find the area of the circle in terms of π
diameter of the circle: 6.3 ft​

Answers

Answer 1

Answer:

9.9225π feet.

Step-by-step explanation:

The area of a circle is pi * r^2.

The diameter is 2r. 2r = 6.3; r = 6.3 / 2 = 3.15.

pi * 3.15^2 = pi * 9.9225

9.9225π feet is your answer.

Hope this helps!

Answer 2

Answer:

Given that

diameter of circle=6.3ft=192.02cm

radius of circle=d/2=192.02/2=96.01cm

So, area of circle=πr2

= π×(96.01)^2

= 9217.92π cm^2

hope it helps u....

plz mark as brainliest...


Related Questions

Does anyone know the answers to these?

Answers

Step-by-step explanation:

a. The point estimate is the mean, 47 days.

b. The margin of error is the critical value times the standard error.

At 31 degrees of freedom and 98% confidence, t = 2.453.

The margin of error is therefore:

MoE = 2.453 × 10.2 / √32

MoE = 4.42

c.  The confidence interval is:

CI = 47 ± 4.42

CI = (42.58, 51.42)

d. We can conclude with 98% confidence that the true mean is between 42.58 days and 51.42 days.

e. We can reduce the margin of error by either increasing the sample size, or using a lower confidence level.

Question 6 of 10
Which equation matches the graph of the greatest integer function given
below?

Answers

Answer: A

Explanation:

y = [x] - 2

Y intercept is at (0,-2) which matches the graph above

The diagram shows a right triangle and three squares. The area of the largest square is 363636 units^2 2 squared. Which could be the areas of the smaller squares?

Answers

Answer:

The answers are A. and B.

Step-by-step explanation:

Since the area of the largest square is 36. We need two numbers that equal 36. and A. had 6 and 30 so i picked it and it was right and B. is 28 and 8 which also equals 36. But, C. is 4 and 16 which is not 36. So A. and B. are the answers. Hope this helps! :)

We can use the Pythagorean theorem (a^2+b^2=c^2)(a  

2

+b  

2

=c  

2

)left parenthesis, a, squared, plus, b, squared, equals, c, squared, right parenthesis to determine possible areas of the two smaller squares.

\text{Area of a square} =\text{side}^2Area of a square=side  

2

start text, A, r, e, a, space, o, f, space, a, space, s, q, u, a, r, e, end text, equals, start text, s, i, d, e, end text, squared

So, we can substitute the areas of the squares that share side lengths with the triangle for a^2, b^2a  

2

,b  

2

a, squared, comma, b, squared and c^2c  

2

c, squared in the Pythagorean theorem.

Hint #22 / 6

For example, in the diagram above, the area of the square that shares a side with the hypotenuse is 363636 square units. So, c^2=36c  

2

=36c, squared, equals, 36.

Hint #33 / 6

Let's fill in the possible values to see if they make the equation true.

\begin{aligned} a^2 + b^2 &= c^2 \\\\ a^2 + b^2 &= 36 \\\\ 6 + 30 &\stackrel{\large?}{=}36 \\\\ 36 &\stackrel{\checkmark}{=}36\\\\ \end{aligned}  

a  

2

+b  

2

 

a  

2

+b  

2

 

6+30

36

​  

 

=c  

2

 

=36

=

?

36

=

36

​  

 

The sum of the areas of the squares connected to the two shorter triangle sides is equal to the area of the square connected to the longest side.

So, 666 and 303030 could be the areas of the smaller squares.

Hint #44 / 6

\begin{aligned} a^2 + b^2 &= c^2 \\\\ a^2 + b^2 &= 36 \\\\ 8 + 28 &\stackrel{\large?}{=}36 \\\\ 36 &\stackrel{\checkmark}{=}36\\\\ \end{aligned}  

a  

2

+b  

2

 

a  

2

+b  

2

 

8+28

36

​  

 

=c  

2

 

=36

=

?

36

=

36

​  

 

The sum of the areas of the squares connected to the two shorter triangle sides is equal to the area of the square connected to the longest side.

So, 888 and 282828 could be the areas of the smaller squares.

Hint #55 / 6

\begin{aligned} a^2 + b^2 &= c^2 \\\\ a^2 + b^2 &= 36 \\\\ 4 + 16 &\stackrel{\large?}{=}36 \\\\ 20 &\neq 36\\\\ \end{aligned}  

a  

2

+b  

2

 

a  

2

+b  

2

 

4+16

20

​  

 

=c  

2

 

=36

=

?

36

​  

=36

​  

 

The sum of the areas of the squares connected to the two shorter triangle sides is not equal to the area of the square connected to the longest side.

