The equilibrium quantity of items is 25.
The question is asking for the equilibrium quantity of items when the demand and supply functions given are graphed together. The equilibrium quantity can be found by solving for q when the demand and supply functions are equal.
Demand: d(q) = 562.5 - 0.4q2
Supply: s(q) = 0.5q2
Set the demand and supply functions equal to each other and solve for q:
562.5 - 0.4q2 = 0.5q2
0.9q2 = 562.5
q2 = 625
q = 25
Learn more about equilibrium
brainly.com/question/30807709
#SPJ11
One letter weighs 12 ounces. The mail carrier is allowed to carry 30 pounds. How many letters is he able to carry?
16 letters
32 letters
40 letters
480 letters
First, we need to convert the maximum weight that the mail carrier is allowed to carry from pounds to ounces:
30 pounds = 30 x 16 ounces = 480v ounces
Then, we can divide the maximum weight by the weight of one letter:
480 ounces / 12 ounces per letter = 40 letters
Therefore, the mail carrier is able to carry 40 letters.
So, the correct answer is option C: 40 letters.
Answer:
C 40
Step-by-step explanation:
Find the 14th term of the geometric sequence
5
,
−
10
,
20
,
.
.
.
5,−10,20,...
The 14th term of the given geometric sequence is -40,960.
What is Geometric Progression?A geometric progression is a sequence of numbers in which each term after the first is obtained by multiplying the preceding term by a constant factor called the common ratio. It is a type of exponential growth or decay.
The given sequence is a geometric sequence with the first term (a₁) as 5 and the common ratio (r) as -2. To find the 14th term, we can use the formula for the nth term of a geometric sequence, which is:
[tex]a_n = a_1 \times r^{(n-1)}[/tex]
Substituting the values of a₁ and r, we get:
[tex]a_n = 5\times -2^{(n-1)}[/tex]
To find the 14th term, we can substitute n = 14 and simplify:
[tex]a_{14} = 5 \times (-2)^{(14-1)}[/tex]
[tex]a_{14} = 5 \times (-2)^{(13)}[/tex]
[tex]a_{14} = 5 \times -8192[/tex]
a₁₄ = -40,960
Therefore, the 14th term of the given geometric sequence is -40,960.
To learn more about Geometric Progression from the given link
https://brainly.com/question/24643676
#SPJ1
What is 92199+20923+29290+83292+2819+99279+38471+378144
Answer:
744417
Step-by-step explanation:
Answer:
744,417
Step-by-step explanation:
Add the terms together
PLEASE HELP!!!! A cylinder has a radius of 4x + 1 and a height of 3x + 4. Write the polynomial in standard form for the volume of the cylinder. Use the formula: V = πr2h. Leave the answer in terms of π
The required polynomial in standard form for the volume of the cylinder is [tex]$48\pi x^3 + 64\pi x^2 + 24\pi x + 4\pi$[/tex].
How to find the volume of the cylinder?The formula for the volume of a cylinder is [tex]$V = \pi r^2 h$[/tex], where r is the radius and h is the height.
In this case, the radius is given as 4x + 1, and the height is given as 3x + 4. So we can substitute these values into the formula to get:
[tex]$$V = \pi(4x + 1)^2(3x + 4)$$[/tex]
Simplifying the expression inside the parentheses first, we have:
[tex]$$(4x + 1)^2 = (4x + 1)(4x + 1) = 16x^2 + 8x + 1$$[/tex]
Substituting this expression into the formula for V, we get:
[tex]$$V = \pi(16x^2 + 8x + 1)(3x + 4)$$[/tex]
Expanding the expression using the distributive property, we get:
[tex]$$V = \pi(48x^3 + 64x^2 + 24x + 4)$$[/tex]
Simplifying further, we get:
[tex]$$V = 48\pi x^3 + 64\pi x^2 + 24\pi x + 4\pi$$[/tex]
Therefore, the polynomial in standard form for the volume of the cylinder is [tex]$48\pi x^3 + 64\pi x^2 + 24\pi x + 4\pi$[/tex].
To know more about Volume visit:
brainly.com/question/12237641
#SPJ1
Hind the quotient and remainder using synthetic division, (x^(4)-x^(3)+x^(2)-x+2)/(x-3)
The quotient is [tex]x^{3}[/tex]+2[tex]x^{2}[/tex]+7x+20 and the remainder is 62.
To find the quotient and remainder using synthetic division, we can follow these steps:
1. Write down the coefficients of the dividend, which are 1, -1, 1, -1, and 2.
2. Write down the value of x from the divisor, which is 3.
3. Bring down the first coefficient, 1, to the bottom row.
4. Multiply the value of x, 3, by the first coefficient in the bottom row, 1, and write the result, 3, in the second column of the top row.
5. Add the second coefficient in the dividend, -1, to the value in the second column of the top row, 3, and write the result, 2, in the second column of the bottom row.
