Determine the mass of ammonium chloride, NH4Cl, required to prepare 0. 250 L of a 0. 35 M solution of ammonium chloride.

Answers

Answer 1

Answer: 4.7g NH4Cl

Explanation:

First we need to determine how many moles of NH4Cl we have:

0.250Lx0.35M= 0.0875moles

now we can multiply the molar mass of NH4Cl by how many moles we have

NH4Cl has a molar mass of 53.49g/mol

53.49 x 0.0875= 4.68g NH4Cl or 4.7g NH4Cl using 2 sig figs.


Related Questions

a generic salt, ab3, has a molar mass of 305 g/mol and a solubility of 4.30 g/l at 25 °c. ab3(s)↽−−⇀a3 (aq) 3b−(aq) what is the ksp of this salt at 25 °c?

Answers

The dissociation reaction for the salt AB3 is:

AB3(s) ↔ A3+(aq) + 3B-(aq)

Let's assume the solubility of AB3 in water at 25 °C is x mol/L. Then, the equilibrium concentrations of A3+ and B- can be expressed as x and 3x, respectively.

The Ksp expression for AB3 is:

Ksp = [A3+][B-]^3 = x(3x)^3 = 27x^4

The molar mass of AB3 is 305 g/mol, so the number of moles in 4.30 g (the solubility) is:

n = 4.30 g / 305 g/mol = 0.0141 mol/L

Therefore, the solubility of AB3 at 25 °C is:

x = 0.0141 mol/L

Substituting this into the Ksp expression:

Ksp = 27x^4 = 27(0.0141)^4 = 5.6 x 10^-9

Therefore, the Ksp of AB3 at 25 °C is 5.6 x 10^-9.

Visit here to learn more about molar mass brainly.com/question/22997914

#SPJ11

14. Lab Analysis: You forgot to label your chemicals and do not know whether your unknown solution is strontium nitrate or magnesium nitrate. You use the solutions potassium carbonate and potassium sulfate in order to determine your mistake. unknown + potassium carbonate & unknown + potassium sulfate . Write the complete balanced molecular equation(s) below of the reaction(s) that occurred, including the states of matter. HINT: Try writing ALL possible reactions that could have been created, and then decide which reactions actually occurred.

Answers

Unknown + Potassium Carbonate → Potassium Nitrate + Unknown Carbonate

[tex]Sr(NO_3)_2[/tex] + [tex]K_2CO_3[/tex] → [tex]2KNO_3[/tex] + [tex]SrCO_3[/tex] (if the unknown is strontium nitrate)

[tex]Mg(NO_3)_2[/tex]+ [tex]K_2CO_3[/tex] → [tex]2KNO_3[/tex] + [tex]MgCO_3[/tex] (if the unknown is magnesium nitrate)

Here are the balanced molecular equations for the reactions that could have occurred between the unknown solution (either strontium nitrate or magnesium nitrate) and potassium carbonate and potassium sulfate: Unknown + potassium carbonate → potassium nitrate + magnesium or strontium carbonate (depending on the unknown)

Unknown + potassium sulfate → potassium nitrate + magnesium or strontium sulfate (depending on the unknown)

Unknown + Potassium Sulfate → Potassium Nitrate + Unknown Sulfate

[tex]Sr(NO_3)_2[/tex] + [tex]K_2SO_4[/tex] → [tex]2KNO_3[/tex] + [tex]SrSO_4[/tex] (if the unknown is strontium nitrate)

[tex]Mg(NO_3)_2[/tex] + [tex]K_2SO_4[/tex] → [tex]2KNO_3[/tex] + [tex]MgSO_4[/tex] (if the unknown is magnesium nitrate)

To determine which reaction occurred, you would need to observe which products were formed. If [tex]SrCO_3[/tex] or [tex]SrSO_4[/tex] were formed, then the unknown was strontium nitrate.

