Hazel needs 0.6975 liters of water to make a 1.25M solution of Ni(NO₃)₂ using 45.7 grams of the solute.
To solve this problem, we need to use the formula:
Molarity (M) = moles of solute / liters of solution
First, we need to find the moles of nickel II nitrate:
moles = mass / molar mass
The molar mass of Ni(NO₃)₂ can be calculated by adding the molar masses of each element:
Ni: 58.69 g/mol
N: 14.01 g/mol
O (3 atoms): 3 x 16.00 g/mol = 48.00 g/mol
Total molar mass = 58.69 + 14.01 + 48.00 = 120.70 g/mol
So, the moles of Ni(NO₃)₂ used by Hazel is:
moles = 45.7 g / 120.70 g/mol = 0.3781 moles
Now, we can use the formula to find the volume of solution:
Molarity (M) = moles of solute / liters of solution
1.25 M = 0.3781 moles / liters of solution
Liters of solution = 0.3781 moles / 1.25 M = 0.3025 L
Therefore, the volume of water required to make the solution is:
Volume of water = Total volume - Volume of solute
Volume of water = 1 L - 0.3025 L = 0.6975 L
So, Hazel needs 0.6975 liters of water to make a 1.25M solution of Ni(NO₃)₂ using 45.7 grams of the solute.
To know more about Molarity :
https://brainly.com/question/19517011
#SPJ11
Help me I will give you
A reaction that occurs when 23 grams of iron (II) chloride
reacts with sodium phosphate forming iron (II) phosphate and sodium chloride. What is the limiting reagent? How much sodium chloride can be formed?
3FeCl2 + 2Na3PO4-Fe3 (PO4)2 +6NaClâ
To convert moles of sodium chloride to grams, we multiply by its molar mass of 58.44 g/mol. Therefore, the amount of sodium chloride produced is 0.363 mol x 58.44 g/mol = 21.2 grams.
To determine the limiting reagent in this reaction, we need to calculate the moles of both reactants. From the given information, we know that the mass of iron (II) chloride is 23 grams, and its molar mass is 126.75 g/mol.
Therefore, the number of moles of iron (II) chloride is 23 g/126.75 g/mol = 0.1815 mol.
Next, we calculate the number of moles of sodium phosphate. Since there are two molecules of sodium phosphate for every three molecules of iron (II) chloride, we need to multiply the moles of iron (II) chloride by the ratio of the coefficients. Therefore, the number of moles of sodium phosphate is (0.1815 mol x 2/3) = 0.121 mol.
Since there are fewer moles of sodium phosphate than iron (II) chloride, sodium phosphate is the limiting reagent. This means that all of the sodium phosphate will be used up in the reaction, and any remaining iron (II) chloride will be left over.
To calculate the amount of sodium chloride produced, we need to use the stoichiometric coefficients from the balanced equation.
For every 2 moles of sodium phosphate used, 6 moles of sodium chloride are produced. Therefore, since we have 0.121 mol of sodium phosphate, we can produce (0.121 mol x 6/2) = 0.363 mol of sodium chloride.
Finally, to convert moles of sodium chloride to grams, we multiply by its molar mass of 58.44 g/mol. Therefore, the amount of sodium chloride produced is 0.363 mol x 58.44 g/mol = 21.2 grams.
To know more about molar mass refer here: https://brainly.com/question/7585012#
#SPJ11
Which one? Please help I don't understand
Based on the rate law, the equivalent expression to d[NO₂]/dt is -2k[O₃][NO₂]; option B.
What is the rate law of a chemical reaction?A rate law gives a mathematical explanation of how variations in a substance's amount affect the rate of a chemical reaction.
To determine the equivalent expression to d[NO₂]/dt, differentiate the rate law with respect to [NO₂].
d/dt[k[O₃][NO₂]] = k[d[O₃]/dt][NO₂] + k[O₃][d[NO₂]/dt]
We assume d[O₃]/dt is a constant = k1 (since it is not given in the rate law)
The coefficient for NO₂ is -2,
Substituting in the equation above:
d[NO₂]/dt = (-2k/k1)[O₃][NO₂]
d[NO₂]/dt = -2k[O₃][NO₂]/k1
Learn more about rate law at: https://brainly.com/question/16981791
#SPJ1
In 2020, how does the percentage of the population with access to drinking water facilities in North America compare to that of the World?
Compared to the average population around the World, North America has a 24% greater percentage of people with access to safely managed drinking water.
this topic is science
Compared to the average population around the World, North America has a 98% greater percentage of people with access to safely managed drinking water.
Compared to the average population around the World, North America has a 16% greater percentage of people with access to safely managed drinking water.
Compared to the average population around the World, North America has a 74% greater percentage of people with access to safely managed drinking water
Compared to the average population around the world, North America has a (a) 24% greater percentage of people with access to safely managed drinking water facilities as of 2020.
According to the information provided, the percentage of the population with access to drinking water facilities in North America is higher than the average for the world.
The exact percentage varies depending on the option selected in the question, but the difference ranges from 16% to 98%. This difference may be attributed to several factors, including a more developed infrastructure and better regulation of water quality in North America.
However, it is important to note that access to drinking water is still a significant issue in some areas of North America, particularly among marginalized communities. Efforts to improve water access and quality must continue to ensure that everyone has access to this essential resource.
To know more about the average population refer here :
https://brainly.com/question/21181144#
#SPJ11
What happens to the waves in constructive interference?
a. they add
b. they divide
c. they multiply
d. they subtract
In constructive interference, the waves add together.
