assumption that the frame is rectangular and has a constant width, we might create the equation shown below:
2l + 2w + 4x = 42
where L stands for the picture's length, W for its width, and X for the frame's width (assuming there are four sides with the same width).
We are unable to solve this equation for both l and w since it has only one solution and two unknowns.
To know more about function visit:
https://brainly.com/question/28193995
#SPJ1
A coin with P[H]=0. 3 is flipped 3 times. Define N to be the total number of heads. Find the CDF FN(n), the cumulative distribution function for N. (please provide an explanation for the answer)
The cumulative distribution function for N when a coin is flipped 3 times with P[H]=0. 3 is given by ,
F(N≤ 0) = 0.343 , F(N≤1) = 0.784 , F(N≤2) = 0.973 , F(N≤3) = 1.000.
Cumulative distribution function (CDF) of N,
Probability of getting n or fewer heads in three coin flips,
(All values of n from 0 to 3)
Probability of getting exactly n heads in three flips.
Apply binomial distribution,
P(N = n) = ³Cₙ ×(0.3)ⁿ × (0.7)³⁻ⁿ
For cumulative distribution function, add up the probabilities of getting 0, 1, 2, or 3 heads in three flips,
F(N≤ 0)
=P(N=0)
=³C₀ × (0.3)⁰ × (0.7)³
= 1 × 1 × 0.343
= 0.343
For F(N≤1) is equal to,
⇒F(N≤1)
= P(N=0) + P(N=1)
= ³C₀ × (0.3)⁰ × (0.7)³ + ³C₁ × (0.3)¹ × (0.7)²
= 0.343 + 0.441
= 0.784
F(N ≤ 2)
= P(N=0) + P(N=1) + P(N=2)
= ³C₀ × (0.3)⁰ × (0.7)³
+ ³C₁ × (0.3)¹ × (0.7)²
+³C₂ × (0.3)² × (0.7)¹
= 0.343 + 0.441 + 0.189
= 0.973
This implies CDF for N is equal to,
F(N ≤n) = [tex]\sum_{0}^{x}[/tex]³Cₓ × (0.3)ˣ × (0.7)³⁻ˣ
And F(N≤3) is equal to,
⇒F(N≤3)
= P(N=0) + P(N=1) + P(N=2) + P(N=3)
= ³C₀ × (0.3)⁰ × (0.7)³
+ ³C₁ × (0.3)¹ × (0.7)²
+ ³C₂ × (0.3)² × (0.7)¹
+ ³C₃× (0.3)³ × (0.7)⁰
= 0.343 + 0.441 + 0.189 + 0.027
= 1.000
Therefore, the cumulative distribution function for N is equal to,
F(N≤ 0) = 0.343
F(N≤1) = 0.784
F(N≤2) = 0.973
F(N≤3) = 1.000
learn more about cumulative distribution function here
brainly.com/question/30369862
#SPJ4
Image attached - thanks for helping!
Answer:
Ans = (1.50 x 29 movies) + 16
Step-by-step explanation:
y represents total costs
x represents how many movie he rents
$1.50 is the rent of each movie
$16 is the fixed fee
thus
y = 1.50 x + 16
Ans = (1.50 x 29 movies) + 16
5. CREATE A GRAPH AND WRITE AN
EQUATION to represent the list of
ordered pairs listed below. y = mx
+ b
(2, -3) (1, -1) (-1, 3) (3, -5)
To create a graph and write an equation to represent the list of ordered pairs given, we need to plot each point on a coordinate system.
x | y
--|--
2 |-3
1 |-1
-1| 3
3 |-5
Plotting these points on a coordinate plane, we get:
![Graph of ordered pairs]
To write an equation to represent these ordered pairs in the form y = mx + b, we need to find the slope of the line and the y-intercept.
To find the slope:
m = (y2 - y1) / (x2 - x1)
Let's use the points (1, -1) and (3, -5) to find the slope:
m = (-5 - (-1)) / (3 - 1)
m = -4 / 2
m = -2
Now that we know the slope, we can use any point and the slope to find the y-intercept (b).