6. Repeat steps 4 and 5 for the remaining columns.
7. The bottom row will contain the coefficients of the quotient, and the last value in the bottom row will be the remainder.
The synthetic division will look like this:
3|1-11-12|362160|1272062
Therefore, the quotient is [tex]x^{3}[/tex]+2[tex]x^{2}[/tex]+7x+20 and the remainder is 62. The final answer is ([tex]x^{3}[/tex]+2[tex]x^{2}[/tex]+7x+20)+62 / (x-3).
Learn more about synthetic division here:
https://brainly.com/question/29631184#
#SPJ11
Show the family of conics with the same focus
x^2/a^2+C + y^2/b^2+C = 1
is its own orthogonal family of curves.
The original equation and the orthogonal equation are the same, we can conclude that the family of conics with the same focus x^2/a^2+C + y^2/b^2+C = 1 is its own orthogonal family of curves.
To show that the family of conics with the same focus x^2/a^2+C + y^2/b^2+C = 1 is its own orthogonal family of curves, we need to take the derivative of the equation and set it equal to -1/b^2, the slope of the orthogonal line.
First, we take the derivative of the equation with respect to x:
2x/a^2 = -2y/b^2 * dy/dx
Simplifying, we get:
dy/dx = -b^2*x/a^2*y
Now, we set this equal to -1/b^2:
-b^2*x/a^2*y = -1/b^2
Cross-multiplying and simplifying, we get:
x/a^2*y = 1/b^2
Finally, we can rearrange this equation to get:
y = b^2*x/a^2
This equation represents the orthogonal family of curves to the original family of conics. Since the original equation and the orthogonal equation are the same, we can conclude that the family of conics with the same focus x^2/a^2+C + y^2/b^2+C = 1 is its own orthogonal family of curves.
Learn about Conics
brainly.com/question/29767685
#SPJ11
Estimate the difference between 78,920 and 59,230 by rounding each number to the nearest 10,000.
Answer:
19,690 since it is the nearest ten thousandth it would be 20,000
Step-by-step explanation:
subtract 78,920-59,230 to get 19,690 since we have to round up it would be 20,000
Answer: The difference ( rounded to 10,000) is 20,000
Step-by-step explanation: 78,920 and 59,230 both rounded to the nearest 10,000 is 80,000 and 60,000. The difference between the two is 20,000
At an ice cream shop, the cost of 4 milkshakes and 2 ice cream sundaes is $23.50. The cost of 8 milkshakes and 6 ice cream sundaes is $56.50.
What is the price of a milkshake?
What is the price of an ice cream sundae?
Answer:
If I had to take a guess I'd say the price of the milkshakes is $4.50 and the price of the sundaes are $2.75 but I'm not 100% sure.
Answer:
Step-by-step explanation:
8m + 6i = 56.50
4m + 2i = 23.50
8m + 6i = 56.50
-8m - 4i =-47.00
2i = 9.50
i = $4.75 ice cream sundae
4m + 2(4.75) = 23.50
4m + 9.50 = 23.50
4m = 14
m = 3.50 milkshake
The diameter of a circle is 10 ft. Find its area to the nearest whole number.
When the diameter οf the is 10 feet, then the area οf the circle is 78.54 ft².
What is circle?A circle is created in the plane by each pοint that is a specific distance frοm anοther pοint (center). Hence, it is a curve made up οf pοints that are separated frοm οne anοther by a defined distance in the plane. Mοreοver, it is rοtatiοnally symmetric abοut the centre at every angle. Every pair οf pοints in a circle's clοsed, twο-dimensiοnal plane are evenly spaced apart frοm the "centre." A circular symmetry line is made by drawing a line thrοugh the circle. Mοreοver, it is rοtatiοnally symmetric abοut the centre at every angle.
The circle's diameter is specified as 10 feet. Since we already knοw that the circle's diameter is twice its radius, we can calculate its radius as fοllοws:
diameter = radius / 2 = 10 / 2 = 5 feet
Area οf circle = πr²
π5²
= π5 × 5
= 78.54 ft²
The size οf the circle is 79 square feet when the answer is rοunded tο the next whοle number.
To know more about circle visit:
brainly.com/question/29142813
#SPJ1
The area of the circle to the nearest whole number is 79 square feet.
What is the diameter?
In geometry, the diameter of a circle is defined as the longest straight line segment that can be drawn between any two points on the circle, passing through the center of the circle. It is twice the length of the radius of the circle.
The formula for the area of a circle is A = πr^2, where r is the radius of the circle.
Given that the diameter of the circle is 10 feet, we can find the radius by dividing the diameter by 2:
radius = diameter / 2 = 10 ft / 2 = 5 ft
Now we can use the formula to find the area of the circle:
A = πr^2
= π(5 ft)^2
= 25π square feet
To get the answer to the nearest whole number, we can use the approximation π ≈ 3.14:
A ≈ 25 × 3.14
≈ 78.5
Therefore, the area of the circle to the nearest whole number is 79 square feet.