Interference is the phenomenon where two or more waves interfere with each other to form a resultant wave of greater, lower or same amplitude.
In constructive interference, the waves combine in such a way that their amplitudes are reinforced, resulting in a wave with a larger amplitude than the individual waves.
So, the correct answer is: a. they add
To know more about interference visit:
https://brainly.com/question/16098226
#SPJ11
What volume (mL) of concentrated H3PO4 (14. 7 M) should be used to prepare 125 mL of a 3. 00 M H3PO4 solution?
You should use about 25.51 mL of concentrated H3PO4 to prepare 125 mL of a 3.00 M H3PO4 solution.
To prepare 125 mL of a 3.00 M H3PO4 solution using concentrated H3PO4 (14.7 M), you can use the dilution formula:
M1 × V1 = M2 × V2
Where M1 is the initial molarity (14.7 M), V1 is the volume of the concentrated solution needed, M2 is the final molarity (3.00 M), and V2 is the final volume (125 mL).
Rearrange the formula to solve for V1:
V1 = (M2 × V2) / M1
V1 = (3.00 M × 125 mL) / 14.7 M
V1 ≈ 25.51 mL
Therefore, you should use approximately 25.51 mL of concentrated H3PO4 to prepare 125 mL of a 3.00 M H3PO4 solution.
To learn more about molarity, refer below:
https://brainly.com/question/8732513
#SPJ11
Based on the electron configuration of the two
atoms, predict the ratio of metal cationic (+) atom
to nonmetal anionic (-) atom in the compound.
magnesium 1s22s22p63s2
sulfur 1s22s22p3s23p4
a. 1:1
b. 1:2
c. 2:1
d. 3:1
Answer is B) 1:2
The electron configuration of magnesium is 1s2 2s2 2p6 3s2, which means it has two valence electrons that it can lose to form a cation with a +2 charge.
The electron configuration of sulfur is 1s2 2s2 2p6 3s2 3p4, which means it has six valence electrons that it can gain to form an anion with a -2 charge.
Since magnesium can form a cation with a +2 charge and sulfur can form an anion with a -2 charge, the ratio of metal cationic (+) atom to nonmetal anionic (-) atom in the compound will be 1:2. Therefore, the answer is b. 1:2.
To know more about electronic configuration:
https://brainly.com/question/26084288
#SPJ11
What's the theoretical yield of oxygen from the oxides present in 1. 00 kg sample of lunar soil?
The theoretical yield of oxygen from the oxides present in a 1.00 kg sample of lunar soil will depend on the composition of the soil. However, we can make some assumptions based on the known composition of lunar soil.
Lunar soil is known to contain various oxides, including silicon dioxide (SiO2), aluminum oxide (Al2O3), iron oxide (FeO and Fe2O3), titanium dioxide (TiO2), and others. These oxides can be chemically processed to release oxygen gas.
The stoichiometry of the chemical reactions involved will depend on the specific oxides present in the soil. However, for the purposes of estimation, we can assume that all the oxides present in the soil are converted to their respective metals and oxygen gas.
For example, the reaction for the conversion of silicon dioxide to silicon metal and oxygen gas is:
SiO2(s) + 2 C(s) → Si(s) + 2 CO(g)
From this reaction, we can see that for every 1 mole of SiO2, 1 mole of oxygen gas is produced. The molar mass of SiO2 is 60.08 g/mol, so in a 1.00 kg sample of lunar soil, there are:
1000 g / 60.08 g/mol = 16.65 moles of SiO2
Therefore, the theoretical yield of oxygen gas from the SiO2 present in the soil is:
16.65 moles of O2 (since 1 mole of SiO2 produces 1 mole of O2)
Similarly, we can calculate the theoretical yield of oxygen gas from the other oxides present in the soil using their respective stoichiometric equations. Adding up the oxygen yields from each oxide will give us the total theoretical yield of oxygen from the soil.
Note that the actual yield of oxygen will likely be less than the theoretical yield due to inefficiencies and losses during the processing of the soil.
To know more about theoretical refer here
https://brainly.com/question/30604977#
#SPJ11
What is the standard free energy change, ∆gɵ, in kj, for the following reaction at 298k
The standard free energy change (∆G°) for the given reaction at 298K is -474.26 kJ/mol.
The given reaction is: [tex]2H_2(g) + O_2(g) - > 2H_2O(g)[/tex]
The standard free energy change (∆G°) for the given reaction can be calculated using the equation:
∆G° = Σ∆G°f(products) - Σ∆G°f(reactants)
Where ∆G°f is the standard free energy of formation for each compound in the reaction at standard conditions (298K and 1 atm pressure).
Using the standard free energy of formation values from tables, we get:
∆G° = 2(-237.13 kJ/mol) - [2(0 kJ/mol) + 1(0 kJ/mol)]
∆G° = -474.26 kJ/mol
The negative value indicates that the reaction is exergonic and spontaneous under standard conditions.
To know more about standard free energy, here
brainly.com/question/13625901
#SPJ4
--The complete Question is, What is the standard free energy change, ∆G°, in kJ, for the following reaction at 298K?
2H2(g) + O2(g) -> 2H2O(g) --
3.80 mol o2 will produce how many moles of co2? include entire unit (mol) and
compound formula, 3 sig figs.
3.80 mol of O₂ oxygen will produce 1.90 mol of CO₂ carbon dioxide.