So, 444 and 161616 could not be the areas of the smaller squares.

Hint #66 / 6

The area of the smaller squares could be:

666 and 303030

888 and 2828

helpppp with this will give bralienst but need hurry

Answers

Answer:

20.25is how much each friend gets.

Step-by-step explanation:

40.50/2 = 20.25

You have to divide by 2. This way both of the people will get the same amount of money.

Answer:

each friend will get

Step-by-step explanation:

20 .25

as 40 .50 ÷ 2 = 20 .25

hope this helps

pls can u heart and like and give my answer brainliest pls i beg u thx !!! : )

A rectangle is 2 inches longer than it is wide. Numerically, its area exceeds its perimeter by 20. Find the perimeter. ____________________ in

Answers

Answer:28

Step-by-step explanation: 6 x 8 = 48 6+6+8+8=28

The perimeter of rectangle is 28 inches

What is Perimeter of rectangle?

The formula used to calculate the perimeter of a rectangle is, perimeter of a rectangle = 2(l + w), where 'l' is the length and 'w' is the width of the rectangle.

For example

The length of a bedsheet is 120 inches and the width is 85 inches. How much lace will be needed to put around its border?

Given, length = 120 inches; width = 85 inches.

Perimeter of a rectangle = 2(l + w).

On substituting the values of length and width in this formula, we get,

Perimeter = 2(l + w) = 2(120 + 85)= 2 × 205 = 410 inches.

Let he breadth be x

length= x+ 2

Area= Perimeter + 20

x² + 2x =  4x+ 4 + 20

x² - 2x -24  =  0

x² - 2x -24  =  0

(x- 6) (x+ 4)=0

x= 6, -4

So, length= 8 inches and breadth = 6 inches.

Hence, the Perimeter of rectangle= 2( 8 +6)= 2*14= 28 inches

Learn more about perimeter of rectangle here:

https://brainly.com/question/15287805

#SPJ2

the domain of u(x) is the set of all real values except 0 and the domain of v(x) is the set of all real values excpet 2. what are the restrictions on the domain of (u•v)(x)?

Answers

Answer:

[tex](-\infty, 0) \cup (0,2) \cup (2,\infty)[/tex]

Step-by-step explanation:

Remember that the domain of the product of functions is the intersection of domains, therefore when you intercept them you get the following interval.

[tex](-\infty, 0) \cup (0,2) \cup (2,\infty)[/tex]

what is 328.1 × 0.63 what answer

Answers

Answer:206.703

Step-by-step explanation: you have to multiply 328.1 times 0.63 then you get your answer.

Answer:

206.703

Step-by-step explanation:

328.1 × 0.63=206.703

Solve for x −ax + 2b > 8

Answers

Answer:

x < -( 8-2b) /a  a > 0

Step-by-step explanation:

−ax + 2b > 8

Subtract 2b from each side

−ax + 2b-2b > 8-2b

-ax > 8 -2b

Divide each side by -a, remembering to flip the inequality ( assuming a>0)

-ax/-a < ( 8-2b) /-a

x < -( 8-2b) /a  a > 0

Answer: [tex]x<\frac{-8+2b}{a}[/tex]

                  [tex]a>0[/tex]

Step-by-step explanation:

[tex]-ax+2b>8[/tex]

[tex]\mathrm{Subtract\:}2b\mathrm{\:from\:both\:sides}[/tex]

[tex]-ax>8-2b[/tex]

[tex]\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}[/tex]

[tex]\left(-ax\right)\left(-1\right)<8\left(-1\right)-2b\left(-1\right)[/tex]

[tex]ax<-8+2b[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}a[/tex]

[tex]\frac{ax}{a}<-\frac{8}{a}+\frac{2b}{a};\quad \:a>0[/tex]

[tex]x<\frac{-8+2b}{a};\quad \:a>0[/tex]

A shoes store sells three categories of shoes, Athletics, Boots and Dress shoes. The categories are stocked in the ratio of 5 to 2 to 3. If the store has 70 pairs of boots, how many shoes do they have in total?

Answers

Answer:

350 pairs

Step-by-step explanation:

If the ratio of Athletics, Boots, and Dress shoes is 5 to 2 to 3, it means that for every 2 pairs of Boots they have 5 pairs of Athletics shoes and 3 pairs of dress shoes.

So, if they have 70 pairs of boots, we can calculate the number of Athletics as:

[tex]\frac{5*70}{2} =175[/tex]

And if they have 70 pairs of boots, the number of dress shoes are:

[tex]\frac{3*70}{2}=105[/tex]

Finally, they have 70 pairs of boots, 175 pairs of athletics, and 105 pairs of dress shoes. It means that they have 350 pairs in total.