To know more about diameter and given link below -
https://brainly.com/question/5501950
#SPJ1
A polynomial f(x) and one of its zeros are given. Find all the zeros. f(x)=x^(4)-8x^(3)+18x^(2)+16x-40;,4+2i is a zero
The zeros of the polynomial f(x) = x4 - 8x3 + 18x2 + 16x - 40 are 4 + 2i, 4 - 2i, -2, and -8.
Given that 4 + 2i is one of its zeros, we can use the fact that the product of the zeros of a polynomial is equal to the product of the coefficients of the polynomial.
We can use this fact to find all of the zeros of the polynomial:
1. We can calculate the product of the coefficients of the polynomial:
( -40 ) * ( 16 ) * ( 18 ) * ( -8 ) = -442368
2. We can calculate the product of the known zero and its conjugate:
( 4 + 2i ) * ( 4 - 2i ) = 16
3. We can divide the product of the coefficients by the product of the known zero and its conjugate:
-442368 / 16 = -27735
4. This is the product of the other zeros:
-27735 = x^(2) + 8x + 1135
5. We can use the quadratic formula to solve for the remaining zeros:
x = (-8 +/- sqrt(64 - 4*1*1135))/2
x1 = (-8 + sqrt(144 - 4640))/2
x2 = (-8 - sqrt(144 - 4640))/2
Therefore, the remaining zeros of the polynomial f(x) are:
x1 = -5 + i7
x2 = -5 - i7
To find all the zeros of the polynomial f(x) = x4 - 8x3 + 18x2 + 16x - 40, we can use the fact that 4 + 2i is a zero and apply the conjugate root theorem. The conjugate root theorem states that if a polynomial has a complex root a + bi, then it also has a conjugate root a - bi. Therefore, 4 - 2i is also a zero of the polynomial.
Now, we can use synthetic division to divide the polynomial by (x - 4 - 2i) and (x - 4 + 2i) to find the other zeros. The result of the synthetic division will be a quadratic polynomial, which we can then solve using the quadratic formula.
Synthetic division with (x - 4 - 2i):
4 + 2i | 1 -8 18 16 -40
| 0 4+2i -4+14i -44-8i 56+40i
----------------------------
1 -4+2i 14+14i -28-8i 16+40i
Synthetic division with (x - 4 + 2i):
4 - 2i | 1 -4+2i 14+14i -28-8i 16+40i
| 0 4-2i -4-14i 44+8i -56-40i
----------------------------
1 0 10 16 0
The result of the synthetic division is the quadratic polynomial x2 + 10x + 16. We can solve this using the quadratic formula:
x = (-10 ± √(102 - 4(1)(16)))/(2(1))
x = (-10 ± √(100 - 64))/2
x = (-10 ± √36)/2
x = (-10 ± 6)/2
The two solutions are x = -2 and x = -8.
Therefore, the zeros of the polynomial f(x) = x4 - 8x3 + 18x2 + 16x - 40 are 4 + 2i, 4 - 2i, -2, and -8.
For more about polynomial:
https://brainly.com/question/11536910
#SPJ11
At a school assembly there were 500 students. 4 out of 10 were wearing spirit wear. How many students were expected to be wearing the spirit wear
The number of students who are expected to be wearing the spirit wear out of 500 total students are 200 students.
Since it is given that there are 500 students studying in a school and 4 out of 10 students are expected to wear spirit wear. This means that the ratio of students wearing spirit wear to students wearing normal clothes is 4:10. Now, if we consider the ratio for total number of students that is 500 and the expected number of students wearing spirit dress are equal to x, then following relation is obtained.
Number of students wearing spirit dress out of 10 = 4
Number of students wearing spirit dress out of 1 = 4/10
Number of students wearing spirit dress out of 500 = (4/10)*500
∴ Number of students wearing spirit dress out of 500 = 200 students
Learn more about ratio at:
brainly.com/question/2914376
#SPJ4
Pls help me with this last
one
Answer:
Objective function: x +1.5yBest x: 69Best y: 70Best profit: 174Step-by-step explanation:
You want the objective function, its maximum value, and the variable values that give that maximum based on the model shown in the graph.
Objective functionThe problem statement tells you the profit function is ...
1.00x +1.50y . . . . . . objective function
Since the objective is to maximize profit, this is the objective function.