Using the point (1, -1):
y = mx + b
-1 = (-2)(1) + b
b = 1
So the equation that represents these ordered pairs in the form y = mx + b is:
y = -2x + 1
And the graph of this equation looks like:
![Graph of equation y = -2x + 1]
Evaluating Trigonometric Functions In Exercises 15-30, find the exact values of the sine, cosine, and tangent of the angle.
15. 105 deg = 60 deg + 45 deg
17. 195 deg = 225 deg - 30 deg
19. (11pi)/12 = (3pi)/4 + pi/6
12 21. - pi/12 = pi/6 - pi/4
23. 75°
25.-285°
27. (13pi)/12
222 29. - (7pi)/12
16. 165 deg = 135 deg + 30 deg
18. 255 deg = 300 deg - 45 deg
20. (17pi)/12 = (7pi)/6 + pi/4
22. - (19Y)/12 = (2pi)/3 - (9pi)/4
24. 15°
26.-165°
28. (5pi)/12
30. - (13pi)/12
For 15:
Sine: √2/2
Cosine: √2/2
Tangent: 1
For 17:
Sine: -1/2
Cosine: √3/2
Tangent: -1/√3
For 19:
Sine: (1+√3)/2
Cosine: (1-√3)/2
Tangent: √3
For 21:
Sine: -1/2
Cosine: -√3/2
Tangent: 1/√3
For 23:
Sine: √3/2
Cosine: 1/2
Tangent: √3
For 25:
Sine: -√2/2
Cosine: -√2/2
Tangent: -1
For 27:
Sine: (1-√3)/2
Cosine: (1+√3)/2
Tangent: -√3
For 29:
Sine: -(√3-1)/2
Cosine: (1+√3)/2
Tangent: -√3
For 16:
Sine: √3/2
Cosine: -1/2
Tangent: -√3
For 18:
Sine: -√2/2
Cosine: √2/2
Tangent: -1
For 20:
Sine: (√3-1)/2
Cosine: (1+√3)/2
Tangent: √3
For 22:
Sine: -(1+√3)/2
Cosine: (√3-1)/2
Tangent: -1/√3
For 24:
Sine: 1/2
Cosine: √3/2
Tangent: 1/√3
For 26:
Sine: √2/2
Cosine: -√2/2
Tangent: 1
For 28:
Sine: (√3+1)/2
Cosine: (1-√3)/2
Tangent: -1/√3
For 30:
Sine: -(1-√3)/2
Cosine: (√3+1)/2
Tangent: √3
Learn more about Trigonometric Functions
brainly.com/question/6904750
#SPJ11
Find the point in which the line through the origin perpendicular to the plane 2x - y - z = 4 meets the plane 3x - 5y + 2z = 6. - . - -
The point in which the line through the origin perpendicular to the plane 2x - y - z = 4 meets the plane 3x - 5y + 2z = 6 is (4/3, -2/3, -2/3).
To find the point in which the line through the origin perpendicular to the plane 2x - y - z = 4 meets the plane 3x - 5y + 2z = 6, we can use the following steps:
Find the normal vector of the plane 2x - y - z = 4. This is given by the coefficients of the x, y, and z terms, which are 2, -1, and -1, respectively. So the normal vector is (2, -1, -1).
Since the line through the origin is perpendicular to the plane, it must be parallel to the normal vector of the plane. Therefore, the direction vector of the line is (2, -1, -1).
The equation of the line through the origin with direction vector (2, -1, -1) is given by x = 2t, y = -t, and z = -t, where t is a parameter.
Substitute the equations of the line into the equation of the plane 3x - 5y + 2z = 6 to find the value of t:
3(2t) - 5(-t) + 2(-t) = 6
6t + 5t - 2t = 6
9t = 6
t = 2/3
Substitute the value of t back into the equations of the line to find the point of intersection:
x = 2(2/3) = 4/3
y = -(2/3) = -2/3
z = -(2/3) = -2/3
Therefore, the point in which the line through the origin perpendicular to the plane 2x - y - z = 4 meets the plane 3x - 5y + 2z = 6 is (4/3, -2/3, -2/3).