According to the balanced chemical equation for the combustion of methane:
CH₄ + 2O₂ ⇒ CO₂ + 2H₂O
In this equation, we can see that 1 mole of CH₄ reacts with 2 moles of O₂ oxygen to produce 1 mole of CO₂ carbon dioxide and 2 moles of H₂O. This means that for every 2 moles of O₂ used, 1 mole of CO₂ is produced.
To determine how many moles of CO₂ will be produced by 3.80 mol of O₂, we can use a proportion. We set up the proportion with the given amount of O₂ and the conversion factor derived from the balanced chemical equation:
3.80 mol O₂ × 1 mol CO₂ ÷ 2 mol O₂ = x mol CO₂
Simplifying the proportion, we can solve for x:
x = 3.80 mol O₂ × 1 mol CO₂ ÷ 2 mol O₂
x = 1.90 mol CO₂
To learn more about oxygen follow the link:
https://brainly.com/question/13370320
#SPJ4
The Haber Process involves nitrogen gas combining with hydrogen gas to produce ammonia. If 11. 0 grams of nitrogen gas combines with 2. 0 grams of hydrogen gas, find the following: the molar mass of reactants and products, the limiting reactant, the excess reactant, the amount of ammonia produced, the amount of excess chemical not used in the reaction. Nitrogen gas + hydrogen gas ↔ ammonia gas N2 + H2 -> NH3 (Make sure to balance the chemical equation first)
28. 014 grams/mole
17. 031 grams/mole
1. 736 grams
11. 26 grams
Nitrogen Gas
2. 012 grams/mole
Hydrogen Gas
1.
The excess reactant (reagent).
2.
The limiting reactant (reagent).
3.
The amount of excess reagent not used in the reaction.
4.
The molar mass of hydrogen.
5.
The molar mass of ammonia.
6.
The molar mass of nitrogen gas.
7.
The amount of product produced.
(Fill in blank)
Nitrogen gas ([tex]N_2[/tex]) has a molar mass of 28.02 g/mol, while hydrogen gas ([tex]H_2[/tex]) has a molar mass of 2.02 g/mol. Ammonia ([tex]NH_3[/tex]) has a molar mass of 17.03 g/mol.
We must calculate the moles of each reactant in order to identify the limiting reactant. We may determine that there are 5.0 moles of [tex]N_2[/tex] and 1.0 moles of [tex]H_2[/tex] based on the stated masses. The reaction is described by the balanced chemical equation [tex]N_2 + 3H_2 2NH_3[/tex], which indicates that 1 mole of [tex]N_2[/tex] reacts with 3 moles of [tex]H_2[/tex]. As a result, [tex]H_2[/tex] is the limiting reactant and there will be an excess reactant of 2.0 - (1.0/3) = 1.67 grams of [tex]H_2[/tex].
To know more about Nitrogen gas, here
brainly.com/question/11426882
#SPJ4
--The complete Question is, What is the molar mass of nitrogen gas, hydrogen gas, and ammonia in the Haber Process? Given that 11.0 grams of nitrogen gas and 2.0 grams of hydrogen gas are available, which reactant is the limiting reactant? What is the amount of excess reactant left over after the reaction?--
write the net acid-base reaction that occurs when hbr is added to water. (use the lowest possible coefficients. omit states-of-matter in your answer.) chempadhelp
The net acid-base reaction that occurs when HBr is added to water can be represented as HBr + H₂O → H₃O + Br⁻
When HBr is added to water, it dissociates into its constituent ions, H+ and Br-. These ions then interact with the water molecules, leading to the formation of hydronium ions (H₃O⁺) and bromide ions (Br⁻). This reaction is known as a proton transfer reaction, as a proton (H+) is transferred from the acid (HBr) to the water molecule (H2O) to form a hydronium ion (H₃O⁺).
This reaction can also be understood in terms of the Arrhenius theory of acids and bases, which defines acids as compounds that release hydrogen ions (H⁺) when dissolved in water. In this case, HBr is an acid that releases H⁺ ions when dissolved in water, leading to the formation of the hydronium ion (H₃O⁺).
The reaction between HBr and water is an example of an acid-base reaction, where the acid (HBr) donates a proton to the water molecule (H₂O) to form the hydronium ion (H₃O⁺), which is the conjugate acid of water. The bromide ion (Br⁻) is the conjugate base of HBr.
To know more about the Acid-base reaction, here
https://brainly.com/question/29460273
#SPJ4
1. Draw the structure of diiodine monoselenide and
a. Write the formula
b. Determine the molecular geometry
C. Calculate the formal charge of EACH element. (SHOW ALL WORK)
Diiodine monoselenide is an inorganic compound with the chemical formula I2Se. It is a dark red solid that is sparingly soluble in water. The structure of diiodine monoselenide consists of a linear Se-I-I unit, with the selenium atom in the middle and the two iodine atoms on either side. This arrangement gives the compound a linear, V-shaped structure.
Diiodine monoselenide is an important compound in the field of materials science, as it exhibits some interesting properties. For example, it can be used as a precursor for the synthesis of various selenium-containing compounds, including organoselenium compounds, which are used in catalysis and medicine.
Additionally, diiodine monoselenide has been studied as a potential material for use in electronic devices, due to its semiconducting properties. In conclusion, diiodine monoselenide is an important inorganic compound that exhibits some interesting structural and material properties.
Its linear, V-shaped structure is due to the arrangement of the selenium and iodine atoms in a linear Se-I-I unit. This compound is used in the synthesis of various selenium-containing compounds and has potential applications in the field of electronics.