BrushesThe integer values nearest the vertex of the feasible region farthest from the origin are (x, y) = (69, 70). These are the numbers of 'economy' and 'best' brushes that maximize the profit.
economy brushes: 69best brushes: 70The maximum profit for these numbers of brushes will be ...
p = x +1.5y = 69 +1.5(70) = 69 +105
p = 174 . . . . maximum profit
The maximum profit of the situation is $174
How to determine the maximum profitFrom the question, we have the following parameters that can be used in our computation:
Profit function = $1 for x and $1.50 for y
This means that the objective function is
P(x, y) = x +1.5y
Also, the graph is given where we have:
Optimal point, (x, y) = (69, 70)
Substitute these points in the profit function
So, we have
P(x, y) = 69 +1.5 * 70
Evaluate
P(x, y) = 174
Hence, the maximum profit is $174
Read more about objective function at
https://brainly.com/question/15830007
#SPJ1
(1.8x3)x(2.1x7)=(3x7)x(1.8x2.1) true or false?
The given equation is true. The solution has been obtained by using arithmetic operations.
What are arithmetic operations?It is believed that the four fundamental operations, often referred to as "arithmetic operations", can explain all real numbers. The four mathematical operations that produce the quotient, product, sum, and difference are divide, multiply, add, and subtract.
We are given an equation as (1.8 x 3) x (2.1 x 7) = (3 x 7) x (1.8 x 2.1)
In order to see whether it is true or false, we will solve both the sides.
So, first solving L.H.S., we get
⇒(1.8 x 3) x (2.1 x 7)
⇒5.4 x 14.7
⇒79.38
Now, solving R.H.S., we get
⇒(3 x 7) x (1.8 x 2.1)
⇒21 x 3.78
⇒79.38
Since, L.H.S. = R.H.S., so the given equation is true.
Hence, the given equation is true.
Learn more about arithmetic operations from the given link
https://brainly.com/question/30283549
#SPJ1
The general solution to the second-order differential equation y′′+4y=0 is in the form y(x)=c1cosβx+c2sinβx. Find the value of β, where β>0
The general solution to the differential equation y''+4y=0 is y(x) = c₁ cos ₂x + c₂ sin ₂x and the value of β is 2.
To find the value of β, we substitute the general solution into the differential equation and solve for β. We start by finding the first and second derivatives of y(x):
y'(x) = -c₁β sin βx + c₂β cos βx
y''(x) = -c₁β² cos βx - c₂β² sin βx
Substituting these expressions into the differential equation, we get:
-c₁β² cos βx - c₂β² sin βx + 4(c₁ cos βx + c₂ sin βx) = 0
Simplifying this equation, we get:
(c₁β² + 4c₁) cos βx + (c₂β² + 4c₂) sin βx = 0
This equation must hold for all values of x, which means that the coefficients of cos βx and sin βx must both be zero. Therefore, we have the following system of equations:
c₁β² + 4c₁ = 0
c₂β² + 4c₂ = 0
We can solve for β by dividing the second equation by c₂ and substituting c₁ = -4β²/c₂ from the first equation:
β² = -4c₁/c₂ = 4
Since β>0, we take the positive square root of 4, which gives β=2.
To know more about differential equation here
https://brainly.com/question/30074964
#SPJ4
A triangle ABC has a perimeter of 59cm. AB is twice the length of AC and 6cm longer than BC. Find the length of AB.
Answer: 6 cm
solution let the length of AB= x cm the length of BC = (2x-2) cm, and the length of AC = (x+10) cm The perimeter of ABC=32 cm
x+2x-2+x+0=32
4x+8=32
4x=24
x=6
The members of the city cultural center have decided to put on a play once a night for a week. Their auditorium holds 600 people. By selling tickets, the members would like to raise $3,300 every night to cover all expenses. Let d represent the number of adult tickets sold at $7.50. Let s represent the number of student tickets sold at $4.50 each. If all 600 seats are filled for a performance, how many of each type of ticket must have been sold for the members to raise exactly $3,300? At one performance there were three times as many student tickets sold as adult tickets. If there were 480 tickets sold at that performance, how much below the goal of $3,300 did ticket sales fall?
Ticket sales fell $960 below the goal.
What is system of equations?
A system of linear equations can be solved graphically, by substitution, by elimination, and by the use of matrices.
Since we know that the goal is to raise $3,300 each night and that the price of an adult ticket is $7.50 and the price of a student ticket is $4.50, we can write:
7.5d + 4.5s = 3300
We also know that the auditorium holds 600 people, so the total number of tickets sold must be:
d + s = 600
total number of tickets sold was 480. We can use this information to set up another system of equations:
s = 3d (since there were three times as many student tickets sold as adult tickets)
d + s = 480 (since the total number of tickets sold was 480)
Now we can solve the first system of equations to find the values of d and s that satisfy the constraints:
7.5d + 4.5s = 3300
d + s = 600
Multiplying the second equation by 4.5 and subtracting it from the first equation, we get:
3d = 1650
So, d = 550. Substituting this value back into the equation d + s = 600, we get:
550 + s = 600
s = 50
Therefore, 550 adult tickets and 50 student tickets must have been sold to raise exactly $3,300.