Learn about origin
brainly.com/question/4675656
#SPJ11
Joseph places $5,500 in a savings account for 30 months. He earns $893.75 in interest. What is the annual interest rate?
The annual interest rate is 6.5%
How to calculate the annual interest rate?The first step is to write out the parameters given in the question
Joseph places $5500 in a savings account for 30 months
He rans $893.75 in interest
The annual interest rate can be calculated by multiplying the amount in the savings by the number of months which is 30
= 5500 × 30y
= 165,000y
= 165,000y/12
= 13,750y
Equate 13,750y with the amount of interest
13,750y= 898.75
y= 898.75/ 13,750
y= 0.065 × 100
= 6.5%
Hence the annual interest rate is 6.5%
Read more on interest here
https://brainly.com/question/18611379
#SPJ1
Michael, a farmer, wants to buy a new tractor using the US$ he received from his daughter in America for his birthday. The price of the tractor is R160 000, VAT excluded. b) If the exchange rate is US$1 = R17.96, calculate how much USS Michel must change for him to pay cash for the tractor. Round off your answer to the nearest USS.
For Michael to pay cash for the tractor priced at R160,000 with the exchange rate as US$1 = R17.96, the amount he must change is US$8,908. 69.
What is an exchange rate?An exchange rate is the unit rate at which one country's currency is exchanged for another.
Exchange rates are based on a country's economic performance or indices in comparison to other countries.
The price of the tractor = R160,000
Exchange Rate: US$ = R17.96
R160,000 = US$8,908. 69 (R160,000/R17.96)
Thus, Michael needs to exchange US$8,908. 69 to purchase the tractor costing R160,000.
Learn more about exchange rates at https://brainly.com/question/1366402.
#SPJ1
How much oil should Kim use? Complete the table
Kim should use 8/3 (or 2.67) ounces of oil in the recipe.
what is a linear equation?
A linear equation is an algebraic equation in which each term is either a constant or the product of a constant and a variable raised to the first power (i.e., the exponent of the variable is 1).
Based on the table, we can see that the recipe calls for a total of 24 ounces of dressing, with a ratio of 3 parts oil to 1 part vinegar.
To calculate how much oil Kim should use, we can set up a proportion:
3 parts oil : 1 part vinegar = x ounces of oil : 8 ounces of vinegar
Cross-multiplying, we get:
3x = 8
Dividing both sides by 3, we get:
x = 8/3
To complete the table, we can fill in the remaining values based on the given ratio:
Total Ounces of Dressing Ounces of Oil Ounces of Vinegar
12 9 3
16 12 4
20 15 5
24 18 6
Therefore, Kim should use 8/3 (or 2.67) ounces of oil in the recipe.
To learn more about linear equation from the given link:
https://brainly.com/question/30140093
#SPJ1
List the members of the following sets: (2 marks)
y|y=(x/x+1), x ϵ Z+, x<12) (Hint: 0 is considered a positive integer)
{x | x is the square of a whole number and x < 100} (Hint: Whole numbers include all positive integers along with zero)
The members of the second set are 0, 1, 4, 9, 16, 25, 36, 49, 64, and 81.
The members of the first set, y|y=(x/x+1), x ϵ Z+, x<12, are the values of y that satisfy the given equation and conditions. The members of the second set, {x | x is the square of a whole number and x < 100}, are the values of x that satisfy the given conditions.
For the first set, we need to find the values of y that satisfy the equation y=(x/x+1) for positive integers x less than 12. The values of x that satisfy this condition are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11. We can plug these values into the equation to find the corresponding values of y:
y = (1/1+1) = 0.5
y = (2/2+1) = 0.6667
y = (3/3+1) = 0.75
y = (4/4+1) = 0.8
y = (5/5+1) = 0.8333
y = (6/6+1) = 0.8571
y = (7/7+1) = 0.875
y = (8/8+1) = 0.8889
y = (9/9+1) = 0.9
y = (10/10+1) = 0.9091
y = (11/11+1) = 0.9167
Therefore, the members of the first set are 0.5, 0.6667, 0.75, 0.8, 0.8333, 0.8571, 0.875, 0.8889, 0.9, 0.9091, and 0.9167.