70 + 175 + 105 = 350

Albert's Cafe uses 5 bags of coffee every day. How many days will 5/8 of a bag of coffee last?

Answers

Answer:

1 day.

Step-by-step explanation:

Given:

Albert's cafe uses 5 bags of coffee every day.

Required:

How many days will 5/8 bag of coffee last?

'How many days will 5/8 bag of coffee last?'

In this sentence we can see that there are 8 bags of coffee. The question in other words is Albert's Cafe is using 5 bags of coffee out of the 8 bags of coffee, and how many days will these last.

In the given we can see that the Cafe uses 5 bags of coffee per day, so the answer is 1 day.

Hope this helps ;) ❤❤❤

Graph the solution for the following linear inequality system. Click on the graph until the final result is displayed.
x+y>0
x + y +5<0

Answers

Answer:

Step-by-step explanation:

x+y>0, x>0, when y=0

x+y<-5 x<-5 when y=0

since the sign is only< then it is dotted line, and since one is greater and is less than they actually do not intersect

Answer:

No solution with slanted lines

Step-by-step explanation:

The current particulate standard for diesel car emission is .6g/mi. It is hoped that a new engine design has reduced the emissions to a level below this standard. Set up the appropriate null and alternative hypotheses for confirming that the new engine has a mean emission level below the current standard. Discuss the practical consequences of making a Type I and a Type II error. (continue #5) A sample of 64 engines tested yields a mean emission level of = .5 g/mi. Assume that σ = .4. Find the p-value of the test. Do you think that H0 should be rejected? Explain. To what type of error are you now subject?

Answers

Answer:

Step-by-step explanation:

From the summary of the given statistics;

The null and the alternative hypothesis for confirming that the new engine has a mean emission level below the current standard can be computed as follows:

Null hypothesis:

[tex]H_0: \mu = 0.60[/tex]

Alternative hypothesis:

[tex]H_a: \mu < 0.60[/tex]

Type I  error: Here, the null hypothesis which is the new engine has a mean level equal to  .6g/ml is rejected when it is true.

Type II error:  Here, the alternative hypothesis which is the new engine has a mean level less than.6g/ml is rejected when it is true.

Similarly;

From , A sample of 64 engines tested yields a mean emission level of = .5 g/mi. Assume that σ = .4.

Sample size n = 64

sample mean [tex]\overline x[/tex] = .5 g/ml

standard deviation σ = .4

From above, the normal standard test statistics can be determined by using the formula:

[tex]z = \dfrac{\bar x- \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

[tex]z = \dfrac{0.5- 0.6}{\dfrac{0.4}{\sqrt{64}}}[/tex]

[tex]z = \dfrac{-0.1}{\dfrac{0.4}{8}}[/tex]

z = -2.00

The p-value = P(Z ≤ -2.00)

From the normal z distribution table

P -value = 0.0228

Decision Rule: At level of significance ∝ = 0.05, If P value is less than or equal to level of significance ∝ , we reject the null hypothesis.

Conclusion: SInce the p-value is less than the level of significance , we reject the null hypothesis. Therefore, we can conclude that there is enough evidence that a new engine design has reduced the emissions to a level below this standard.

Laura wants to place one flower every 3/4 meters along the path from the gate to the main entrance of her home. The path is 12 meters long. How many flowerpots will she need?

Answers

Answer:

16 flowerpots

Step-by-step explanation:

12 divided by 3/4=16

There are three points on a line, A, B, and C, so that AB = 12 cm, BC = 13.5 cm. Find the length of the segment AC . Give all possible answers.

Answers

Answer:

AC = 25.5 or 1.5

Step-by-step explanation:

If they are on a line and they are in the order ABC

AB + BC = AC

12+13.5 = AC

25.5 = AC

If they are on a line and they are in the order CAB

CA + AB = BC

AC + 12 =13.5

AC = 13.5 -12

AC = 1.5

If they are on a line and they are in the order ACB

That would mean that AB is greater than BC and that is not the case

A photoconductor film is manufactured at a nominal thickness of 25 mils. The product engineer wishes to increase the mean speed of the film and believes that this can be achieved by reducing the thickness of the film to 20 mils. Eight samples of each film thickness are manufactured in a pilot production process, and the film speed (in microjoules per square inch) is measured. For the 25-mil film, the sample data result is: Mean Standard deviation 1.15 0.11 For the 20-mil film the data yield: Mean Standard deviation 1.06 0.09 *Note: An increase in film speed would lower the value of the observation in microjoules per square inch. We may also assume the speeds of the film follow a normal distribution. Use this information to construct a 98% interval estimate for the difference in mean speed of the films. Does decreasing the thickness of the film increase the speed of the film?