If [tex]MgCO_3[/tex] or [tex]MgSO_4[/tex] were formed, then the unknown was magnesium nitrate.

For more such questions on magnesium, click on:

https://brainly.com/question/30333465

#SPJ11

C (g) + e (g) <-- --> 2 w (g)
initially, there are 3.5 moles of w placed in a 2.5 l evacuated container. equilibrium is allowed to establish and the value of k = 2.34 e-5 for the reaction under current conditions. determine the concentration of e at equilibrium.

a. [e] = 8.352 e -6
b. [e] = 0.00578
c. [e] = 0.00289
d. cannot solve using 5% approximation rule

Answers

The answer is (d) cannot solve using 5% approximation rule.

The balanced equation for the reaction is:

C(g) + e(g) ⇌ 2W(g)

The equilibrium constant expression is given by:

Kc = [W]^2 / [C][e]

At equilibrium, let's assume that x moles of C react with x moles of e to produce 2x moles of W. Therefore, the equilibrium concentrations are:

[C] = (3.5 - x) mol/L

[e] = (x) mol/L

[W] = (2x) mol/L

Substituting these values :

Kc = [(2x)^2] / [(3.5 - x)(x)]

Simplifying this expression:

4x^2 + 2.34x - 8.19 = 0

Solving this quadratic equation :

x = (-2.34 ± sqrt(2.34^2 - 4(4)(-8.19))) / (2(4))

x = (-2.34 ± 3.64) / 8

We can ignore the negative root as it does not make physical sense. Therefore:

x = 0.4575 mol/L

Thus, the concentration of e at equilibrium is:

[e] = 0.4575 mol/L

Therefore, the answer is (d) cannot solve using 5% approximation rule.

To know more about equilibrium concentrations refer here:

https://brainly.com/question/13043707

#SPJ11

The central atom of a molecule that exceeds the octet rule must come from period ______ or below.

Answers

The central atom of a molecule that exceeds the octet rule must come from period 3 or below.

This is because elements in these periods have empty d-orbitals available for hybridization, which allows them to form more than four covalent bonds and exceed the octet rule.

Examples of such elements include sulfur (S), phosphorus (P), and chlorine (Cl). Elements in higher periods, such as xenon (Xe) and radon (Rn), can also exceed the octet rule but are relatively rare in organic chemistry.

It is important to note that not all atoms follow the octet rule, and some can have fewer than eight electrons in their valence shell due to their unique electronic configurations.

To know more about  octet rule refer to-

https://brainly.com/question/865531

#SPJ11

A 1500. 0 gram piece of wood with a specific heat capacity of 1. 8 g/JxC absorbs 67,500 Joules of heat. If the final temperature of the wood is 57C, what is the initial temperature of the wood? (2 sig figs)

Answers

The equation Q = mcΔT, where Q is the amount of heat absorbed, m is the mass of the object, c is the specific heat capacity of the object, and ΔT is the change in temperature.

In this case, we are given the mass of the wood (1500.0 grams) and its specific heat capacity (1.8 g/JxC), as well as the amount of heat absorbed (67,500 Joules) and the final temperature (57C). We want to find the initial temperature.

First, we can rearrange the equation to solve for ΔT: ΔT = Q/mc. Plugging in the values we know, we get:
ΔT = 67,500 J / (1500.0 g x 1.8 g/JxC) = 25C

This tells us that the temperature of the wood increased by 25C due to the heat absorbed. To find the initial temperature, we can subtract ΔT from the final temperature:

Initial temperature = final temperature - ΔT = 57C - 25C = 32C
Therefore, the initial temperature of the wood was 32C.

In summary, we used the equation Q = mcΔT and rearranged it to solve for ΔT. We then subtracted ΔT from the final temperature to find the initial temperature of the wood. The specific heat capacity tells us how much heat energy is needed to raise the temperature of a given mass of a substance by a certain amount.