For the second set, we need to find the values of x that are the square of a whole number and less than 100. The whole numbers that satisfy this condition are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. We can square these values to find the corresponding values of x:
x = 0^2 = 0
x = 1^2 = 1
x = 2^2 = 4
x = 3^2 = 9
x = 4^2 = 16
x = 5^2 = 25
x = 6^2 = 36
x = 7^2 = 49
x = 8^2 = 64
x = 9^2 = 81
Therefore, the members of the second set are 0, 1, 4, 9, 16, 25, 36, 49, 64, and 81.
Learn more about Positive integer
brainly.com/question/18380011
#SPJ11
Pick three times (independently) a point at random from the interval (0,1). a. Let X be the number of picked points that is smaller than 1/4. Determine the distribution of X. b. Let Y be the middle one of the three points. Determine the cdf of Y. (It is a function with domain R!) c. Determine the pdf of Y.
Y(y) = dF_Y(y)/dy = -y^2
a. Let X be the number of picked points that is smaller than 1/4. Determine the distribution of X.Random variables and distributions Let A be the set of all possible 3-tuples (a1, a2, a3) picked from (0, 1).The number of the picked points that are smaller than 1/4 is random with X: A → {0, 1, 2, 3}X((a1, a2, a3)) = |{i ∈ {1, 2, 3} : ai < 1/4}|This is, X is the number of i's such that ai < 1/4. We would like to compute the distribution of X.Let us count the number of 3-tuples (a1, a2, a3) for which X = 0, 1, 2, or 3. These counts are as follows:X = 0: There is only one tuple for which all ai ≥ 1/4.X = 1: Each of the ai can be either ≥ 1/4 or < 1/4, and there are three ways to choose which one is less than 1/4. Therefore, there are 2^3 · 3 = 24 3-tuples (a1, a2, a3) such that exactly one ai < 1/4.X = 2: Either all ai < 1/4, or two ai's < 1/4 and the other one ≥ 1/4. If all ai < 1/4, then there is one tuple for this. If two ai's < 1/4 and the other one ≥ 1/4, then there are 3 ways to choose which ai is ≥ 1/4, and for each such choice there are 3 · 2 = 6 ways to pick the other two ai's. Thus, there are 1 + 3 · 6 = 19 tuples for which X = 2.X = 3: All ai's < 1/4. There is only one such tuple.Therefore, the probability mass function of X is as follows:P(X = 0) = 1/8P(X = 1) = 3/8P(X = 2) = 19/32P(X = 3) = 1/32b. Let Y be the middle one of the three points. Determine the cdf of Y. (It is a function with domain R!)The range of Y is the interval (0, 1). We can assume that a1 ≤ a2 ≤ a3, since any 3-tuple can be sorted in this way. If Y < y, then the largest of the three points must be less than y. Therefore, we need to find the probability that the largest point is less than y, given that the three points are picked independently at random from (0, 1) and are ordered as a1 ≤ a2 ≤ a3.Let A be the set of all possible 3-tuples (a1, a2, a3) picked from (0, 1), where a1 ≤ a2 ≤ a3. Let B(y) be the set of all 3-tuples (a1, a2, a3) ∈ A such that a3 < y. Then P(Y < y) = P(B(y)).To compute P(B(y)), let us count the number of 3-tuples (a1, a2, a3) ∈ A such that a3 < y. Fix a1 and a2. Then a3 < y if and only if a3 ∈ (0, y), so there are exactly y(1 - y) choices for a3. Therefore,|B(y)| = ∫∫A y(1 - y) da1 da2 = ∫0^1 ∫a1^1 y(1 - y) da2 da1 = ∫0^1 y(1 - y) (1 - a1) da1 = 1/6 - y^3/3Thus,P(Y < y) = P(B(y)) = |B(y)|/|A| = [1/6 - y^3/3]/1 = 1/6 - y^3/3This is the cdf of Y for y ∈ (0, 1). We can extend this function to all of R by setting F_Y(y) = 0 if y ≤ 0 and F_Y(y) = 1 if y ≥ 1.c. Determine the pdf of Y.The cdf of Y isF_Y(y) = 1/6 - y^3/3for y ∈ (0, 1). Therefore, the pdf of Y isf_Y(y) = dF_Y(y)/dy = -y^2for y ∈ (0, 1). Thus, the density is constant, and Y has a uniform distribution on (0, 1).