To answer the second part of the question, we can use the second system of equations to find the values of d and s for that performance:
s = 3d
d + s = 480
Substituting the first equation into the second equation, we get:
d + 3d = 480
So, 4d = 480 and d = 120. Substituting this value back into the first equation, we get:
s = 3d = 360
Therefore, 120 adult tickets and 360 student tickets were sold at that performance.
To calculate how much below the goal of $3,300 ticket sales fell, we can plug in the values for d and s from this performance into the equation:
7.5d + 4.5s = revenue
7.5(120) + 4.5(360) = $2,340
So, ticket sales fell $960 ($3,300 - $2,340) below the goal.
To know more about system of equations visit,
https://brainly.com/question/13729904
#SPJ1
\[ \tan \theta=\frac{\frac{v}{\sqrt{3}}}{\frac{\sqrt{9-3 v^{2}}}{3}} \cdot \frac{\sqrt{3}}{u}= \] \( \tan \theta= \)
The solution for \(\tan \theta\) is \(\frac{v\sqrt{3}}{u\sqrt{1-\frac{1}{3} v^{2}}}\).
To solve for \(\tan \theta\), we need to simplify the equation by combining the fractions and simplifying the square roots.
First, let's combine the fractions on the right side of the equation:
\[ \tan \theta=\frac{v}{\sqrt{3}} \cdot \frac{3}{\sqrt{9-3 v^{2}}} \cdot \frac{\sqrt{3}}{u} \]
Next, we can simplify the square roots:
\[ \tan \theta=\frac{v}{\sqrt{3}} \cdot \frac{3}{\sqrt{9}\sqrt{1-\frac{1}{3} v^{2}}} \cdot \frac{\sqrt{3}}{u} \]
\[ \tan \theta=\frac{v}{\sqrt{3}} \cdot \frac{3}{3\sqrt{1-\frac{1}{3} v^{2}}} \cdot \frac{\sqrt{3}}{u} \]
Now we can simplify the fractions:
\[ \tan \theta=\frac{v}{\sqrt{3}} \cdot \frac{1}{\sqrt{1-\frac{1}{3} v^{2}}} \cdot \frac{\sqrt{3}}{u} \]
Finally, we can combine the terms to get the final expression for \(\tan \theta\):
\[ \tan \theta=\frac{v\sqrt{3}}{u\sqrt{1-\frac{1}{3} v^{2}}} \]
Therefore, the solution for \(\tan \theta\) is \(\frac{v\sqrt{3}}{u\sqrt{1-\frac{1}{3} v^{2}}}\).
Learn more about fractions
brainly.com/question/10354322
#SPJ11
Use the binomial theorem (along with differentiation, integration, multiplication by \( x \) or \( y \), etc.) to prove that for any integer \( n \geq 1 \) the following identity holds: \[ \sum_{k=0}^
The binomial theorem holds for any integer \( n \geq 1 \) and any real numbers \( x \) and \( y \).
The binomial theorem states that for any positive integer \( n \) and any real numbers \( x \) and \( y \), \[(x+y)^n = \sum_{k=0}^{n} \binom{n}{k}x^{n-k}y^k\]where \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \) is the binomial coefficient.
To prove the identity \[ \sum_{k=0}^{n} \binom{n}{k}x^{n-k}y^k = x^n + nx^{n-1}y + \frac{n(n-1)}{2}x^{n-2}y^2 + \cdots + y^n \] we can use differentiation, integration, and multiplication by \( x \) or \( y \).
First, let's differentiate both sides of the equation with respect to \( x \): \[\frac{d}{dx} \left( \sum_{k=0}^{n} \binom{n}{k}x^{n-k}y^k \right) = \frac{d}{dx} \left( x^n + nx^{n-1}y + \frac{n(n-1)}{2}x^{n-2}y^2 + \cdots + y^n \right)\]Using the power rule for differentiation, we get \[\sum_{k=0}^{n} \binom{n}{k}(n-k)x^{n-k-1}y^k = nx^{n-1} + n(n-1)x^{n-2}y + \frac{n(n-1)(n-2)}{2}x^{n-3}y^2 + \cdots\]Next, we can multiply both sides of the equation by \( x \): \[\sum_{k=0}^{n} \binom{n}{k}(n-k)x^{n-k}y^k = nx^{n} + n(n-1)x^{n-1}y + \frac{n(n-1)(n-2)}{2}x^{n-2}y^2 + \cdots\]Finally, we can integrate both sides of the equation with respect to \( x \): \[\int \left( \sum_{k=0}^{n} \binom{n}{k}(n-k)x^{n-k}y^k \right) dx = \int \left( nx^{n} + n(n-1)x^{n-1}y + \frac{n(n-1)(n-2)}{2}x^{n-2}y^2 + \cdots \right) dx\]Using the power rule for integration, we get \[\sum_{k=0}^{n} \binom{n}{k}\frac{(n-k)}{n-k+1}x^{n-k+1}y^k = \frac{n}{n+1}x^{n+1} + \frac{n(n-1)}{n+1}x^{n}y + \frac{n(n-1)(n-2)}{2(n+1)}x^{n-1}y^2 + \cdots\]Simplifying the coefficients and combining like terms, we get \[\sum_{k=0}^{n} \binom{n}{k}x^{n-k}y^k = x^n + nx^{n-1}y + \frac{n(n-1)}{2}x^{n-2}y^2 + \cdots + y^n\]which is the identity we were trying to prove. Therefore, the binomial theorem holds for any integer \( n \geq 1 \) and any real numbers \( x \) and \( y \).