To know more about monoselenide refer here
https://brainly.com/question/19960546#
#SPJ11
Part A
Predict the sign of the entropy change, ΔS∘, for each of the reaction displayed.
Drag the appropriate items to their respective bins.
Help
Reset
Ag+(aq)+Cl−(aq)→AgCl(s)
2KClO3(s)→2KCl(s)+3O2(g)
2N2O(g)→2N2(g)+O2(g)
2Mg(s)+O2(g)→2MgO(s)
C7H16(g)+11O2(g)→7CO2(g)+8H2O(g)
H2O(l)→H2O(g)
Positive
Negative
SubmitHintsMy AnswersGive UpReview Part
Part B
Calculate the standard entropy change for the reaction
2Mg(s)+O2(g)→2MgO(s)
using the data from the following table:
Substance ΔH∘f (kJ/mol) ΔG∘f (kJ/mol) S∘ [J/(K⋅mol)]
Mg(s) 0.00 0.00 32.70
O2(g) 0.00 0.00 205.0
MgO(s) -602.0 -569.6 27.00
Express your answer to four significant figures and include the appropriate units.
ΔS∘ =
The standard entropy change for the reaction [tex]2Mg(s)+O_2(g)\rightarrow 2MgO(s)[/tex] is -405.6 J/(K⋅mol).
What is entropy ?Entropy is a measure of the randomness or disorder in a system. It is a thermodynamic property that can be used to measure the amount of energy that is unavailable for work in a thermodynamic process. Entropy is closely related to the second law of thermodynamics and can be used to assess the direction of a thermodynamic process. Entropy is also a measure of the amount of information contained in a system. High entropy systems have more randomness and disorder, while low entropy systems have less.
The entropy change for the reaction [tex]2Mg(s)+O_2(g) \rightarrow 2MgO(s)[/tex] is calculated using the following equation: [tex]\Delta S^\circ = \Sigma S^\circ products -\Sigma S^\circ reactants[/tex]
Substituting the values from the table:
[tex]\Delta S^\circ = (2 \times 27.00 J/(Kmol)) - (32.70 J/(Kmol) + 205.0 J/(Kmol))\\\Delta S^\circ = -405.6 J/(Kmol) .[/tex]
To learn more about entropy
https://brainly.com/question/419265
#SPJ4
The temperature Saturday is -13°, and on Sunday it is -4°.
Which equation would be used to show the difference in temperature from Saturday to Sunday?
The difference in temperature from Saturday to Sunday is 9 degrees Celsius. This means that the temperature increased by 9 degrees from Saturday to Sunday.
To show the difference in temperature from Saturday to Sunday, we can use the equation:
Difference = Sunday temperature - Saturday temperature
Given that the temperature on Saturday is -13° and on Sunday it is -4°, we can calculate the difference in temperature using the above equation as follows:
Difference = -4° - (-13°)
Difference = -4° + 13°
Difference = 9°
The number line is a graphical representation of numbers where we can visualize their position relative to each other. Starting from -13° on the number line and moving 9 units to the right, we reach -4°, which represents the temperature on Sunday. This visualization confirms that the difference between the two temperatures is 9 degrees.
To learn more about temperature follow the link:
brainly.com/question/14633960
#SPJ4
Lussac's Law Worksheet
Determine the pressure change when a constant volume of gas at 2.50
atm is heated from 30.0 °C to 40.0 °C.
Answer: To determine the pressure change of a gas when it is heated at constant volume, we can use the ideal gas law:
PV = nRT
where P is the pressure, V is the volume, n is the number of moles of gas, R is the ideal gas constant, and T is the temperature in Kelvin.
Since the volume of the gas is constant, we can simplify the equation to:
P/T = nR/V
The quantity nR/V is a constant, which means that P/T is also a constant at constant volume. Therefore, we can use the following equation to calculate the pressure at a new temperature:
P2/T2 = P1/T1
where P1 and T1 are the initial pressure and temperature, and P2 and T2 are the final pressure and temperature.
We can convert the temperatures to Kelvin by adding 273.15:
T1 = 30.0 °C + 273.15 = 303.15 K
T2 = 40.0 °C + 273.15 = 313.15 K
We can plug in the given values and solve for P2:
P2/313.15 K = 2.50 atm/303.15 K
P2 = (2.50 atm)(313.15 K)/(303.15 K)
P2 = 2.58 atm
Therefore, the pressure of the gas increases from 2.50 atm to 2.58 atm when it is heated from 30.0 °C to 40.0 °C at constant volume.
Explanation:
A hydorcarbon cxhy has mass ratio between hydorgen and carbon 1:10. 5. One litre of the hydrogen at 127c and 1 atm pressure weighs 2. 8 g,find the molecular formula of the hydrocarbon
Rounded to the nearest whole number, y is 42. Therefore, the molecular formula of the hydrocarbon is C4H42.
To find the molecular formula of the hydrocarbon, we first need to determine the molecular weight. We know that the mass ratio between hydrogen and carbon is 1:10, which means that for every 1 gram of hydrogen, there are 10 grams of carbon in the molecule.