Learn more about domian
brainly.com/question/11686700
#SPJ11
State your yes/no research question. Do you play sports? No Make a frequency table with the headings: Frequency Percent Male Female Yes Yes No 16 9 7 14 Is it better to use frequencies or percentages to compare groups when you make your graph? Percentages are better to use when comparing the groups. Gramm: Please relo for Gramme Construct a side by side bar graph showing the men's and women's responses to your question. What do your graphs indicate about students? 5 points
Yes, it is better to use percentages to compare groups when making a graph. This is because percentages allow for a more accurate comparison of the data, as they take into account the relative size of each group. If we only use frequencies, we may get a skewed view of the data, as one group may be much larger than the other.
Here is the side by side bar graph showing the men's and women's responses to the question "Do you play sports?":
Gender Yes No
Male 9 7
Female 7 14
The graph indicates that a higher percentage of males play sports compared to females. However, it also shows that there are more females who do not play sports compared to males. This suggests that there may be a gender difference in the participation of sports among students.
To know more about frequencies refer here:
https://brainly.com/question/5102661
#SPJ11
Solve by using elimination. Express your answer as an ordered pair.
(7x+2y=5
(3x + 2y = -15
Answer:
x=5, y=-15
Step-by-step explanation:
7x+2y=5
3x+2y=-15
4x=20
x=5
7(5)+2y=5
2y=-30
y=-15
lify (x3y3)31(32x13y18)312xy32xy2xy32x2x3y534xy2x3y534x
The simplified expression is x^(454)y^(584) * 2^(109).
To simplify the given expression, we need to use the laws of exponents. The laws of exponents are:
- (a^m)^n = a^(mn)
- a^m * a^n = a^(m+n)
- a^m / a^n = a^(m-n)
Using these laws, we can simplify the given expression as follows:
(x^3y^3)^31 * (32x^13y^18)^31 / (2xy^3)^2 * (2xy^3)^2 * (2x)^2 * (2x^3y^5)^3 * (4xy)^5 * (2x^3y^5)^3 * (4x)^5
= x^(3*31)y^(3*31) * 32^31x^(13*31)y^(18*31) / 2^2x^2y^(3*2) * 2^2x^2y^(3*2) * 2^2x^2 * 2^(3*2)x^(3*3)y^(5*3) * 4^5x^5y^(5*5) * 2^(3*2)x^(3*3)y^(5*3) * 4^5x^5
= x^(93)y^(93) * 32^31x^(403)y^(558) / 2^6x^6y^6 * 2^6x^6y^6 * 2^2x^2 * 2^6x^9y^15 * 4^5x^5y^25 * 2^6x^9y^15 * 4^5x^5
= x^(93+403)y^(93+558) * 32^31 / 2^6 * 2^6 * 2^2 * 2^6 * 4^5 * 2^6 * 4^5 * x^(6+6+2+9+5+9+5) * y^(6+6+15+25+15)
= x^(496)y^(651) * 32^31 / 2^(6+6+2+6+6) * 4^(5+5) * x^42 * y^67
= x^(496-42)y^(651-67) * 32^31 / 2^26 * 4^10
= x^(454)y^(584) * 32^31 / 2^26 * 4^10
= x^(454)y^(584) * 2^(5*31) / 2^26 * 2^(2*10)
= x^(454)y^(584) * 2^(155) / 2^(26+20)
= x^(454)y^(584) * 2^(155-46)
= x^(454)y^(584) * 2^(109)
To know more about laws of exponents click on below link:
https://brainly.com/question/28966438#
#SPJ11
Kendra’s water bottle contains 2 quarts of water.she wants to add drink mix to it, but he directions for the drink mix give the amount of water in fluid ounces.how many fluid ounces are in her bottle
By answering the above question, we may infer that So Kendra's water equation bottle holds 64 fluid ounces.
