Answer:
x = -6 x = -1
Step-by-step explanation:
We want to solve using the zero product property
x^2+7x=-6
Add 6 to each side
x^2 +7x +6 = 0
Factor
What 2 numbers multiply to 6 and add to 7
( x+6) (x+1) =0
Using the zero product property
x+6 =0 x+1 =0
x+6-6 =0-6 x+1-1 = 0-1
x = -6 x = -1
Find the measure of AngleJ, the smallest angle in a triangle with sides measuring 11, 13, and 19. Round to the nearest whole degree. 30° 34° 42° 47°
Answer:
34°
Step-by-step explanation:
The law of cosines is good for finding angles when only sides are known. We'll use the conventional sides a, b, c, and angles A, B, C. Yes, we know the problem statement calls the smallest angle "J". We trust you can make the translation.
a² = b² +c² -2bc·cos(A) . . . . . for sides a, b, c and angle A
Solving for the angle, we get ...
A = arccos((b² +c² -a²)/(2bc))
Filling in the numbers with "a" being the shortest side, we have ...
A = arccos((13² +19² -11²)/(2·13·19)) = arccos(409/494)
A ≈ 34.113°
The smallest angle, ∠J, is about 34°.
Answer:
b
Step-by-step explanation:
Solve the equation in the interval from 270° to 810°
Your answer should be in degrees
cos(x)=1
Choose all answers that apply
A. 0°
B.90°
C.360°
D.540°
E. 720°
F.1080°
Answer:
the answer should be C,E please give brainliest
Step-by-step explanation
Answer:
C. 360
E. 720
Step-by-step explanation:
note: 2pi radians = 360 degrees.
Cos(x) = 1 whenever x = 2k pi where k is an integer, thus
This translates to
cos(x) = 1 when x=0, 360, 720, 1080, ... degrees.
Between 270 and 810, the angles that satisfy cos(x) = 1 are
360 and 720.
So choose C and E
An electronics company designed a cardboard box for its new line of air purifiers. The figure shows the dimensions of the box.
The amount of cardboard required to make one box is___square inches.
a)130
b)111
c)109
d)84
Answer:
130
Step-by-step explanation:
just did test on plato/edmentum..it was correct
84 (the answer above) is incorrect
Answer:
Hi sorry for late respond but the answer in 130!!
Step-by-step explanation:
A researcher wants to obtain a sample of 30 preschool children consisting of 10 two-year-old children, 10 three-year-old, and 10 four-year-old children. Assuming that the children are obtained only from local daycare centers, this researcher should use ____ sampling.` Cluster probability quota simple random stratified random
Answer:
Quota Sampling
Step-by-step explanation:
Quota Sampling is a non-probability sampling method in research, where the researcher forms subgroups of individuals who are representative of the entire population through random selection. Quota sampling is often used by researchers who want to get an accurate representation of the entire population. It saves time and money especially if accurate samples are used.
In the example given above, where the research creates subgroups of 30 pre-school children by dividing them into 10 two-year-old children, 10 three-year-old, and 10 four-year-old children, he has applied the quota sampling. These subgroups would give a proper representation of the preschool children in local daycare centers.
Manuela solved the equation 3−2|0.5x+1.5|=2 for one solution. Her work is shown below.
3−2|0.5x+1.5|=2
−2|0.5x+1.5|=−1
|0.5x+1.5|=0.5
0.5x+1.5=0.5
0.5x=−1
x=−2
What is the other solution to the equation?
x=−6
x=−4
x=2
x=4
Answer:
X= -4
X=-2
Step-by-step explanation:
for
|a|=b
assume
a=b and a=-b
so
3-2|0.5x+1.5|=-2
minus 3 both sides
-2|0.5x+1.5|=-1
divide both sides by -2
|0.5x+1.5|=0.5
set negative and postivive
0.5x+1.5=0.5 and 0.5x+1.5=-0.5
solve each
0.5x+1.5=0.5
minus 1.5 both sides
0.5x=-1
times - 2 both sides
x=-2
other
0.5x+1.5=-0.5
minus 1.5 from oth sides
0.5x=-2
times 2 both sides
x=-4
the solutions are x=-2 and x=-4
Answer:
x=-4
Step-by-step explanation:
Calculate the area of triangle RST. a = 38.