Answers

Answer:

A 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].

Step-by-step explanation:

We are given that Eight samples of each film thickness are manufactured in a pilot production process, and the film speed (in microjoules per square inch) is measured.

For the 25-mil film, the sample data result is: Mean Standard deviation 1.15 0.11 and For the 20-mil film the data yield: Mean Standard deviation 1.06 0.09.

Firstly, the pivotal quantity for finding the confidence interval for the difference in population mean is given by;

                     P.Q.  =  [tex]\frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex]  ~  [tex]t__n_1_+_n_2_-_2[/tex]

where, [tex]\bar X_1[/tex] = sample mean speed for the 25-mil film = 1.15

[tex]\bar X_1[/tex] = sample mean speed for the 20-mil film = 1.06

[tex]s_1[/tex] = sample standard deviation for the 25-mil film = 0.11

[tex]s_2[/tex] = sample standard deviation for the 20-mil film = 0.09

[tex]n_1[/tex] = sample of 25-mil film = 8

[tex]n_2[/tex] = sample of 20-mil film = 8

[tex]\mu_1[/tex] = population mean speed for the 25-mil film

[tex]\mu_2[/tex] = population mean speed for the 20-mil film

Also,  [tex]s_p =\sqrt{\frac{(n_1-1)s_1^{2}+ (n_2-1)s_2^{2}}{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(8-1)\times 0.11^{2}+ (8-1)\times 0.09^{2}}{8+8-2} }[/tex] = 0.1005

Here for constructing a 98% confidence interval we have used a Two-sample t-test statistics because we don't know about population standard deviations.

So, 98% confidence interval for the difference in population means, ([tex]\mu_1-\mu_2[/tex]) is;

P(-2.624 < [tex]t_1_4[/tex] < 2.624) = 0.98  {As the critical value of t at 14 degrees of

                                             freedom are -2.624 & 2.624 with P = 1%}  

P(-2.624 < [tex]\frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < 2.624) = 0.98

P( [tex]-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < [tex]2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] <  ) = 0.98

P( [tex](\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < ([tex]\mu_1-\mu_2[/tex]) < [tex](\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ) = 0.98

98% confidence interval for ([tex]\mu_1-\mu_2[/tex]) = [ [tex](\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] , [tex](\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ]

= [ [tex](1.15-1.06)-2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } }[/tex] , [tex](1.15-1.06)+2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } }[/tex] ]

 = [-0.042, 0.222]

Therefore, a 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].

Since the above interval contains 0; this means that decreasing the thickness of the film doesn't increase the speed of the film.

as a sales person at Trending Card Unlimited, Justin receives a monthly base pay plus commission on all that he sells. If he sells $400 worth of merchandise in one month, he is paid $500. If he sells $700 worth of merchandise in one month, he is paid $575. Find justin's salary if he sells $2500 worth of merchandise

Answers

Answer:

  $1025

Step-by-step explanation:

We can use the 2-point form of the equation of a line to write a function that gives Justin's salary as a function of his sales.

We start with (sales, salary) = (400, 500) and (700, 575)

__

The 2-point form of the equation of a line is ...

  y = (y2 -y1)/(x2 -x1)(x -x1) +y1

  salary = (575 -500)/(700 -400)(sales -400) +500

  salary = 75/300(sales -400) +500

For sales of 2500, this will be ...

  salary = (1/4)(2500 -400) +500 = (2100/4) +500 = 1025

Justin's salary after selling $2500 in merchandise is $1025.

ANSWER FAST PLEASE HELP

Answers

Answer:

see below

Step-by-step explanation:

Because two sides are congruent, the triangle in the diagram is isosceles which means that angle c = angle e because of the Base Angles Theorem. We know that angle c = 63 degrees because we see that it's vertical to a 63 degree angle, and vertical angles. Since angle c = angle e, angle e = 63 degrees. Since angles e and b form a linear pair, they are supplementary, meaning that they add up to 180 degrees which means that angle b = 180 - 63 = 117 degrees. To find angle d, we notice that d and c are alternate interior angles, and since these angles are congruent in parallel lines, angle d = 63 degrees as well. To find angle a, we know that the sum of angles in a triangle is 180 degrees so angle a = 180 - 63 - 63 = 54 degrees.

See in the attachment.