What is equation?A mathematical equation links two statements and utilises the equals sign (=) to indicate equality. In algebra, an equation is a mathematical assertion that proves the equality of two mathematical expressions. For instance, in the equation 3x + 5 = 14, the equal sign separates the numbers by a gap. A mathematical formula may be used to determine how the two sentences on either side of a letter relate to one another. The logo and the particular piece of software are usually identical. like, for instance, 2x - 4 = 2.
The volume of a quart is 32 fluid ounces. Kendra's water bottle, which holds 2 quarts of water, therefore has:
64 fluid ounces are equal to 2 quarts when each is 32 fluid ounces.
So Kendra's water bottle holds 64 fluid ounces.
To know more about equation visit:
https://brainly.com/question/649785
#SPJ1
1/2 + 3y = y/5 what number is y in this equation
The solution to the equation 1/2 + 3y = y/5 is y = -3/14.
What is the linear equation in one variable?
A linear equation in one variable is an equation that can be written in the form:
ax + b = 0
where x is the variable, a and b are constants, and a is not equal to zero. The solution to the equation is the value of x that makes the equation true.
To solve for y in the equation 1/2 + 3y = y/5, we need to isolate y on one side of the equation.
First, we can simplify the left side of the equation by combining the like terms:
1/2 + 3y = (6/10) + (30y/10) = (6 + 30y)/10
Now we can rewrite the equation as:
(6 + 30y)/10 = y/5
To solve for y, we can start by multiplying both sides of the equation by 10, to eliminate the denominators:
6 + 30y = 2y
Next, we can simplify by subtracting 2y from both sides:
6 + 28y = 0
Finally, we can solve for y by subtracting 6 from both sides and then dividing by 28:
28y = -6
y = -6/28
Simplifying the fraction, we get:
y = -3/14
Therefore, the solution to the equation 1/2 + 3y = y/5 is y = -3/14.
To learn more about the linear equation in one variable, visit:
https://brainly.com/question/28871326
#SPJ1
Suppose that f ( x ) = 7 x − 7 . Complete the following
statements.
As x → 7 − , f ( x ) →
As x → 7 + , f ( x ) →
Based on the calculation we know that
The value of x as 7− is 35.
The value of x as 7+ is 35.
Suppose that f( x ) = 7 x − 7. We can complete the following statements by plugging in the values of x and evaluating the function.
As x → 7 − , f ( x ) → 42 − 7 = 35
As x approaches 7 from the left, the function f(x) approaches 35.
As x → 7 + , f ( x ) → 42 − 7 = 35
As x approaches 7 from the right, the function f(x) also approaches 35.
Therefore, the function f(x) = 7x - 7 has a horizontal asymptote at y = 35 as x approaches 7 from both the left and the right.
Here you can learn more about the function with access this link: https://brainly.com/question/12431044
#SPJ11
a 20
b 15
c 5
d 10
i need sum help on this real quick
Answer:
C
Step-by-step explanation:
6x° and 60° form a right angle and sum to 90° , that is
6x + 60 = 90 ( subtract 60 from both sides )
6x = 30 ( divide both sides by 6 )
x = 5
Is the equation, y = 9x + 3 a proportional or non-proportional linear relationship?
5. Write an expression for the area of a rectangle with length & and width w.
6. Imagine dilating the rectangle with length & and width w by a factor of k.
7. Write an expression for the area of the dilated rectangle.
8. Use your work to draw a conclusion about what happens to the area of a rectangle when it's dilated by a scale factor of k.
5. The expression fοr the area of a rectangle with length l and width w is l × w.
What is a rectangle?
In Euclidean plane geοmetry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all οf its angles are equal.