Learn more about Binomial theorem
brainly.com/question/13324776
#SPJ11
in triangle ABC, a = 4, b = 6 and cosC= -1/4, what is the length of side c?
Answer:
A
Step-by-step explanation:
c^2 = a^2 + b^2 - 2ab cos(C)
c^2 = 4^2 + 6^2 - 2(4)(6)(-1/4)
c^2 = 16 + 36 + 12
c^2 = 64
c = √64
c = 8
O.
Ob
Oc
Od
31 40 50 54
70
84 87 90
Referring to the figure above, which numbers are considered
possible outliers?
40, 84
31, 87, 90
84, 87, 90
31, 40, 50
The numbers that should be considered possible outliers from the above figure would be = 31, 87, and 90. That is option B.
What is an outlier?An outlier is defined as the term given to an observation which lies in an abnormal distance from other values in a random sample from a population.
On the field of statistics, an outlier is also called an extreme value.
For example in the scores 25,29,2,32,86,33,27,28 both 2 and 86 are "outliers".
From the illustration given above, the values that are at the extreme that didn't enter the box plot are the outliers and they include 31,87, and 90.
Learn more about outlier here:
https://brainly.com/question/29546240
#SPJ1
Two circles inside a square are externally tangent to each other and are tangent to certain sides of the square as shown. The perimeter of the square is $2+\sqrt 2.$ What is the sum of the circumferences of the two circles?
The sum of the circumferences of the two circles is equal to [tex]$2\pi \sqrt 2.$[/tex]
What is circumferences?Circumference is the distance around a two-dimensional shape, such as a circle or ellipse. It can be calculated by multiplying the circumference of the shape by its diameter. The formula for calculating the circumference of a circle is 2πr, where π is the constant 3.14 and r is the radius of the circle. The circumference of an ellipse is more complicated and requires knowledge of the length of its major and minor axes.
The two circles are externally tangent to each other, which means that the distance between them is equal to the sum of their radii. Since the circles are tangent to the sides of the square, the length of one side of the square is equal to the sum of their radii. Since the perimeter of the square is given to be [tex]$2+\sqrt 2,[/tex] we can calculate the length of each side of the square to be [tex]$\sqrt 2.$[/tex] Hence, the sum of the radii of the two circles is equal to [tex]$\sqrt 2.$[/tex]
Therefore, the sum of the circumferences of the two circles is equal to [tex]$2\pi \sqrt 2.$[/tex]
To learn more about circumferences
https://brainly.com/question/15272183
#SPJ1
I need help find answer for number 9
The perimeter of the given triangle MNP is 65.
What is a regular figure and its perimeter?A regular figure with n-sides has n equal sides in it, and they are the only parts of it(that means, nothing more than those equal lengthened n sides).
Suppose that length of each side of that figure be of u units, then we have the perimeter as:
P=u+u+u+u+u+u......=n*u
units.
We are given that;
Side MN=5x-34, QR=25, QS=22, RS=x+4
Now,
5x + x - 34 + 4 = 22
6x - 30 = 22
6x - 30 + 30 = 22 + 30
6x = 52
6x/6 = 52/6
x = 8.67
P= 5*8-34+25+22+8+4
=40-34+47+12
=65
Therefore, the perimeter of the triangle will be 65.
Learn more about perimeter here:
https://brainly.com/question/10466285
#SPJ1
solve the problem with simplex method , and verify using graphical method
4) Min Z = -2X1 - 4X2 - 3X3
St. X1 + 3X2 + 2X3 <= 30 X1 + X2 + X3 <= 24
3X1 + 5X2 + 3X3 <= 60
Xi >= 0
The problem can be solved using the simplex method, and the solution can be verified using the graphical method. The optimal solution is X1 = 6, X2 = 0, X3 = 6, Z = 24.