The bar graph below shows trends in several economic indicators over the period . Over the​ six-year period, about what was the highest consumer price​ index, and when did it​ occur? Need help with both questions!

Answers

Please answer answer question answer answer me please answer answer please please thank lord lord thank lord please please thank you lord lord thank you please thank lord please thank

in science class savannah measures the temperature of a liquid to be 34 celsius. her teacher wants her to convert the temperature to degrees fahrenheit. what is the temperature of savannah's liquid to the nearest degress fahrenheit

Answers

93.2 degrees fahrenheit

A political action committee is interested in the proportion of all registered voters who will vote "Yes" on a measure to expand the use of solar energy. Match the vocabulary word with its corresponding example.


__________The proportion of registered voters who will vote Yes on the measure.

__________The 1000 registered voters who participated in the study.

__________The proportion of the 1000 registered voters that were surveyed who will vote Yes on the measure.

_________Yes or No for each registered voter All registered voters in the US

_________The list of Yes and No answers that were given by the 1000 participants in the study


a. Sample

b. Statistic

c. Parameter

d. Data

e. Variable

f. Population

Answers

Answer: parameter: The proportion of registered voters who will vote Yes on the measure.

Sample: The 1000 registered voters who participated in the study.

Statistic: The proportion of the 1000 registered voters that were surveyed who will vote Yes on the measure.

Variable: Yes or No for each registered voter

Population: All registered voters in the US

Data: The list of Yes and No answers that were given by the 1000 participants in the study.

Step-by-step explanation:

Definitions of the given terms:

Population: Large groups of individuals having similar characteristics as per the researcher's point of view.Sample: It is a subset of the population used to represent it.Parameter: Measure of particular characteristics in the population. Statistic: Measure of particular characteristics in the sample.Variable: Characteristics that vary.Data: A collected information facts and statistics.

Hence, by using the above definitions, we have

Parameter: The proportion of registered voters who will vote Yes on the measure.Sample: The 1000 registered voters who participated in the study. Statistic: The proportion of the 1000 registered voters that were surveyed who will vote Yes on the measure.Variable: Yes or No for each registered voter.Population: All registered voters in the US. Data: The list of Yes and No answers that were given by the 1000 participants in the study.

Write the following exponential expression in expanded form 28 to the 6th power. Enter your answer in the following format a • a• a

Answers

Answer:

  28 • 28 • 28 • 28 • 28 • 28

Step-by-step explanation:

The exponent signifies the number of times the base appears as a factor in the product. Here, the base 28 is a factor 6 times:

  28×28×28×28×28×28

Help me!!! please!!! ​

Answers

Answer:

a) The five ordered pairs are:-

(1,60) , (2,120) , (3,180) , (4,240) , (5,300)

b)When You divide the y value by x value for each ordered pair u find the slope.

c)The graph shows a proportional relationship.Because as x-value increases so does y-value.

d)Y=mx+b-->  Y=60x (No y-intercept because it starts from 0)

e)If a person hiked for 9 hours then the distance would be 540. Because If u plug in the number of hours in the x value of the equatione then u will get 540. Here's the work:-

Y=60(9)

Y=540

Step-by-step explanation:

Hope it helps u. And if u get it right pls give me brainliest.

In an isolated environment, a disease spreads at a rate proportional to the product of the infected and non-infected populations. Let I(t) denote the number of infected individuals. Suppose that the total population is 2000, the proportionality constant is 0.0001, and that 1% of the population is infected at time t-0, write down the intial value problem and the solution I(t).
dI/dt =
1(0) =
I(t) =
symbolic formatting help

Answers

Answer:

dI/dt = 0.0001(2000 - I)I

I(0) = 20

[tex]I(t)=\frac{2000}{1+99e^{-0.2t}}[/tex]

Step-by-step explanation:

It is given in the question that the rate of spread of the disease is proportional to the product of the non infected and the infected population.

Also given I(t) is the number of the infected individual at a time t.

[tex]\frac{dI}{dt}\propto \textup{ the product of the infected and the non infected populations}[/tex]

Given total population is 2000. So the non infected population = 2000 - I.

[tex]\frac{dI}{dt}\propto (2000-I)I\\\frac{dI}{dt}=k (2000-I)I, \ \textup{ k is proportionality constant.}\\\textup{Since}\ k = 0.0001\\ \therefore \frac{dI}{dt}=0.0001 (2000-I)I[/tex]

Now, I(0) is the number of infected persons at time t = 0.