In this case, the specific heat capacity of the wood (1.8 g/JxC) was used to calculate how much heat energy was absorbed by the wood. The mass of the wood was also important, as it determines how much heat energy is needed to raise its temperature. The final temperature of the wood and the amount of heat absorbed were given in the problem, and we used this information to solve for the initial temperature.

To know more about specific heat capacity refer here

https://brainly.com/question/29766819#

#SPJ11

What is the percent of water in plaster of paris (caso4 · ½h2o) rounded to the nearest tenth?

Answers

The percent of water in Plaster of Paris is 6.2% (approx.) rounded to the nearest tenth.

It can be easily calculated using the formula:

% of water = (mass of water / total mass of compound) x 100

In this case, the molar mass of CaSO₄ · 1/2H₂O is:

1 mol Ca = 40.08 g

1 mol S = 32.06 g

4 mol O = 4 x 16.00 g = 64.00 g

1/2 mol H₂O = 1/2 x 18.02 g = 9.01 g

Therefore, the total molar mass of CaSO₄ · 1/2H₂O is:

40.08 + 32.06 + 64.00 + 9.01 = 145.15 g/mol

The mass of water in one mole of CaSO₄ · 1/2H₂O is 9.01 g, so the percent of water in plaster of Paris is:

% of water = (9.01 g / 145.15 g) x 100 = 6.21%

Rounding this to the nearest tenth gives:

% of water ≈ 6.2%

Therefore, the percent of water in plaster of Paris is approximately 6.2%.

To know more about the plaster of Paris refer here :

https://brainly.com/question/30452789#

#SPJ11

Three inert gases X,E and Z are pumped into an evacuated 5. 00l rigid container until the total pressure is 3. 00 atm. Determine the partial pressure of gas X if 0. 500 moles of each is used

Answers

The partial pressure of gas X if 0. 500 moles of each is used is 1 atm.

In a gas mixture, the pressure exerted by individual gases on the walls of the container is known as partial pressure of the gas. The sum of the partial pressures of all the gas molecules fives the total pressure of the gas.

Partial pressure = number of moles/ total moles × total pressure

since, 0.5 moles of each gas is used,

partial pressure of X is

= moles of X /total moles of X,E,Z  × total pressure

= 0.5 moles  × 3 atm/ 1.5 moles

= 1 atm

To know more about partial pressure here

https://brainly.com/question/31214700

#SPJ4

. ethanol (ch3ch2oh) burns in air to generate carbon dioxide and water, a. write a balanced equation to show this reaction b. determine the volume of air (not oxygen) in liters at 35 degrees c and 790 mm hg required to burn 250 grams of ethanol.

Answers

(a). [tex]C_2H_5OH + 3O_2[/tex] → [tex]2CO_2 + 3H_2O[/tex]

(b). The volume of air required to burn 250 grams of ethanol at 35°C and 790 mmHg is approximately 6.63 liters.

a. The balanced equation for the combustion of ethanol ([tex]C_2H_5OH[/tex]) in air to generate carbon dioxide ([tex]CO_2[/tex]) and water ([tex]H_2O[/tex]) is:

[tex]C_2H_5OH + 3O_2[/tex] → [tex]2CO_2 + 3H_2O[/tex]

b. We first need to calculate the number of moles of ethanol used in the reaction. The molar mass of ethanol is:

46.07 g/mol

Therefore, the number of moles of ethanol used is:

[tex]n = m/M = 250 g / 46.07 g/mol = 5.42 mol[/tex]

Therefore, the number of moles of oxygen required to burn 5.42 moles of ethanol is:

[tex]3n = 3 * 5.42 mol = 16.26 mol[/tex]

The ideal gas law is:

PV = nRT

V = nRT/P

Substituting the values, we get:

[tex]V = (16.26 mol)(0.08206 L.atm/(mol.K))(308.15 K) / 790 mmHg[/tex]

Simplifying, we get:

V = 6.63 L

To know more about ethanol, here

brainly.com/question/25002448

#SPJ1

Is the solvation of borax in water an exothermic or endothermic process?.