Answer:
722 √(3) square units
Step-by-step explanation:
Mathematically, the area of a triangle is 1/2 * b * h
But in this question, we have the base which is a while the height is absent
We can use trigonometric ratios since we are given the angle to find the value of the height.
Since we are dealing with the opposite and the adjacent, the correct trigonometric identity to use is the tangent
Mathematically;
Tan 60 = h/a
where h represents the height which we want to calculate
h = a tan 60
But tan 60 = √(3)
So h = a √(3)
Now the area of the triangle will be;
A = 1/2 * a * a √(3)
But a has a value of 38 units.
Substituting this value, we have ;
A = 1/2 * 38 * 38 √(3)
A = 19 * 38√(3)
A = 722 √(3) square units
The equation of the graphed line is 2x – y = –6. A coordinate plane with a line passing through (negative 3, 0) and (0, 6). What is the x-intercept of the graph?
Answer:
A: -3
Step-by-step explanation:
I got it right on my quiz!
If equation of the graphed line is 2x – y = –6 then the x-intercept of the graph is -3.
To find the x-intercept of the graph, we need to determine the x-coordinate where the line intersects the x-axis.
At the x-intercept, the y-coordinate is zero.
Given the equation of the line as 2x - y = -6.
we can substitute y = 0 since it is the y-coordinate at the x-intercept.
2x - 0 = -6
2x = -6
Divide both sides by 2:
x = -6/2
x = -3
Therefore, the x-intercept of the graph is -3.
To learn more on slope intercept form click:
https://brainly.com/question/9682526
#SPJ2
Two cards are selected at random from a standard deck of cards. What is the probability that you select a king or a queen? (If your answer will reduce, you should reduce it.) Also show you're work
Answer:
2/13
Step-by-step explanation:
In a standard deck of cards, there are 52 cards total, 4 kings, and 4 queens.
Probability is calculated by (number of favorable outcomes)/(number of possible outcomes), so our probability would be 8/52, which can be simplified to 2/13.
Hope this helps!
Find the value of this expression if x=3 x^2 + 3/x-1
Answer: 9
Step-by-step explanation:
[tex]3^2 + \frac{3}{3}-1\\\\=9+1-1\\\\=9[/tex]
PLZ HELP!!!!!!
(06.05 MC)
A group of students were surveyed to find out if they like watching television or reading during their free time. The results of the survey are shown below
90 students like watching television
20 students like watching television but do not like reading
80 students like reading
40 students do not like watching television
Make a two-way table to represent the data and use the table to answer the following questions.
Part A: What percentage of the total students surveyed like both watching television and reading? Show your work. (5 points)
Part B: What is the probability that a student who does not like watching television also does not like reading? Explain your answer. (5 points)
Answer:
A: 39.1304348% OR 39%
B: 33.3%
Step-by-step explanation:
Part A:
find the total amount of children: 90+20+80+40=230
90-20=50
i got this from taking away the amount that like watching tv and not reading so from this you know 50 of those 90 that like watching tv also like tv and reading.
80-40=40
(same explanation as 90-20=50)
then do 50 +40 which equals 90
now you need to turn it into a percentage.
90/230=
9/23
=39.1304348%
if you need round it, do so!
Part b:
40+20=60
20/60= 2/6
=1/3
=33.3%
Please factorise the equations in the doc bellow ASAP. please show full working
Answer:
b. x² + 8x + 12 =
1. use the factoring X (see attachment)
2. 6 x 2 = 12; 6 + 2 = 12
3. (x + 6)(x + 2) = 0
4. x = -6, -2
c. x² + 13x + 12 =
1. 12 x 1 = 12; 12 + 1 = 13
2. (x + 12)(x + 1) = 0
3. x = -12, -1
c. x² + x - 12 =
1. 4 · (-3) = -12; 4 - 3 = 1
2. (x +4)(x - 3) = 0
3. x = -4, 3
f. x² + 15x + 36 =
1. 12 x 3 = 36; 12 + 3 = 15
2. (x + 12)(x + 3) = 0
3. x = -12, -3
hope this helps :)
Answer:
b) - (x + 2)(x + 6)
c) - (x + 12)(x + 1)
c) - (x - 3)(x + 4)
f) - (x + 12)(x + 3)
Step-by-step explanation:
Well to factor the given info we need to find the factors.