Let's assume that we have x number of carbon atoms and y number of hydrogen atoms in the molecule. The molecular weight can then be expressed as:
Molecular weight = (x x atomic weight of carbon) + (y x atomic weight of hydrogen)
Since the mass ratio between hydrogen and carbon is 1:10, we can write:
y = 10x
Now, we can substitute y in the equation for molecular weight:
Molecular weight = (x x atomic weight of carbon) + (10x x atomic weight of hydrogen)
Molecular weight = x(atomic weight of carbon + 10 x atomic weight of hydrogen)
We also know that one liter of hydrogen at 127°C and 1 atm pressure weighs 2.8 g. Using the ideal gas law, we can calculate the number of moles of hydrogen in one liter:
PV = nRT
n = PV/RT
n = (1 atm x 1 L) / (0.0821 L.atm/mol.K x 400 K)
n = 0.0305 mol
The molecular weight of the hydrocarbon can be calculated as follows:
Molecular weight = 2.8 g / 0.0305 mol
Molecular weight = 91.80 g/mol
Now, we can solve for x in the equation for molecular weight:
91.80 g/mol = x(12.01 g/mol + 10 x 1.01 g/mol)
91.80 g/mol = 12.01x + 10.10x
91.80 g/mol = 22.11x
x = 4.15
Since x represents the number of carbon atoms in the molecule, we can round it to the nearest whole number, which is 4. Similarly, y can be calculated as:
y = 10x = 41.5
Rounded to the nearest whole number, y is 42. Therefore, the molecular formula of the hydrocarbon is C4H42.
To know more about molecular formula, visit:
https://brainly.com/question/28647690#
#SPJ11
A student made the claim that a 4 gram paintball fired from a paintball gun at 90 m/s could have about the same kinetic energy as a 1 gram bb pellet fired from a bb gun at 180 m/s do you agree or disagree with the student's claim?
I agree with the student's claim that a 4-gram paintball fired from a paintball gun at 90 m/s could have about the same kinetic energy as a 1-gram bb pellet fired from a bb gun at 180 m/s.
To answer this question, we need to compare the kinetic energy of the paintball and the bb pellet. The formula for kinetic energy is 1/2mv^2, where m is the mass of the object and v is its velocity.
For the paintball, with a mass of 4 grams and a velocity of 90 m/s, the kinetic energy is:
1/2 * 0.004 kg * (90 m/s)^2 = 18.18 joules
For the bb pellet, with a mass of 1 gram and a velocity of 180 m/s, the kinetic energy is:
1/2 * 0.001 kg * (180 m/s)^2 = 16.2 joules
So, the student's claim is actually true - the 4-gram paintball fired at 90 m/s has slightly more kinetic energy than the 1-gram bb pellet fired at 180 m/s. However, it's worth noting that the two projectiles have different sizes and shapes, and would behave differently upon impact.
Learn more about kinetic energy at https://brainly.com/question/8101588
#SPJ11
6. determine the molar mass of an unknown gas that has a volume of 72.5 ml at a temperature of
68.0°c, and a pressure of 0.980 atm, and a mass of 0.207 g.
(hint: find moles first and remember that molar mass is the mass per mole")
The number of moles in the gas is 0.00262 mol and the molar mass of the unknown gas is 79.0 g/mol.
The volume of gas = 72.5 ml
The temperature of gas = 68.0°c
Pressure = 0.980 atm
Mass = 0.207 g
To calculate the molar mass of the gas, we need to estimate the number of moles using the ideal gas law equation. The formula is:
PV = nRT
The temperature must be converted to Kelvin scale and also volume to Litres.
Volume = 72.5 mL = 0.0725 L
Temperature = 68.0 + 273.15 = 341.15 K
Substituting the values in the equation,
n = PV/RT = (0.980 atm) * [(0.0725 L)/(0.08206 L·atm/mol·K)] * (341.15 K)
n= 0.00262 mol
The molar mass of the gas is calculated as:
molar mass = mass/number of moles
molar mass = 0.207 g / 0.00262 mol
molar mass = 79.0 g/mol
Therefore, we can conclude that the molar mass of the unknown gas is 79.0 g/mol.
To learn more about Molar mass
https://brainly.com/question/22997914
#SPJ4
How many grams of calcium oxide will be produced in a closed vessel containing 20. 0 kg of calcium and 20. 0 kg of oxygen gas if the reaction goes to completion?
2Ca(s)+0 (g) 2CaO(s)
A total of 28,000 grams of calcium oxide will be produced.
To find out how many grams of calcium oxide will be produced in a closed vessel containing 20.0 kg of calcium and 20.0 kg of oxygen gas, follow these steps:
1. Convert the given masses into moles using the molar mass of each element:
- For calcium (Ca): 20,000 g / 40.08 g/mol ≈ 499 moles
- For oxygen (O2): 20,000 g / 32 g/mol ≈ 625 moles
2. Determine the limiting reactant using the stoichiometry of the balanced equation:
- The stoichiometric ratio of Ca to O2 is 2:1, so 625 moles of O2 would require 1,250 moles of Ca, but there are only 499 moles of Ca available. Therefore, calcium is the limiting reactant.
3. Calculate the moles of calcium oxide (CaO) produced using the stoichiometry of the balanced equation:
- The ratio of Ca to CaO is 1:1, so 499 moles of Ca will produce 499 moles of CaO.
4. Convert the moles of calcium oxide back to grams using the molar mass:
- The molar mass of CaO is 56.08 g/mol (40.08 g/mol for Ca + 16 g/mol for O). Therefore, 499 moles of CaO * 56.08 g/mol ≈ 28,000 grams of calcium oxide will be produced.
To know more about limiting reactant click on below link:
https://brainly.com/question/14225536#
#SPJ11
HEAT
INTRODUCTION
Heat is a measure of the energy in a system. The transfer of energy is always from the system with more energy to the system with less energy. This lab has two distinct parts. In the first part, you will examine what happens to a gas when the temperature is changed. In the second part, you will use the idea of energy transfer to move water. You will need to be familiar with the ideas of phases (solid, liquid and gas), what specific heat is, and how to calculate joules. Please see pages 93-94, 99-101, and 106-110 in your textbook.