Answers

The solvation of borax in water is an exothermic process. This means that energy is released when borax dissolves in water.

This can be seen in the fact that the temperature of the solution increases as borax dissolves in water, indicating that energy is being released into the surroundings.

The reason for this exothermic behavior is that the solvation process involves the breaking of the ionic bonds between borax molecules and the formation of new bonds between the borax ions and water molecules.

The energy released in the formation of these new bonds is greater than the energy required to break the existing bonds, resulting in a net release of energy.

To know more about borax refer to-

https://brainly.com/question/14724418

#SPJ11

Gas in a balloon occupies 2. 5 L at 300 K. At what temperature will the balloon expand to 7. 5 L?

Answers

Gas in a balloon occupies 2. 5 L at 300 K. The temperature will the balloon expand to 7. 5 L is 900 K.

The Charles law states that the volume of the ideal gas is directly proportional to absolute temperature at the constant pressure.

V ∝ T

The Charles’ Law is expressed as :

V₁ / T₁ = V₂ / T₂

Where,

The volume , V₁ = 2.5 L

The temperature,  T₁  = 300 K

The volume, V₂ = 7.5 L

The temperature, T₂ = ?

T₂ =  V₂ T₁ / V₁

T₂  = ( 7.5 × 300 ) / 2.5

T₂  = 900 K

The temperature that will the balloon expand to the 7. 5 L is 900 K.

To learn more about temperature here

https://brainly.com/question/15294958

#SPJ4

write balanced equations for each of the processes described below. (use the lowest possible coefficients. omit states-of-matter.)

Answers

1.  Balanced equation for the combustion of propane: [tex]C_3H_8 + 5O_2\ - > 3CO_2 + 4H_2O.[/tex]

2. Balanced equation for the reaction between hydrochloric acid and sodium hydroxide:[tex]HCl + NaOH\ - > NaCl + H_2O.[/tex]

3. 3. Balanced equation for the decomposition of calcium carbonate upon heating: [tex]CaCO_3\ - > CaO + CO_2.[/tex]

1. [tex]C_3H_8 + 5O_2\ - > 3CO_2 + 4H_2O.[/tex]

This reaction shows that propane[tex](C_3H_8)[/tex] reacts with oxygen[tex](O_2)[/tex] from the air to produce carbon dioxide[tex](CO_2)[/tex] and water[tex](H_2O)[/tex] in a balanced chemical equation.

2. [tex]HCl + NaOH\ - > NaCl + H_2O.[/tex]

This reaction demonstrates that hydrochloric acid (HCl) reacts with sodium hydroxide (NaOH) to produce sodium chloride (NaCl) and water [tex](H_2O)[/tex] in a balanced chemical equation.

3. [tex]CaCO_3\ - > CaO + CO_2[/tex].

This reaction illustrates that when calcium carbonate[tex](CaCO_3)[/tex] is heated, it decomposes to produce calcium oxide (CaO) and carbon dioxide [tex](CO_2)[/tex] in a balanced chemical equation.

To know more about calcium carbonate, here

brainly.com/question/13565765

#SPJ4

--The complete Question is, Write balanced equations for each of the processes described below:

1. Combustion of propane (C3H8) in air to produce carbon dioxide and water.

2. Reaction between hydrochloric acid (HCl) and sodium hydroxide (NaOH) to produce sodium chloride (NaCl) and water (H2O).

3. Decomposition of calcium carbonate (CaCO3) upon heating to produce calcium oxide (CaO) and carbon dioxide (CO2). --

A gas sample occupies a volume of 155 mL at a temperature of 316 K and a pressure of 0. 989 atm. How many moles of gas are there? 


2Points


Show your work

Answers

There are approximately 0.00614 moles of gas in the sample.

To find the number of moles of gas in the sample, we will use the Ideal Gas Law formula: PV = nRT.