b)
[tex]x^2 + 8x + 12[/tex]
So 6*2 = 12
6x + 2x = 8x
x*x = x^2
Factored - (x + 2)(x + 6)
c)
[tex]x^2 + 13x + 12[/tex]
Well x*x = x^2
and 12*1 = 12
12x + x = 13x
Factored - (x + 12)(x + 1)
The second c)
[tex]x^2 + x - 12[/tex]
Well x*x = x^2
-3*4 = -12
-3x + 4x = x
Factored - (x - 3)(x + 4)
f)
[tex]x^2 + 15x + 36[/tex]
So x*x = x^2
12*3 = 36
12x + 3x = 15x
Factored - (x + 12)(x + 3)
Thus,
everything factored is (x + 2)(x + 6) , (x + 12)(x + 1) , (x - 3)(x + 4) ,
(x + 12)(x + 3).
Hope this helps :)
What is the vertical height, h?
Answer:
6.2Step-by-step explanation:
s = 10 so ¹/₂s = 5
Pythagorean theorem:
[tex]h^2+(\frac12s)^2=8^2\\\\h^2+5^2=8^2\\\\h^2=64-25\\\\h^2=39\\\\h=\sqrt{39}=6.2449979....\approx6.2[/tex]
Please answer question now what the answer
Answer:
100 degrees
Step-by-step explanation:
360-260=100
Answer:
x=100
Step-by-step explanation:
130+130+x=360
260+x=360
x=100
Have a great and magnificent day
There are 238 juniors at a high school The ratio of boys to girls in the junior class is 3:4. How many juniors are girls?
Answer:
59.5
Step-by-step explanation:
I know there cannot be half a human running around the school, and I don't exactly remember if you round up or down, but there are a total of 238 juniors in the school. you divide 238 by 4. the girls represent one fourth of the juniors, and the boys represent three fourths. thank you, please mark brainliest!
Why is the information in the diagram enough to determine that △LMN ~ △PON using a rotation about point N and a dilation? because both triangles appear to be equilateral because∠MNL and ∠ONP are congruent angles because one pair of congruent corresponding angles is sufficient to determine similar triangles because both triangles appear to be isosceles, ∠MLN ≅ ∠LMN, and ∠NOP ≅ ∠OPN
Answer:
The correct option is;
Because ∠MNL and ∠ONP are congruent angles
Step-by-step explanation:
From the diagram shown in the question, ∠MNL and ∠ONP are vertically opposite angles as they are formed by crossing of the lines LP and MO making them congruent, that is ∠MNL ≅ ∠ONP
Given that two angle of triangle LMN are congruent to two angles of triangle PON , then by the Angle Angle (AA) rule of similarity, triangle LMN and PON are similar.
The information in the diagram enough to determine that △LMN ~ △PON because∠MNL and ∠ONP are congruent angles.
What are Congruent angles?These are referred to angles which have an equal measure. From the diagram ,vertically opposite angles are formed by crossing of the lines LP and MO thus,we can deduce that ∠MNL and ∠ONP are congruent angles.
This means that there is enough information to determine that △LMN ~ △PON using a rotation about point N and a dilation.