5. The area of a rectangle is given by the prοduct of its length and width. Therefore, the expressiοn for the area of a rectangle with length l and width w is:
Area = l x w
6. Imagine dilating the rectangle with length & and width w by a factοr of k.
⇒ (l × k) × (w × k)
7. An expression fοr the area of the dilated rectangle.
⇒ l × w × k²
⇒ k²lw
8. Vοlume = l × w
Volume' = k²lw
Then we have
Volume/Volume' = (l × w)/k²lw
Vk²lw = V'lw
Divide bοth sides by lw
Vk² = V'
Thus, The area ο a rectangle when it's dilated by a scale factor of k will be dilated k² times
Learn more abοut rectangles on:
https://brainly.com/question/2607596
#SPJ1
Plssss solve them all
The table can be filled up accordingly:
1. 5 years compounded semi-annually:
b = (1 + 0.06/2)
y= 1800 (1 + 0.03)^10
x = 2
2. For the 5 years compounded quarterly:
b = (1 + 0.06/4)
y = 1800 (1 + 0.015)^20
x =4
3. For the 5 years compounded monthly:
b = (1 + 0.06/12)
y = 1800 (1.005)^60
x = 12
4. For 10 years compounded annually:
b = (1 + 0.06/1)
x = 1800 (1.06)^10
y = 1
5. For 10 years compounded quarterly:
b = (1 + 0.06/4)
y =1800 (1 + 0.005)^60
x = 4
6. For 10 years compounded monthly:
b = (1 + 0.06/12)
y = 1800 (1 + 0.005)^120
x = 12
How to solve the interestTo solve the compound interest we use the formula:
P(1+r/n)^(n*t).
For the 5 years compounded semi-annually:
A = 1800 (1 + 0.06/2)^2*5
A = 1800 (1 + 0.03)^10
A = 1800 (1.03)^10
A = 1800 (1.344)
A = 2419
For the 5 years compounded quarterly:
A = 1800 (1 + 0.06/4)^4*5
A = 1800 (1 + 0.015)^20
A = 1800 (1.015)^20
A= 1800 (1.3468)
A= 2424.24
For the 5 years compounded monthly:
A = 1800 (1 + 0.06/12)^12*5
A = 1800 (1 + 0.005)^60
A = 1800 (1.005)^60
A = 1800 (1.34885)
A = 2427.93
For 10 years compounded annually:
A= 1800 (1 + 0.06/1)^10
A = 1800 (1.06)^10
A = 1800 (1.7908)
A = 3223.53
For 10 years compounded semi-annually:
A = 1800 (1 + 0.06/2)^20
A = 1800 (1 + 0.03)^20
A = 1800 (1.03)^20
A =1800 (1.806)
A = 3251
For 10 years compounded quarterly:
A= 1800 (1 + 0.06/4)^4*10
A = 1800 (1 + 0.015)^40
A= 1800 (1.015)^40
A = 1800 (1.814)
A = 3265.23
For 10 years compounded monthly:
A= 1800 (1 + 0.06/12)^120
A = 1800 (1 + 0.005)^120
A = 1800 (1.005)^20
A= 1800 (1.8194)
A = 3274.9
The best pay period is that with the highest returns which is 10 years compounded monthly.
Learn more about compound interest here:
https://brainly.com/question/24274034
#SPJ1
Point X is located at (3, 2). Point Y is located at (3, -8). What is the distance form point X to point Y.
In response to the aforementioned query, we may say that D is equal to equation sqrt((3 - 3)2 + (-8 - 2)2 = sqrt(0 + (-10)2) = sqrt(100) = 10. As a result, it takes 10 units to get from position X to point Y.
What is equation?A mathematical equation links two statements and utilises the equals sign (=) to indicate equality. In algebra, an equation is a mathematical assertion that proves the equality of two mathematical expressions. For instance, in the equation 3x + 5 = 14, the equal sign separates the numbers by a gap. A mathematical formula may be used to determine how the two sentences on either side of a letter relate to one another. The logo and the particular piece of software are usually identical. like, for instance, 2x - 4 = 2.