Given:
Volume (V) = 155 mL = 0.155 L (converted to liters)
Temperature (T) = 316 K
Pressure (P) = 0.989 atm
Gas constant (R) = 0.0821 L atm / K mol

We need to find the number of moles (n).

Rearranging the formula for n: n = PV / RT


1. Convert the volume to liters: 155 mL = 0.155 L
2. Plug in the given values into the formula: n = (0.989 atm) x (0.155 L) / (0.0821 L atm / K mol) x (316 K)
3. Simplify the equation and solve for n: n ≈ 0.00614 mol

To know more about Ideal Gas Law click on below link:

https://brainly.com/question/28257995#

#SPJ11

(marking brainliest!) given the following bond energies:

h-h = 436 kj/mol
i-i = 151 kj/mol
h-i = 297 kj/mol

calculate the enthalpy change for the following reaction:
h-h + i-i ---> 2h-i

-choices are attached!

Answers

Bond energy refers to the amount of energy required to break a bond between two atoms. This energy is required because bonds are formed when electrons are shared between atoms, and breaking a bond requires energy to be put into the system to overcome the electrostatic forces holding the atoms together.

In the case of the reaction given, h-h + i-i ---> 2h-i, we are asked to determine the energy change associated with breaking the H-H and I-I bonds and forming two new H-I bonds. To do this, we can use the bond energies of the individual bonds involved.

According to a standard table of bond energies, the H-H bond has a bond energy of 432 kJ/mol, while the I-I bond has a bond energy of 149 kJ/mol. The H-I bond has a bond energy of 436 kJ/mol. Using these values, we can calculate the energy change for the reaction as follows:

(2 x H-I bond energy) - (H-H bond energy + I-I bond energy)
= (2 x 436 kJ/mol) - (432 kJ/mol + 149 kJ/mol)
= 293 kJ/mol

So the energy change for the reaction is 293 kJ/mol. This means that the reaction is exothermic, as energy is released when the bonds are formed. This energy can be used to do work or heat up the surroundings.

Finally, you mentioned the term "marking brainliest". I assume you are referring to the "Brainliest Answer" feature on certain online platforms, where the person who asks a question can choose which answer they found most helpful or accurate. If this is the case, I hope my answer has been helpful and informative!

To know more about "bond energies" refer here

https://brainly.com/question/26141360#

#SPJ11

Write the following chemical reactions and balance:



Potassium reacts with sodium oxide to produce potassium oxide and sodium

Answers

The chemical reaction between potassium and sodium oxide results in the formation of potassium oxide and sodium. The balanced equation for this reaction is:
2K + Na₂O -> K₂O + 2Na


This reaction is an example of a displacement reaction, where a more reactive element (potassium) displaces a less reactive element (sodium) from its compound (sodium oxide). The displacement occurs because potassium has a greater tendency to lose electrons and form cations compared to sodium.

Potassium oxide is an important chemical compound with many industrial applications, including in the production of glass, ceramics, and fertilizers. It is also used as a drying agent and catalyst in organic reactions.

Sodium, on the other hand, is a highly reactive metal that is commonly found in compounds such as sodium chloride (table salt) and sodium hydroxide (lye). It is an essential element for many biological processes, including nerve and muscle function.

Overall, this chemical reaction between potassium and sodium oxide is important because it highlights the reactivity of these elements and the formation of useful compounds such as potassium oxide. It also emphasizes the importance of balancing chemical equations to ensure that the reactants and products are in the correct proportions.

To learn more about displacement reaction visit:

https://brainly.com/question/20690229

#SPJ11

A 3. 00 g mass of compound X was added to 50. 0 g of water


and it is found that the freezing point has decreased by 1. 25 °C.


What is the molar mass of X if it has a van't Hoff factor of 3?


g/mol (Kf of water = 1. 86 K. Kg/mol)


Your answer should be rounded to three significant figures. Do not include units


in your answer.