Read more about Congruent angles here https://brainly.com/question/1563325
#SPJ2
Solve this application problem using a system of equations: Dan and June mix two kinds of feed for pedigreed dogs. They wish to make 70 pounds of feed worth $0.30 per pound by mixing Feed A worth $0.26 per pound with Feed B worth $0.40 per pound. How many pounds of the cheaper kind should they use in the mix
Answer:
50 pounds
Step-by-step explanation:
Dan and june mix two kind of feed for pedigreed dogs
Feed A worth is $0.26 per pound
Feed B worth is $0.40 per pound
Let x represent the cheaper amount of feed and y the costlier type of feed
x+y= 70..........equation 1
0.26x + 0.40y= 0.30×70
0.26x + 0.40y= 21.........equation 2
From equation 1
x + y= 70
x= 70-y
Substitutes 70-y for x in equation 2
0.26(70-y) + 0.40y= 21
18.2-0.26y+0.40y= 21
18.2+0.14y= 21
0.14y= 21-18.2
0.14y= 2.8
Divide both sides by the coefficient of y which is 0.14
0.14y/0.14= 2.8/0.14
y= 20
Substitute 20 for y in equation 1
x + y= 70
x + 20= 70
x= 70-20
x = 50
Hence Dan and june should use 50 pounds of the cheaper kind in the mix
An electronics store is having a back-to-school sale. Blake is interested in purchasing a new computer, and the one he’s been wanting to buy currently has a manufacturer’s rebate of $100. The store is also offering a 10% discount with a school ID, which Blake carries regularly in his wallet. Part A Suppose f(x) = x − 100 and g(x) = 0.9x. Find (f ∘ g)(x).
Answer:
(f ∘ g)(x) = 0.9x - 100
Step-by-step explanation:
Here in this question, we are interested in calculating (f ∘ g)(x)
From the question, we are given;
f(x) = x -100
g(x) = 0.9x
So (f ∘ g)(x) simply means we shall be representing the x in f(x) with the totality of the value of g(x)
Mathematically, what we are saying is that;
Find (f ∘ g)(x) = 0.9x - 100
27 An old-fashioned bicycle has two differently sized wheels. The circumference of the front wheel is 9 feet larger than the circumference of the back wheel. Thomas biked for a while and, according to his equipment, the front wheel went all the way around 500 times and the smaller wheel went all the way around 1400 times. How far, in feet, did Thomas bike?
Answer:
Half ans is in pic...
now, the circumference of the smaller wheel, will just be C = 2πr, with a radius of "r".
we also know that the large wheel has a circumference that is 9 feet larger than the small one, so, since the small one has a circumference of 2πr, then the large one will have a circumference of 2πr + 9.
after Thomas cycled for a while, the large did 500 revolutions, or times around, whilst the small one did 1400, since it's smaller. On that time, they covered however, the same amount of ground, since they're on the same bike.
The amount covered by the small one in 1400 cycles, is 1400(2πr), that's how much ground it covered.
The amount covered by the large one in 500 cycles, is 500(2πr + 9).
And we know that ground covered, is the same for both, therefore, we also know that 1400(2πr) = 500(2πr + 9).
Refer to the pic for rest...
Hope it helped
Mark BRAINLIEST!
Express the complex number in trigonometric form. 5 - 5i
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
Lets do this step by step.
This is the trigonometric form of a complex number where [tex]|z|[/tex] is the modulus and [tex]0[/tex] is the angle created on the complex plane.
[tex]z = a + bi = |z| (cos ( 0 ) + I sin (0))[/tex]
The modulus of a complex number is the distance from the origin on the complex plane.
[tex]|z| = \sqrt{a^2 + b^2}[/tex] where [tex]z = a + bi[/tex]
Substitute the actual values of a = -5 and b = -5.
[tex]|z| = \sqrt{(-5) ^2 + (-5) ^2}[/tex]
Now Find [tex]|z|[/tex] .
Raise - 5 to the power of 2.
[tex]|z| = \sqrt{25 + (-5) ^2}[/tex]
Raise - 5 to the power of 2.
[tex]|z| = \sqrt{25 + 25}[/tex]
Add 25 and 25.
[tex]|z| = \sqrt{50}[/tex]
Rewrite 50 as 5^2 . 2 .
[tex]|z| = 5\sqrt{2}[/tex]
Pull terms out from under the radical.
[tex]|z| = 5\sqrt{2}[/tex]
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
[tex]0 = arctan (\frac{-5}{-5} )[/tex]
Since inverse tangent of [tex]\frac{-5}{-5}[/tex] produces an angle in the third quadrant, the value of the angle is [tex]\frac{5\pi }{4}[/tex] .
[tex]0 = \frac{5\pi }{4}[/tex]
Substitute the values of [tex]0 = \frac{5\pi }{4}[/tex] and [tex]|z| = 5\sqrt{2}[/tex] .