MATERIALS
1 small mouth (or small neck) bottle… a soda bottle should work
1 coin (dime or penny – must cover completely mouth of bottle)
1 large container to submerge at least ½ the bottle (sink, tub, bowl, etc.)
Enough cold water to submerge ½ the bottle
Measuring cups
Food coloring – in kit
4 cups water
1 large bowl to hold water – a clear glass one works best
1 small glass that will extend above water level when in bowl
Saran wrap/cling film – enough to cover bowl
1 small object (example: pebble, coin, marble)
Sunny days (3-4)
Lab 11 - Heat
Page 1 | 4
PART#1: Magic Coin?
Procedure:
Fill selected container with some cold water.
Place the bottle and coin in the bowl of water to chill them. The bottle must be submerged upside down. Submerge at least the neck of the bottle but if you have no “coin activity” on step four, repeat this step with either a greater amount of submersion or submerge the bottle for a greater amount of time.
Place the coin on the top of the bottle. There should be an airtight seal when you place the coin on the top of the bottle.
Wrap your hands around the bottle and wait for several seconds to a minute.
When you believe that the bottle is warmer than room temperature, allow the bottle to cool with the coin in place. Answer the following questions based on your observations.
Questions:
Approximately how long did you submerge the bottle in step #2?
What happened during step #4?
What happened during step #5?
Explain what is happening to the molecules to create the “coin activity”.
PART#2: Distillation
Procedure:
Add the water to the bowl.
Stir in the food coloring until it is distributed equally.
Place the empty glass (small) in the middle of the large bowl so that none of the
Lab 11 - Heat
Page 2 | 4
colored water can get into the glass. The glass must be short enough that it does not extend beyond the rim of the glass bowl.
Note: If the glass bowl is not working because the small empty glass is not stable, a stock pot/dutch oven (with a flat bottom) will work but it will need to be left alone for a little more time.
Cover the large bowl completely with the saran wrap so that no air can pass through.
Add the small object on the saran wrap so that the saran wrap dips in over the small empty glass but does not cause the saran wrap to slip off the lip of the bowl. Use a smaller pebble or coin if the first one is too heavy.
Leave the bowl in the sunlight for a few days and watch to see what happens.
Remove the small glass and measure the amount of water in it with the measuring cups (estimating to the nearest 1/8 cup). Contact me immediately if the amount of water in the small glass is less than 1/8 cup.
Questions:
How is the water in the large bowl different from the water in the small glass?
Describe step by step what happened to the water that is now in the small glass in terms of heating/cooling, phase changes, etc. (Hint: there is more than one step required)
How many cups of water (to the nearest 1/8 cup) are in the small glass?
How many grams of water did you collect?
The relationship between cups and grams is: 1 cup = 236 grams
How many calories are needed to heat the water?
Assume the following information:
The original temperature of the water in the large bowl was 25 °C.
The temperature of a molecule that changes from liquid to gas is 100 °C.
The specific heat of water is 1.00 cal/g·°C
Lab 11 - Heat
Page 3 | 4
You will need the equation for specific heat (equation 4.4)
How many calories are needed to evaporate the water?
The latent heat of vaporization of water is 540.0 cal/g
You will need equation 4.6 in the textbook.
How many calories (total) are needed to “move” the water from the large bowl to the small glass?
Notes: Ignore the amount of water that was not “moved” The water molecules must warm AND change state
Answer:
Hello! This lab is all about heat, which is a measure of energy in a system. In the first part, we'll be examining what happens to a gas when the temperature changes. For this part, you will need a small mouth bottle, a coin, a large container, cold water, and measuring cups. In the second part, we'll be using the idea of energy transfer to move water. For this part, you will need food coloring, water, a large bowl, a small glass, cling film, a small object, and sunny days. Follow the procedures carefully and answer the questions provided to understand the concepts of heat and energy transfer. Don't hesitate to reach out if you have any questions!
C water = 1 cal/g ℃
The density of pentanol is 0.825 g/ml. how many grams of pentanol should be added to 250 ml of water to make a 5% solution by volume? (3 s.f.)
Add approximately 10.9 grams of pentanol to 250 mL of water to make a 5% solution by volume.
To make a 5% solution by volume with pentanol and water, you'll need to determine the volume of pentanol to be added to the 250 mL of water.
First, find the total volume of the solution:
Total volume = (Volume of pentanol + 250 mL) * 100
Next, calculate the volume of pentanol needed for a 5% solution:
Volume of pentanol = (5% * Total volume) / 100
Since the desired solution is 5% pentanol by volume:
5% * (Volume of pentanol + 250 mL) = Volume of pentanol
0.05 * (Volume of pentanol + 250) = Volume of pentanol
Now, solve for the volume of pentanol:
0.05 * Volume of pentanol + 12.5 = Volume of pentanol
-0.05 * Volume of pentanol = -12.5
Volume of pentanol = 13.16 mL (rounded to 3 significant figures)
Now, use the density of pentanol to find the mass of pentanol to be added:
Mass of pentanol = Volume of pentanol * Density of pentanol
Mass of pentanol = 13.16 mL * 0.825 g/mL
Mass of pentanol ≈ 10.9 g (rounded to 3 significant figures)
Therefore, you should add approximately 10.9 grams of pentanol to 250 mL of water to make a 5% solution by volume.