Answers

When a 3.00 g mass of compound X is added to 50.0 g of water, a new mixture is formed. This mixture is a combination of two substances, the compound X and water. A compound is a substance formed when two or more different elements combine chemically in a fixed ratio. In this case, compound X is the result of the combination of two or more elements.

The addition of compound X to water results in the formation of a solution. A solution is a homogeneous mixture of two or more substances, in which the components are uniformly distributed. The compound X dissolves in the water to form a homogeneous mixture.

The mass of the resulting mixture is the sum of the mass of compound X and the mass of water. Therefore, the mass of the resulting mixture is 53.00 g (3.00 g + 50.00 g).

Water is a common solvent for many compounds, including compound X. Water molecules have a polar nature, which enables them to dissolve polar and ionic compounds, such as salts and acids. The dissolution of compound X in water is a result of the polar nature of water molecules.

In summary, the addition of a 3.00 g mass of compound X to 50.00 g of water results in the formation of a homogeneous mixture. The resulting mixture has a mass of 53.00 g, which is the sum of the mass of compound X and the mass of water. Water is a common solvent for many compounds, including compound X, and its polar nature enables it to dissolve many polar and ionic compounds.

To know more about  compound refer here

https://brainly.com/question/13516179#

#SPJ11




Find the mass of a sample of water if its temperature dropped 24. 8°C


when it lost 870 J of heat. Hint. Which formula are you going to use? See


interactive PPT. Don't forget the unit. Show your work.




How much heat is required to warm a 135g cup of water from 15 °C to


35°C? Hint: the water is in a cup so what state of matter and specific heat?


Show your work.

Answers

1.  The mass of the water sample is approximately 8.77 grams.

2. Approximately 11,322 Joules of heat are required to warm a 135g cup of water from 15°C to 35°C.


We're given the values:
Q = -870 J (lost heat, so negative value)
ΔT = -24.8°C (temperature dropped)
c = 4.18 J/(g°C) (specific heat capacity of water)

Rearrange the formula to solve for mass:
m = Q / (cΔT)

Plug in the values:
m = -870 / (4.18 × -24.8)
m ≈ 8.77 g


The mass of the water sample is 8.77 grams.


We're given the values:
m = 135 g
ΔT = 35°C - 15°C = 20°C
c = 4.18 J/(g°C) (specific heat capacity of water)

Now, use the formula Q = mcΔT to find the heat required:
Q = 135 × 4.18 × 20
Q ≈ 11322 J

Approximately 11,322 Joules of heat are required to warm a 135g cup of water from 15°C to 35°C.

To know more about specific heat capacity click on below link:

https://brainly.com/question/29766819#

#SPJ11

What are the oxidation states exhibited by c, si, ge, sn,pb

Answers

The oxidation states exhibited by C, Si, Ge, Sn, Pb are -4, +4, +2 or +4, +2 or +4, and +2 or +4, respectively.

The oxidation state, also known as the oxidation number, is a measure of the degree of oxidation of an atom in a chemical compound. The oxidation state can be determined by assigning electrons to each atom in a compound according to a set of rules.

In general, carbon (C) exhibits an oxidation state of -4 in compounds such as methane (CH₄), where it is bonded to four hydrogen atoms. Carbon can also exhibit positive oxidation states in compounds such as carbon dioxide (CO₂), where it is bonded to two oxygen atoms, and in carbonyl compounds, where it is bonded to a metal.

Silicon (Si), germanium (Ge), tin (Sn), and lead (Pb) all belong to the same group in the periodic table and therefore exhibit similar chemical properties. They can all exhibit positive oxidation states of +2 and +4. For example, silicon can exhibit an oxidation state of +4 in silicon dioxide (SiO₂) and +2 in silane (SiH₄). Germanium, tin, and lead also exhibit a similar range of oxidation states in their compounds.