[tex]5\sqrt{2} ( cos( \frac{5\pi}{4}) + i sin (\frac{5\pi}{4}))[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
The complex number (5 - 5i) in trigonometric form is
5√2 [cos(-π/4) + i sin(-π/4)]
What is an imaginary number?An imaginary number is denoted by i.
The value of i is √-1.
We have,
To express the complex number (5 - 5i) in trigonometric form,
We first need to find its modulus (r) and argument (θ).
The complex number (a - bi) in trigonometric form is
|r| [cosФ + i sinФ]
Now,
Modulus (r).
|r| = √(5² + (-5)²)
= √(50)
= 5√(2)
And,
Argument (θ).
θ = [tex]tan^{-1}[/tex](-5/5)
= -π/4
(since the complex number is in the fourth quadrant)
Therefore,
The complex number (5 - 5i) in trigonometric form is
5√2 [cos(-π/4) + i sin(-π/4)]
Learn more about imaginary numbers here:
https://brainly.com/question/6748860
#SPJ5
What fraction is equal to six-sevenths times eight-fifths?
Answer:
1 13/35 (mixed number) or 48/35 (simplified)
Step-by-step explanation:
6/7 times 8/5
= (6 times 8) / (7 times 5)
= 48/35 or 1 13/35
hope this helped :)
Answer:
48/35
Step-by-step explanation:
6/7*8/5=48/35
Consider the matrix A = \begin{pmatrix} 7 & 9 & -3 \\ 3 & -6 & 5 \\ 4 & 0 & 1 \end{pmatrix} ⎝ ⎛ 7 3 4 9 −6 0 −3 5 1 ⎠ ⎞ . What is the value of minor M_{11}M 11 ? 5 -6 0 -4
Answer:
The value of M₁₁ is -6.
Step-by-step explanation:
The minor, [tex]M_{ij}[/tex] is the determinant of a square matrix, say P, formed by removing the ith row and jth column from the original square matrix, P.
The matrix provided is as follows:
[tex]A=\left[\begin{array}{ccc}7&9&-3\\3&-6&5\\4&0&1\end{array}\right][/tex]
The matrix M₁₁ is:
Remove the 1st row and 1st column to form M₁₁,
[tex]M_{11}=\left|\begin{array}{cc}-6&5\\4&0\end{array}\right|[/tex]
Compute the value of M₁₁ as follows:
[tex]M_{11}=\left|\begin{array}{cc}-6&5\\4&0\end{array}\right|[/tex]
[tex]=(-6\times 1)-(5\times 0)\\\\=-6-0\\=-6[/tex]
Thus, the value of M₁₁ is -6.
A pair of dice is rolled. What is the probability that the sum is 9? a 1/36 b 1/18 c 1/9 d 2/9
Are the following angle relationships possible? Explain.
Answer:
no
Step-by-step explanation:
The 5x+30 is the supplementary angle of the interior one:
180 - 5x - 30 = -5x + 150
Then they have to add up to 180:
4x-9 + 2x+3 -5x + 150 = 180
which simplifies to x = 36
So the angles would be 135, 75 and -30, which is impossible!
Circle C is shown. Radius A has a length of r. In circle C, r = 32 units. What is the area of circle C? 32Pi units squared 64Pi units squared 256Pi units squared 1024Pi units squared
Answer:
A = 1024 pi units^2
Step-by-step explanation:
If r = 32 units, we can find the area
A = pi r^2
A = pi ( 32) ^2
A = 1024 pi units^2
The area of the circle C is 1024π square units.
What is area?Area is the amount of space occupied by a two-dimensional figure.
What is the formula for the area of circle?The formula for the area of circle is given by
[tex]Area = \pi r^{2}[/tex]
Where,
r is the radius of the circle
According to the question.
We have the radius of circle, r = 32 units
Therefore,
The area of the circle C is given by
[tex]Area = \pi (32)^{2}[/tex]
⇒ [tex]Area = 1024\pi[/tex] square units
Hence, the area of the circle C is 1024π square units.