So, I(0) = 1% of 2000

            = 20

Now, we have dI/dt = 0.0001(2000 - I)I  and  I(0) = 20

[tex]\frac{dI}{dt}=0.0001(2000-I)I\\\frac{dI}{(2000-I)I}=0.0001 dt\\\left ( \frac{1}{2000I}-\frac{1}{2000(I-2000)} \right )dI=0.0001dt\\\frac{dI}{2000I}-\frac{dI}{2000(I-2000)}=0.0001dt\\\textup{Integrating we get},\\\frac{lnI}{2000}-\frac{ln(I-2000)}{2000}=0.0001t+k \ \ \ (k \text{ is constant})\\ln\left ( \frac{I}{I-222} \right )=0.2t+2000k[/tex]

[tex]\frac{I}{I-2000}=Ae^{0.2t}\\\frac{I-2000}{I}=Be^{-0.2t}\\\frac{2000}{I}=1-Be^{-0.2t}\\I(t)=\frac{2000}{1-Be^{-0.2t}}\textup{Now we have}, I(0)=20\\\frac{2000}{1-B}=20\\\frac{100}{1-B}=1\\B=-99\\ \therefore I(t)=\frac{2000}{1+99e^{-0.2t}}[/tex]

The required expressions are presented below:

Differential equation

[tex]\frac{dI}{dt} = 0.0001\cdot I\cdot (2000-I)[/tex] [tex]\blacksquare[/tex]

Initial value

[tex]I(0) = \frac{1}{100}[/tex] [tex]\blacksquare[/tex]

Solution of the differential equation

[tex]I(t) = \frac{20\cdot e^{\frac{t}{5} }}{1+20\cdot e^{\frac{t}{5} }}[/tex] [tex]\blacksquare[/tex]

Analysis of an ordinary differential equation for the spread of a disease in an isolated population

After reading the statement, we obtain the following differential equation:

[tex]\frac{dI}{dt} = k\cdot I\cdot (n-I)[/tex] (1)

Where:

[tex]k[/tex] - Proportionality constant[tex]I[/tex] - Number of infected individuals[tex]n[/tex] - Total population[tex]\frac{dI}{dt}[/tex] - Rate of change of the infected population.

Then, we solve the expression by variable separation and partial fraction integration:

[tex]\frac{1}{k} \int {\frac{dI}{I\cdot (n-I)} } = \int {dt}[/tex]

[tex]\frac{1}{k\cdot n} \int {\frac{dl}{l} } + \frac{1}{kn}\int {\frac{dI}{n-I} } = \int {dt}[/tex]

[tex]\frac{1}{k\cdot n} \cdot \ln |I| -\frac{1}{k\cdot n}\cdot \ln|n-I| = t + C[/tex]

[tex]\frac{1}{k\cdot n}\cdot \ln \left|\frac{I}{n-I} \right| = C\cdot e^{k\cdot n \cdot t}[/tex]

[tex]I(t) = \frac{n\cdot C\cdot e^{k\cdot n\cdot t}}{1+C\cdot e^{k\cdot n \cdot t}}[/tex], where [tex]C = \frac{I_{o}}{n}[/tex] (2, 3)

Note - Please notice that [tex]I_{o}[/tex] is the initial infected population.

If we know that [tex]n = 2000[/tex], [tex]k = 0.0001[/tex] and [tex]I_{o} = 20[/tex], then we have the following set of expressions:

Differential equation

[tex]\frac{dI}{dt} = 0.0001\cdot I\cdot (2000-I)[/tex] [tex]\blacksquare[/tex]

Initial value

[tex]I(0) = \frac{1}{100}[/tex] [tex]\blacksquare[/tex]

Solution of the differential equation

[tex]I(t) = \frac{20\cdot e^{\frac{t}{5} }}{1+20\cdot e^{\frac{t}{5} }}[/tex] [tex]\blacksquare[/tex]

To learn more on differential equations, we kindly invite to check this verified question: https://brainly.com/question/1164377

James runs on the school track team he runs 4 2/3 miles and 3/4 of an hour. What is James' speed in miles per hour?

Answers

Answer:

6 2/9 miles per hour

Step-by-step explanation:

Take the miles and divide by the hours

4 2/3 ÷ 3/4

Change to an improper fraction

( 3*4+2)/3 ÷3/4

14/3 ÷3/4

Copy dot flip

14/3 * 4/3

56/9

Change back to a mixed number

9 goes into 56  6 times with 2 left over

6 2/9 miles per hour

Answer:

6 2/9 miles per hour

Step-by-step explanation:

Divide the miles by the hour.

4 2/3 ÷ 3/4

Reciprocal

4 2/3 × 4/3

Convert to improper fraction.