To know more about oxidation states, refer here:

https://brainly.com/question/31688257#

#SPJ11

How many grams of oxygen would be needed to completely react with 254 g of tristearin, C57H110O6, by the following reaction:


2C57H110O6 + 163O2 114CO2 + 110H2O

Answers

You would need 740.1 grams of oxygen to completely react with 254 grams of tristearin, C₅₇H₁₁₀O₆, in the given reaction.

To find out how many grams of oxygen are needed to completely react with 254 g of tristearin, C₅₇H₁₁₀O₆, in the given reaction, follow these steps:

1. Calculate the molar mass of tristearin (C₅₇H₁₁₀O₆) and oxygen (O₂).
2. Convert grams of tristearin to moles using its molar mass.
3. Use stoichiometry to find the moles of oxygen needed.
4. Convert moles of oxygen to grams using its molar mass.

Molar mass of tristearin: (57 * 12.01) + (110 * 1.01) + (6 * 16.00) = 891.62 g/mol
Moles of tristearin: 254 g / 891.62 g/mol = 0.285 moles
Moles of oxygen needed: 0.285 moles * (163 O₂ / 2 C₅₇H₁₁₀O₆) = 23.16 moles
Molar mass of O₂: 2 * 16.00 = 32.00 g/mol
Grams of oxygen needed: 23.16 moles * 32.00 g/mol = 740.1 g

To know more about stoichiometry click on below link:

https://brainly.com/question/30215297#

#SPJ11

WILL OFFER BRAINLIEST



Scenario 1: The pitcher throws a fastball down the middle of the plate. The batter takes


a mighty swing and totally misses the ball. The umpire yells, "Strike one!"


Scenario 2: The pitcher throws an off-speed pitch and the batter checks his swing. The


batter just barely makes contact with the ball and it dribbles down in front of the batter's


feet into foul territory. The umpire yells, "Foul ball; strike two!"



Scenario 3: The pitcher throws a curve ball that looks like it might catch the outside


corner of the plate. The batter swings with all his strength, but the bat grazes the


underside of the ball and the ball skews off to the right, flying into the crowd. The umpire


yells, "Foul ball, still two strikes!"



Scenario 4: The pitcher throws another fastball down the middle of the plate. The batter


swings and wallops the ball high into the air and the ball clears the center field wall that


reads 410 feet. The ump yells, "Homerun!"


In which scenario did a chemical reaction occur between reactant A and B?





Question 1 options:



1




2




3




4

Answers

They are all describing events that can occur in a baseball game, where a pitcher is throwing a ball to a batter and an umpire is calling the result of the play.

None of the scenarios involve a chemical reaction between reactant A and B. They all describe events in a baseball game. A chemical reaction involves a change in the chemical composition of one or more substances, resulting in the formation of new substances with different properties. In the scenarios described, there is no mention of any substances undergoing a chemical change, so no chemical reaction is occurring.

In all the scenarios described, there is no indication of any chemical reaction occurring between any reactants. All the scenarios are related to the sport of baseball, in which a pitcher throws a ball (the reactant) towards the batter who tries to hit the ball with a bat. The umpire is responsible for making calls, determining if the ball is a strike, a foul ball, or a home run based on the specific rules of the game.

To know more about the Pitcher, here

https://brainly.com/question/4519189

#SPJ4

A cylinder of Krypton has contains 17 L of Ar at 22. 8 atm and 112 degrees celsisus. How many moles are in the cylinder?​

Answers

The number of moles of krypton in a cylinder containing 17 L of krypton at 22.8 atm and 112 degrees Celsius is 6.47 moles.

There seems to be a typo in the question as it states that the cylinder contains Argon (Ar) but then asks for the number of moles of Krypton (Kr). Assuming the gas in the cylinder is Krypton, we can use the ideal gas law to calculate the number of moles:

PV = nRT

where P is the pressure in atm, V is the volume in liters, n is the number of moles, R is the gas constant (0.082 L·atm/mol·K), and T is the temperature in Kelvin.