To know more about Volume-Density Calculations:
https://brainly.com/question/1354972
#SPJ11
Write a conversation between you and your friend about a job agency and it's reliability.
In a conversation between myself and a friend about a job agency and its reliability, we would discuss the following points:
1. Friend: "Hey, have you heard about the XYZ Job Agency? I'm considering using their services to find a new job."
2. Me: "Yes, I have heard of them. They are known for connecting job seekers with potential employers. They specialize in various industries, which is a plus. However, it's essential to research their success rate and client feedback to determine their reliability."
3. Friend: "That's a good idea. I'll look into their reviews and testimonials to see what others have experienced with their services."
4. Me: "Another important aspect to consider is the type of positions they primarily offer. Are they mainly temporary roles or long-term positions? Depending on your career goals, this information could be crucial in your decision-making process."
5. Friend: "True, I'll make sure to check the job types they provide. I'm looking for something stable and long-term."
6. Me: "Lastly, you might want to inquire about any fees or charges associated with using their services. Some job agencies charge the job seeker, while others receive their payment from the employer. This could impact your overall experience with the agency."
7. Friend: "Thanks for the advice. I'll definitely consider all these factors before deciding whether to use the XYZ Job Agency. I appreciate your input!"
By following this conversation, we covered the key aspects of a job agency's reliability, such as their success rate, client feedback, job types offered, and fees associated.
To know more about reliability refer here
https://brainly.com/question/30154360#
#SPJ11
1. 4 g of calcium chloride reacts with excess potassium. Determine the molar enthalpy for the reaction of calcium chloride if in the calorimeter the temperature of the 7. 5 g solution goes from 15 °C to 32 °C. Assume that the solution is mainly water
The molar enthalpy for the reaction of calcium chloride is -22,982.5 J/mol.
Calcium chloride is a chemical compound that is commonly used as a drying agent due to its hygroscopic properties. In this question, we are given the amount of calcium chloride and asked to determine the molar enthalpy for its reaction with excess potassium.
The given temperature change of the solution in the calorimeter can be used to calculate the heat released or absorbed during the reaction.
To begin, we need to determine the number of moles of calcium chloride in the given amount of 4 g. Using the molar mass of calcium chloride (110.98 g/mol), we can calculate that 4 g of calcium chloride is equal to 0.036 moles. Since the reaction is with excess potassium, we can assume that all the calcium chloride will react.
Next, we can use the heat capacity of the solution and the temperature change to calculate the heat released or absorbed during the reaction. Assuming that the solution is mainly water, we can use the specific heat capacity of water (4.18 J/g°C) to calculate the heat absorbed by the solution.
The mass of the solution is the sum of the mass of calcium chloride and the mass of water, which is 4 g + 7.5 g = 11.5 g. The temperature change is 32 °C - 15 °C = 17 °C. Therefore, the heat absorbed by the solution is:
Q = m x c x ΔT = 11.5 g x 4.18 J/g°C x 17 °C = 827.37 J
Since the reaction is exothermic (heat is released), the molar enthalpy can be calculated using the following equation:
ΔH = -Q/n
where n is the number of moles of calcium chloride. Plugging in the values, we get:
ΔH = -827.37 J/0.036 mol = -22,982.5 J/mol
Therefore, the molar enthalpy for the reaction of calcium chloride is -22,982.5 J/mol.
To know more about molar enthalpy, visit:
https://brainly.com/question/3207013#
#SPJ11
Help what’s the answer
The theoretical yield of silver chloride is 5.05 grams.
The percentage yield of silver chloride is 72.1%.
The theoretical and percentage yieldThe balanced chemical equation for the reaction between silver nitrate and sodium chloride is:
AgNO3 + NaCl → AgCl + NaNO3
a. To determine the theoretical yield of silver chloride, we need to calculate the amount of silver chloride that would be produced if all of the silver nitrate reacted. We can use stoichiometry to do this.
From the balanced equation, we see that 1 mole of silver nitrate reacts with 1 mole of sodium chloride to produce 1 mole of silver chloride. The molar mass of silver nitrate is 169.87 g/mol, and the molar mass of silver chloride is 143.32 g/mol.
First, we need to convert the mass of silver nitrate given to moles:
moles of AgNO3 = 5.98 g / 169.87 g/mol = 0.0352 mol AgNO3
Since the reaction is with excess NaCl, we know that all the silver nitrate will react, so the theoretical yield of AgCl is:
theoretical yield = 0.0352 mol AgCl x 143.32 g/mol = 5.05 g AgCl
Therefore, the theoretical yield of silver chloride is 5.05 grams.
b. To determine the percentage yield of silver chloride, we need to compare the actual yield (3.64 g) to the theoretical yield (5.05 g), and calculate the ratio as a percentage:
percentage yield = (actual yield / theoretical yield) x 100%
percentage yield = (3.64 g / 5.05 g) x 100% = 72.1%
Therefore, the percentage yield of silver chloride is 72.1%.
Learn more on theoretical yield here https://brainly.com/question/31082729
#SPJ1
1. in a laboratory experiment, an undergraduate student collected a sample of ammonium
phosphate. if the sample contains 9.52 x 1025 molecules, how many grams of the sample did he
collected?
The student collected 2.63 x 10¹⁰ grams of ammonium phosphate.