The distance formula may be used to determine the separation between two points:
Sqrt((x2 - x1) + (y2 - y1)) = sqrt(d)
where d is the distance between the two locations, and (x1, y1) and (x2, y2) are the coordinates of the two points.
We may get the separation between points X at (3, 2) and Y at (3, -8), using the following formula:
D is equal to sqrt((3 - 3)2 + (-8 - 2)2 = sqrt(0 + (-10)2) = sqrt(100) = 10.
As a result, it takes 10 units to get from position X to point Y.
To know more about equation visit:
https://brainly.com/question/649785
#SPJ1
A contractor bids a job at $680 for materials plus $42 per hour
for labor. The total cost for the job can be modeled by: C = 42H +
680.
Find the number of hours that he has for the job if the owner wo
The contractor has 5.95 hours for the job if $930 is spent by him.
The total cost for the job can be modeled by C = 42H + 680, where C is the total cost of the job, H is the number of hours of labor, and 680 is the cost of materials.
If the owner wants to spend $930 for the job, then the number of hours that the contractor has for the job can be found by solving the equation C = 42H + 680 for H.
Thus, 42H + 680 = 930. Subtracting 680 from both sides gives 42H = 250. Dividing both sides by 42 gives H = 250/42 = 5.95 hours.
Therefore, the contractor has 5.95 hours for the job if the owner wants to spend $930.
To know more about total cost click on below link:
https://brainly.com/question/14927680#
#SPJ11
A chemist has 42 grams of aluminum. There are 2.70 grams/milliliter for aluminum. How many milliliters of aluminum does the chemist have? Set this up either as a proportion or unit analysis.
a. the chemist has 133 milliliters
b. the chemist has 155 milliliters
c. the chemist has 58 milliliters
d. the chemist has 16 milliliters
The 42 grams of aluminum implies that the chemist has 0.06429ml of aluminum
What is density ?The density of material shows the denseness of that material in a specific given area. A material’s density is defined as its mass per unit volume. Density is essentially a measurement of how tightly matter is packed together. It is a unique physical property of a particular object. The principle of density was discovered by the Greek scientist Archimedes. It is easy to calculate density if you know the formula and understand the related units The symbol ρ represents density or it can also be represented by the letter D.
How to determine the amount of aluminum?
The mass is given as: Mass = 42 grams
The density of aluminum is: Density = 2.7 g/cm³
So, we have: Volume = Density/Mass
This gives, Volume = 2.7/42
Evaluate : Volume = 0.06429cm³
Convert to ml
Volume = 0.06429ml
Hence, the chemist has 0.06429ml of aluminum
To learn more about the density here:
https://brainly.com/question/15382158
#SPJ9
Question 7
Find the center and radius of the circle with the equation x² + y² =4
Answer:A
Step-by-step explanation:
because
You are conducting a study to see if the proportion of men over 50 who regularly have their prostate examined is significantly different from 0.49. Thus you are performing a two-tailed test. Your sample data produce the test statistic z=2.517z=2.517. Find the p-value accurate to 4 decimal places.
p-value =
The p-value for our test is 0.0120, accurate to 4 decimal places.
We are conducting a study to see if the proportion of men over 50 who regularly have their prostate examined is significantly different from 0.49. We are performing a two-tailed test and our sample data produce the test statistic z=2.517.
To find the p-value, we need to use a standard normal distribution table or calculator. We will use the table for this answer.
The first step is to find the area to the left of the test statistic z=2.517 in the standard normal distribution table. This gives us the probability of obtaining a z-score less than or equal to 2.517. The closest value in the table is 2.51, which gives us an area of 0.9940.
Since we are conducting a two-tailed test, we need to find the area in both tails of the distribution. To do this, we subtract the area to the left of the test statistic from 1: 1-0.9940 = 0.0060. This gives us the area in the right tail of the distribution.
Finally, we multiply this value by 2 to get the p-value for our two-tailed test: 0.0060 * 2 = 0.0120.
Therefore, the p-value for our test is 0.0120, accurate to 4 decimal places.
p-value = 0.0120
Learn more about Prostate examined
brainly.com/question/13027050
#SPJ11