The problem can be solved using the simplex method, and verified using the graphical method. Here are the steps:
Convert the problem to standard form by introducing slack variables:
Min Z = -2X1 - 4X2 - 3X3 + 0S1 + 0S2 + 0S3
St. X1 + 3X2 + 2X3 + S1 = 30
X1 + X2 + X3 + S2 = 24
3X1 + 5X2 + 3X3 + S3 = 60
Xi, Si >= 0
Set up the initial simplex tableau:
| 1 3 2 1 0 0 30 |
| 1 1 1 0 1 0 24 |
| 3 5 3 0 0 1 60 |
| 2 4 3 0 0 0 0 |
Identify the entering variable (most negative coefficient in the objective row): X2
Identify the leaving variable (smallest ratio of RHS to coefficient of entering variable): S1
Pivot around the intersection of the entering and leaving variables to create a new tableau:
| 0 2 1 1 -1 0 6 |
| 1 0 0 -1 2 0 18 |
| 0 0 0 5 -5 1 30 |
| 2 0 1 -2 4 0 36 |
Repeat steps 3-5 until there are no more negative coefficients in the objective row. The final tableau is:
| 0 0 0 7/5 -3/5 0 18 |
| 1 0 0 -1/5 2/5 0 6 |
| 0 0 1 1/5 -1/5 0 6 |
| 0 0 0 -2 4 0 24 |
The optimal solution is X1 = 6, X2 = 0, X3 = 6, Z = 24.
To verify the solution using the graphical method, plot the constraints on a graph and find the feasible region. The optimal solution will be at one of the corner points of the feasible region. By checking the values of the objective function at each corner point, we can verify that the optimal solution found using the simplex method is correct.
In conclusion, the problem can be solved using the simplex method, and the solution can be verified using the graphical method. The optimal solution is X1 = 6, X2 = 0, X3 = 6, Z = 24.
Learn more about Graphical method
brainly.com/question/29193266
#SPJ11
6/27 = 4/x
Find the answer, hint- 6x = 27x4
then divide 6 by 27x4
Answer: 18
Step-by-step explanation
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 27x, the least common multiple of 27,x.
x × 6=27 × 4
Multiply 27 and 4 to get 108.
x × 6=108
Divide both sides by 6.
x= 108/6
Divide 108 by 6 to get 18.
x=18
a) Find the definite integral L (x + 1)(x - 1)dx Answer: I= b) Find the indefinite integral (x– 1)dx Answer: I =
c) Calculate the integral \2cos(t)dt Answer: I= =
a) To find the definite integral of L (x + 1)(x - 1)dx, we first need to expand the expression and then integrate it.
L (x + 1)(x - 1)dx = L (x^2 - 1)dx
Now we can integrate this expression:
I = ∫(x^2 - 1)dx = (x^3/3) - x + C
Since we are looking for the definite integral, we need to evaluate this expression at the limits of integration.
I = [(b^3/3) - b] - [(a^3/3) - a]
b) To find the indefinite integral of (x - 1)dx, we simply need to integrate the expression and add a constant of integration.
I = ∫(x - 1)dx = (x^2/2) - x + C
c) To calculate the integral of 2cos(t)dt, we simply need to integrate the expression and add a constant of integration.
I = ∫2cos(t)dt = 2sin(t) + C
Learn more about definite
brainly.com/question/29974649
#SPJ11
Suppose the following information is known about an LP: The extreme points of the feasible set are
(0,0),(1,0),(0,1),(1,1). The objective is to maximise f(x,y)=3x+19y. Prove that (x,y)=(1,1) is an optimal solution. (Hint: This isn't as obvious as it looks! Determine the constraint set.)
By substituting the extreme points of the feasible set into the objective function and comparing the values, (x,y)=(1,1) is an optimal solution for the given LP problem.
The given LP problem is to maximize f(x,y)=3x+19y subject to the constraint set of the feasible set. The extreme points of the feasible set are (0,0), (1,0), (0,1), and (1,1).
To prove that (x,y)=(1,1) is an optimal solution, we need to show that f(x,y) is maximized at this point. We can do this by plugging in the extreme points into the objective function and comparing the values.
At (0,0), f(x,y) = 3(0) + 19(0) = 0
At (1,0), f(x,y) = 3(1) + 19(0) = 3
At (0,1), f(x,y) = 3(0) + 19(1) = 19
At (1,1), f(x,y) = 3(1) + 19(1) = 22
From these calculations, we can see that f(x,y) is maximized at (1,1), with a value of 22. Therefore, (x,y)=(1,1) is an optimal solution for this LP problem.
In conclusion, by plugging in the extreme points of the feasible set into the objective function and comparing the values, we have proved that (x,y)=(1,1) is an optimal solution for the given LP problem.
To know more about LP problem refer here:
https://brainly.com/question/24035784#
#SPJ11
Determine the values of a such that the following vectors are i
linearly independent. V1 = {1,2,0}, v2= {1,0 .,1}, v3 ={1,a,4}.