To determine the mass of the sample collected, we need to know the molar mass of ammonium phosphate, which is (NH₄)₃PO₄. The molar mass of (NH₄)₃PO₄ can be calculated by adding the atomic masses of the constituent atoms:
Molar mass of (NH₄)₃PO₄ = (3 x molar mass of NH₄) + (1 x molar mass of PO₄)
= (3 x 18.04 g/mol) + (1 x 94.97 g/mol)
= 149.99 g/mol
The number of moles of (NH₄)₃PO₄ in the sample can be calculated by dividing the number of molecules by Avogadro's number (6.022 x 10²³):
Number of moles of (NH₄)₃PO₄ = 9.52 x 10²⁵ molecules / 6.022 x 10²³ molecules/mol
= 15.8 mol
Finally, we can calculate the mass of the sample using the formula:
Mass = Number of moles x Molar mass
= 15.8 mol x 149.99 g/mol
= 2.63 x 10¹⁰ g
To know more about number of moles, refer here:
https://brainly.com/question/921246#
#SPJ11
If you have a 6.2 l container with a pressure of 1.5 atm, how many moles are present if the temperature is 38 o c? (0.0821 l atm/mol k)
a
2.28
b
0.28
c
0.31
d
0.36
If there is a container with a volume of 6.2 liters and a pressure of 1.5 atmospheres, the number of moles present in the container is approximately 0.28 moles. Therefore, the correct answer is option b) 0.28.
To calculate the number of moles present in the container, we can use the ideal gas law equation:
PV = nRT
Where:
P = pressure in atm
V = volume in liters
n = number of moles
R = ideal gas constant (0.0821 L atm / (mol K))
T = temperature in Kelvin
First, we need to convert the temperature from Celsius to Kelvin:
T(K) = T(°C) + 273.15
T(K) = 38 °C + 273.15 = 311.15 K
Now we can rearrange the equation to solve for the number of moles (n):
n = PV / RT
Substituting the given values:
P = 1.5 atm
V = 6.2 L
R = 0.0821 L atm / (mol K)
T = 311.15 K
n = [tex](1.5 \text{ atm} \times 6.2 \text{ L}) / (0.0821 \text{ L atm/(mol K)} \times 311.15 \text{ K})[/tex]
n ≈ 0.28 moles
Therefore, the number of moles present in the container is approximately 0.28 moles.
The correct answer is option b) 0.28.
To know more about the ideal gas law refer here :
https://brainly.com/question/28257995#
#SPJ11
a student constructs the following galvanic cell using a zinc electrode in 1.0 m zn(no3)2, a silver electrode in 1.0 m agno3, and a salt bridge containing aqueous kno3. what is the cell notation for this electrochemical cell?
The cell notation for the given galvanic cell is:
Zn(s) | Zn(NO3)2(aq) || KNO3(aq) || AgNO3(aq) | Ag(s)
In this notation, the anode is on the left-hand side and the cathode is on the right-hand side, separated by the double vertical lines representing the salt bridge. The solid electrode is represented on the left-hand side of the vertical line, and the corresponding aqueous solution is shown on the right-hand side. The half-cell reactions occur at the respective electrodes. In this case, the oxidation half-reaction occurs at the zinc electrode, and the reduction half-reaction occurs at the silver electrode.
Also, Zn(s) | Zn(NO3)2(aq) || KNO3(aq) || AgNO3(aq) | Ag(s)
To know more about galvanic cell, here
brainly.com/question/13031093
#SPJ4
Blackworms were collected from an environment with an acidic pH, and the pulse rates were measured. Predict the outcome of the measurements. [2 pt] The pH of the nevironment would have no effect on pulse rate. The pulse rate would be increased to minimize the effects of acidosis. The pulse rate would be increased to minimize the effects of alkalosis. The pulse rate would be decreased to minimize the effects of acidosis
The pulse rate of blackworms collected from an environment with an acidic pH would be increased to minimize the effects of acidosis.
Acidosis occurs when there is an excess of acid in the body, which can lead to a decrease in blood pH. To compensate for this, the body increases pulse rate to improve blood circulation and oxygen delivery.
Blackworms are no exception to this mechanism and would experience an increase in pulse rate to counteract the acidic environment. It is important to note that the increase in pulse rate would not be enough to completely eliminate the effects of acidosis, but rather to minimize them.
To know more about pulse rate click on below link:
https://brainly.com/question/17744527#
#SPJ11
If an area has a very cold climate, it is most likely that the area
If an area has a very cold climate, it is most likely that the area experiences low temperatures throughout the year.
Cold climate regions are often characterized by sub-zero temperatures and limited precipitation, which can lead to dry and barren landscapes. These regions are typically found in the polar regions of the world, such as the Arctic and Antarctic, as well as in high-altitude mountain ranges.
The cold climate can have a significant impact on the environment, with many plants and animals adapted to survive in the harsh conditions. In cold climates, plants and animals often have adaptations that help them conserve heat and energy, such as thick fur coats, hibernation, or slow growth rates.
This means that the biodiversity in cold climate regions may be different than that found in more temperate regions.
Human communities that live in cold climate regions have also adapted to the extreme conditions, often relying on traditional techniques to survive. For example, the Inuit people of the Arctic have developed an intricate knowledge of the land and sea to hunt, fish, and gather food. They have also developed specialized tools and clothing to withstand the cold temperatures.
Overall, a cold climate can have a significant impact on the environment and the communities that rely on it. Understanding the unique challenges and adaptations of these regions is crucial for effective conservation and management.
To know more about cold climate, visit:
https://brainly.com/question/11673115#
#SPJ11
A sample of iron with a mass of 250.0 grams underwent a change in thermal energy of 5250
joules. Determine the change in temperature of the iron that occurred during this process.