14/3 × 4/3

56/9

Convert to mixed fraction.

9 × 6 + 2

6 2/9

Edgar accumulated $5,000 in credit card debt. If the interest rate is 20% per year and he does not make any payments for 2 years, how much will he owe on this debt in 2 years by compounding continuously? Round to the nearest cent.

Answers

Answer:

$7200

Step-by-step explanation:

The interest rate on $5,000 accumulated by Edgar is 20%.

He does not make any payment for 2 years and the interests are compounded continuously.

The amount of money he owes after 2 years is the original $5000 and the interest that would have accumulated after 2 years.

The formula for compound amount is:

[tex]A = P(1 + R)^T[/tex]

where P = amount borrowed = $5000

R = interest rate = 20%

T = amount of time = 2 years

Therefore, the amount he will owe on his debt is:

[tex]A = 5000 (1 + 20/100)^2\\\\A = 5000(1 + 0.2)^2\\\\A = 5000(1.2)^2\\[/tex]

A = $7200

After 2 years, he will owe $7200

Answer:7,434.57

Explanation: A= 5000(1+0.2/12)^12•2

One positive integer is 6 less than twice another. The sum of their squares is 801. Find the integers

Answers

Answer:

[tex]\large \boxed{\sf 15 \ \ and \ \ 24 \ \ }[/tex]

Step-by-step explanation:

Hello,

We can write the following, x being the second number.

[tex](2x-6)^2+x^2=801\\\\6^2-2\cdot 6 \cdot 2x + (2x)^2+x^2=801\\\\36-24x+4x^2+x^2=801\\\\5x^2-24x+36-801=0\\\\5x^2-24x-765=0\\\\[/tex]

Let's use the discriminant.

[tex]\Delta=b^4-4ac=24^2+4*5*765=15876=126^2[/tex]

There are two solutions and the positive one is

[tex]\dfrac{-b+\sqrt{b^2-4ac}}{2a}=\dfrac{24+126}{10}=\dfrac{150}{10}=15[/tex]

So the solutions are 15 and 15*2-6 = 30-6 = 24

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

1. There are a total of 230 mint and chocolate sweets in a jar. 60% of the total number of sweets were mint sweets. After more chocolate sweets were added into the jar, the percentage of the mint sweets in the jar decreased to 40% How many chocolate sweets were added into the jar?
2. In August, 36% of the people who visited the zoo were locals and the rest were foreigners. In September, the percentage of local visitors decreased by 25% while the percentage of foreign participants increased by 50%. In the end, there were 161 fewer visitors in August than in September. How many visitors were there in September?

Answers

Answer:

1. 115 chocolates were added

2. 861 visitors in September

Step-by-step explanation:

1.

Initially:

m=number of mints

60% of 230 sweets were mints  =>

m = 230*0.6 = 138 mints

initial number of chocolates, c1  =  230 - 138 = 92

Now chocolates were added

138 mints represented 40% of the total number of sweets, so

total number of sweets  = 138 / 0.4 = 345

Number of chocolates added = 345 - 230 = 115

2.

In August 36% were locals, 64% were from elsewhere.

In suptember,

locals decreassed by 25% to 36*0.75=27% (of August total)

foreigner increased by 50% to 64*1.5=96% (of August total)

Total Inrease = 96+27-100 = 23% of August total  = 161 visitors

August total = 161/0.23 = 700 visitors

September total = 700 + 161 = 861 visitors

4
Consider the following equation.
-)* + 12 = 25 – 3
Approximate the solution to the equation above using three iterations of successive approximation. Use the graph below as a starting point.
12
X
12
A I=
33
Edmentum. All rights reserved.

Answers

The answer would have to be 12

The solution to the equation above using three iterations of successive approximation is x = 25/16

What is an equation solution?

The solution of an equation is the true values of the equation

The equation is given as:

[tex]5^{-x} + 7 =2x + 4[/tex]

Equate to 0

[tex]5^{-x} + 7 -2x - 4 = 0[/tex]

Write the equation as a function

[tex]f(x) = 5^{-x} + 7 -2x - 4[/tex]

The equation has a solution only when the function f(x) equals 0.

From the graph, we have:

x = 1.5

So, we have:

[tex]f(1.5) = 5^{-1.5} + 7 -2*1.5 - 4[/tex]

Evaluate

f(1.5) = 0.089

Set x to 1.52 to determine a closer value of f(x) to 0.

[tex]f(1.52) = 5^{-1.52} + 7 -2*1.52 - 4[/tex]

Evaluate

f(1.52) = 0.047

Set x to 1.54 to determine a closer value of f(x) to 0.