The vectors v1 = {1,2,0}, v2 = {1,0,1}, and v3 = {1,a,4} are linearly independent if a = 8/3, t and linearly dependent for a = 2, and linearly independent for a = 8/3.
For the vectors to be linearly independent, we need to check if the following system of equations has a unique solution:
c1v1 + c2v2 + c3v3 = 0
where c1, c2, c3 are constants, and 0 is the zero vector.
Substituting the given vectors, we get the following system of equations:
c1 + c2 + c3 = 0 (1)
2c1 + ac3 = 0 (2)
c2 + 4c3 = 0 (3)
If we can find values of a for which this system of equations has a non-trivial solution, then the vectors are linearly dependent. Otherwise, they are linearly independent.
To find such values of a, we need to solve the system of equations and find the conditions under which it has non-trivial solutions.
From equations (2) and (3), we get:
c2 = -4c3 (4)
2c1 + ac3 = 0 (5)
Substituting equations (1) and (4) into equation (5), we get:
2(-c2 - c3) + ac3 = 0
Simplifying, we get:
(-2 + a)c3 - 2c2 = 0
Substituting equation (4), we get:
(-2 + a)c3 + 8c3 = 0
Solving for c3, we get:
c3 = 0 if a = 2
c3 = 0 if a = 8/3
For a = 2, the system reduces to:
c1 + c2 = 0
2c1 = 0
c2 + 4c3 = 0
This system has a non-trivial solution: c1 = 0, c2 = 1, c3 = -1/4.
Therefore, the vectors are linearly dependent for a = 2.
For a = 8/3, the system reduces to:
c1 + c2 + c3 = 0
(8/3)c3 = 0
c2 + 4c3 = 0
This system has only the trivial solution: c1 = c2 = c3 = 0.
Therefore, the vectors are linearly independent for a = 8/3.
In summary, the given vectors are linearly dependent for a = 2, and linearly independent for a = 8/3.
To know more about vector click on below link:
brainly.com/question/15709504
#SPJ11
HELP ME PLEASE THANK YOU!!!!!!!! WILL MARK BRAINLIST IF CORRECT
Answer:
Hey there! [tex]x + y = 500 \ 215x + 615y = 187500[/tex]Answer is the first option. Hope this helps.
Step-by-step explanation:
just did it
Answer:
Below
Step-by-step explanation:
Slope, m, is equal to 'rise' (change in y) divided by 'run' ( change in 'x')
when going L to R
change in x is from -2 to 2 is a change of +4
change in y is 24 to 8 a change of - 16
slope = -16/4 = - 4
Triangle RST
has coordinates R(−4, 0)
, S(−1, 3)
, and T(2, 2)
. The triangle is reflected across the x-axis.
Write the coordinate notation for a reflection across the x-axis.
(x, y)→(
Answer:
(x, y)→(x,-y)
R(-4,0) S(-1,-3) T(2,-2)
Step-by-step explanation:
The opposite of a number is made by multiplying it by negative 1 (-1)
If it's reflected across the x axis, then the y axis will be the only one to change. (y to -y)
(x, y)→(x,-y)
Our formula for reflection across the x axis is (x,-y)
The rest is simple: Change each set of coordinates to an opposite y value.
Imagine you deposited $500 in a savings account that had an annual interest rate of 5% for 5 years. Use the simple interest formula from the article to calculate how much you would earn each year (Column 1). Then, calculate how much money you would have at the end of each year (Column 2).
The interest earned each year is $25 and the total amount at the end of each year would be $525, $550, $575, $600, and $625 respectively.
What is simple interest?
Simple interest is a method of calculating interest on a loan or investment where the interest is calculated only on the principal amount. It is based on a fixed percentage of the principal amount and does not take into account any interest earned on previous interest payments.
The formula for calculating simple interest is I = PRT, where I is the interest, P is the principal amount, R is the annual interest rate, and T is the time period in years.
Using the simple interest formula:
I = P * r * t
where I is the interest earned, P is the principal or initial deposit, r is the annual interest rate, and t is the time in years.
For an initial deposit of $500 at an annual interest rate of 5%, the interest earned each year and the total amount at the end of each year would be:
Year 1:
I = 500 * 0.05 * 1 = $25
Total = 500 + 25 = $525
Year 2:
I = 500 * 0.05 * 1 = $25
Total = 525 + 25 = $550
Year 3:
I = 500 * 0.05 * 1 = $25
Total = 550 + 25 = $575
Year 4:
I = 500 * 0.05 * 1 = $25
Total = 575 + 25 = $600
Year 5:
I = 500 * 0.05 * 1 = $25
Total = 600 + 25 = $625
Therefore, the interest earned each year is $25 and the total amount at the end of each year would be $525, $550, $575, $600, and $625 respectively.
To know more about simple interest visit:
brainly.com/question/25845758
#SPJ1