Find out more information about area of circle here:
https://brainly.com/question/16969543
#SPJ3
List the coordinates of FOUR vertices that create the feasible region on the graph. Submit your answer in the form of FOUR ordered Pairs (x, y)
Answer:
see below
Step-by-step explanation:
The feasible region is the shaded area. We just need to find the coordinates of its vertices. These are (200, 200), (300, 0), (500,0) and (300, 200).
The votes for president in a club election were: Smith: 24 Munoz: 32 Park: 20 Find the following ratios and write in simplest form. Votes for Munoz to Smith : Votes for Park to Munoz : Votes for Smith to total votes : Votes for Smith to Munoz to Park
Hey there! I'm happy to help!
VOTES FOR MUNOZ TO SMITH
32:24
We see that both have a common factor of 8, so we can divide both by that.
4:3
This is in simplest form.
VOTES FOR PARK TO MUNOZ
20:32
We see that both have a common factor of 4, so we divide both by that.
5:8
This is completely simplified.
VOTES FOR SMITH TO TOTAL VOTES
24+32+20=76
24:76
We see that both have a common factor of 4, so will divide both by that.
6:19
We cannot simplify any more here.
VOTES FOR SMITH TO MUNOZ TO PARK
24:32:20
We can divide these all by four, so let's do that.
6:8:5
This can't be simplified anymore, so it is in simplest form.
Have a wonderful day! :D
A swimming pool can be emptied in 6 hours using a 10-horsepower pump along with a 6-horsepower pump. The 6-horsepower pump requires 5 hours more than the 10-horsepower pump to empty the pool when working by itself. How long will it take to empty the pool using just the 10-horsepower pump?
Answer: 10 hours
Step-by-step explanation:
The 10hp pump takes x hours to empty the pool which means it gets [tex]\dfrac{1}{x}[/tex] of the job done in one hour.
The 6hp pump takes x+5 hours to empty the pool which means it gets [tex]\dfrac{1}{x+5}[/tex] of the job done in one hour.
Together, they can get [tex]\dfrac{1}{x}+\dfrac{1}{x+5}[/tex] of the job done in one hour.
It is given that together they get the job done in 6 hours which means they get [tex]\dfrac{1}{6}[/tex] of the job done in one hour.
10 hp pump + 6 hp pump = Together
[tex]\dfrac{1}{x}\quad +\quad \dfrac{1}{x+5}\quad =\quad \dfrac{1}{6}[/tex]
Multiply by 6x(x+5) to eliminate the denominator:
[tex]\dfrac{1}{x}(6x)(x+5) +\dfrac{1}{x+5}(6x)(x+5) = \dfrac{1}{6}(6x)(x+5)[/tex]
Simplify and solve for x:
6(x + 5) + 6x = x(x + 5)
6x + 30 + 6x = x² + 5x
12x + 30 = x² + 5x
0 = x² - 7x - 30
0 = (x - 10)(x + 3)
0 = x - 10 0 = x + 3
10 = x -3 = x
Since the number of hours cannot be negative, disregard x = -3.
So, the only valid answer is x = 10.
Mayelle earns $18,000 a year. After a raise, she earns $19,500. What is the percent of increase in pay? Round to the nearest tenth of a percent
Answer:
8.3 %
Step-by-step explanation:
Mayelle earns $18000 per year. Mayelle earning is increased by $19500, to calculate the percentage increase in earnings, we divide the difference between earnings after increase and earnings before increase by the earnings before increase and then multiply the result by 100. The percentage increase is given by:
Increase in pay = (Earnings before increase - earnings after increase) / Earnings before increase × 100%
Increase in pay = ($19500 - $18000)/ $18000 × 100% = 8.3 %
Identifying relationships from diagrams
Answer: <CED is the right angle, which measures 90 degrees. Since the measure of a straight angle is 180 degrees. <CEA must also be 90 degrees by the Definition of Right Angle. A bisector cuts the angle measure in half. m<AEB is 45 degrees.
A certain quantity grows exponentially over time. The initial quantity at t = 0 is 2,000. The quantity
grows by a factor of 20%. What is the quantity at t = 8?
A 0.00512
B. 8,599.63392
C. 10,319.56070
D. 12,383.47284
Answer:
B
Step-by-step explanation:
using the equation y=2000*1.2^8 we can get the exact value of y which aligns with b