[tex]f(1.54) = 5^{-1.54} + 7 -2*1.54 - 4[/tex]

Evaluate

f(1.54) = 0.004

Notice that 0.004 is closer to 0 than 0.047 and 0.089

The closest value to 1.54 is 25/16 in the given options

Hence, the solution to the equation above using three iterations of successive approximation is x = 25/16

Read more about equation solutions at:

https://brainly.com/question/14174902

#SPJ2

What is the length of in the right triangle below?



A.
120

B.


C.


D.
218

Answers

Answer:

b. sqrt(120)

Step-by-step explanation:

a^2+b^2=c^2

a^2+7^2=13^2

13^2-7^2=a^2

120=a^2

sqrt(120)=a

This is using Pythagorean theorem

According to Pew Research, 64% of American believe that fake news causes a great deal of confusion.Twenty Americans are selected at random.

Answers

True or false ? TRUE
Other Questions
29. Which alcohol combines with carboxylic acid to produce the ester called ethyl butanoate?A) butan-2-olB) propan-1-olC) butan-1-olD) ethanol g When a 2.75g sample of liquid octane (C8H18) is burned in a bomb calorimeter, the temperature of the calorimeter rises from 22.0 C to 41.5 C. The heat capacity of the calorimeter, measured in a separate experiment, is 6.18 kJ/C. Determine the E for octane combustion in units of kJ/mol octane. Fredo has a coupon for $1.00 off the price of a loaf of bread at the grocery store.After he arrived at the store,he found out the bread had already been marked down $2.00.what is the total discount on the price of the bread. How did Theodore Roosevelt affect the progressive movement?(A) He weakened the progressive movement because he was unable to control the conservative wing of theRepublican party.(B) He weakened the progressive movement because he was a Republican.(C) He strengthened the progressive movement by making major changes that fit the progressive agenda.(D)He strengthened the progressive movement by ensuring that his presidency would be followed byanother progressive president, Woodrow Wilson. Sosa Company reported net income of $190,000 for 2017. Sosa Company also reported depreciation expense of $35,000 and a loss of $5,000 on the disposal of plant assets. The comparative balance sheets show an increase in accounts receivable of $15,000 for the year, a $17,000 increase in accounts payable, and a $4,000 increase in prepaid expenses.Prepare the operating activities section of the statement of cash flows for 2017. Use the indirect method. Green plants use light from the Sun to drive photosynthesis. Photosynthesis is a chemical reaction in which water and carbon dioxide chemically react to form the simple sugar glucose and oxygen gas . What mass of simple sugar glucose is produced by the reaction of 4.9 of carbon dioxide? Match each phrase with the element it reveals.the city of Chicago, 2014a boy and a man, both ambitiousrivals in a dangerous game Please amswere my school is due tommorow and i meed some help Which part of the excerpt contains a simile A. I saw that my mother had outdone herself in creating a strange menu B. A slimy rock cod with bulging fish eyes that pleaded C. Tofu, which looked like stacked wedges of rubbery white sponges What food was received in the temperature danger zone Simplify (8j3 10j2 7) (6j3 10j2 j + 12). Help please someone I have solved this multiple times factoring out the quadratic equations and I keep getting m as -1. But the correct answer says m is -5. Write a letter to the Editor of National Herald, New Delhi about water scarcity in your locality suggesting ways to improve the position of water supply. You are Ramnath of Ghaziabad. A point charge +Q is located on the x axis at x = a, and a second point charge Q is located on the x axis at x = a. A Gaussian surface with radius r = 2a is centered at the origin. The flux through this Gaussian surface is Add(5x^4+ 2x^3 1)+(3x 3x + 3) Logan Chivery owns her own car. Her june monthly interest was $300. The rate is 8 1/2 percent. Logans principal balance at the beginning of June is $42,335.14. Solve the system algebraically. 2x+ y - 10 = 0 x - y - 4 = 0 What is the value of y? 1/3 2/3 14/3 please hellppp please someone help me fast At each calendar year-end, Mazie Supply Co. uses the percent of accounts receivable method to estimate bad debts. On December 31, 2017, it has outstanding accounts receivable of $55,000, and it estimates that 2% will be uncollectible. Prepare the adjusting entry to record bad debts expense for year 2017 under the assumption that the Allowance for Doubtful Accounts has: (a) a $415 credit balance before the adjustment. (b) a $291 debit balance before the adjustment. Suppose there is 1.00 L of an aqueous buffer containing 60.0 mmol of formic acid (pKa=3.74) and 40.0 mmol of formate. Calculate the pH of this buffer.