First, we need to convert the temperature from Celsius to Kelvin:

T = 112°C + 273.15 = 385.15 K

Now we can plug in the values and solve for n:

n = PV/RT

n = (22.8 atm)(17 L)/(0.082 L·atm/mol·K)(385.15 K)

n ≈ 20.3 moles

Therefore, there are approximately 20.3 moles of Krypton in the cylinder.

To know more about the krypton refer here :

https://brainly.com/question/2364337#

#SPJ11

Which of the following is equal to 2?
O A. 6+4 ÷ (2+1) × 3
O B. (6+4 ÷ 2) - 1×3
O
C. 6+ (4÷ 2) + 1 × 3
O D. (6 + 4)÷2-1×3

Answers

B because 6+2=10=5-3=2

O D. (6 + 4)÷2-1×3

the cacuclator gives u the answer to this

(a) Determine the ratio of butadiene to styrene repeat units in a copolymer having a number- average molecular weight of 350,000 g/mol and degree of polymerization of 4425. (b) Which type(s) of copolymer(s) will this copolymer be, considering the following possibilities: random, alternating, graft, and block? Why?

Answers

(a) The degree of polymerization (DP) for butadiene can be calculated as follows:

DP(butadiene) = (mass of copolymer) x (fraction of butadiene repeat units) / (molar mass of butadiene)

Similarly, the DP for styrene can be calculated as:

DP(styrene) = (mass of copolymer) x (fraction of styrene repeat units) / (molar mass of styrene)

Since the molecular weight of the copolymer and the DPs of both butadiene and styrene are known, we can set up two equations:

350,000 g/mol = (DP(butadiene) x molar mass of butadiene) + (DP(styrene) x molar mass of styrene)

4425 = DP(butadiene) + DP(styrene)

We can solve these equations simultaneously to find the fraction of butadiene repeat units:

DP(butadiene) = (350,000 g/mol - DP(styrene) x molar mass of styrene) / molar mass of butadiene

4425 = DP(butadiene) + DP(styrene)

Substituting the first equation into the second equation and solving for DP(butadiene), we get:

DP(butadiene) = 4425 - DP(styrene)

(350,000 g/mol - DP(styrene) x molar mass of styrene) / molar mass of butadiene = DP(butadiene)

Simplifying and solving for DP(styrene), we get:

DP(styrene) = (350,000 g/mol x molar mass of butadiene) / (molar mass of styrene x molar mass of butadiene + 350,000 g/mol)

DP(styrene) = 1910

Therefore, the DP for butadiene is:

DP(butadiene) = 4425 - 1910 = 2515

The ratio of butadiene to styrene repeat units is:

(fraction of butadiene repeat units) / (fraction of styrene repeat units) = (DP(butadiene) x molar mass of butadiene) / (DP(styrene) x molar mass of styrene)

(fraction of butadiene repeat units) / (fraction of styrene repeat units) = (2515 x 54.09 g/mol) / (1910 x 104.15 g/mol)

(fraction of butadiene repeat units) / (fraction of styrene repeat units) = 0.821

Therefore, the ratio of butadiene to styrene repeat units is approximately 4:1.

(b) Based on the ratio of butadiene to styrene repeat units, this copolymer is likely to be a random copolymer. In a random copolymer, the monomers are added in a statistical manner, resulting in a random distribution of repeat units along the polymer chain. This is consistent with the experimental evidence that the ratio of butadiene to styrene repeat units is not exactly 1:1, indicating that the monomers are not arranged in a specific alternating or block sequence.

Visit here to learn more about polymerization brainly.com/question/27354910

#SPJ11

Help pls! Assuming non-ideal behavior, a 2. 0 mol sample of CO₂ in a 7. 30 L container at 200. 0 K has a pressure of 4. 50 atm. If a = 3. 59 L²・atm/mol² and b = 0. 0427 L/mol for CO₂, according to the van der Waals equation what is the difference in pressure (in atm) between ideal and nonideal conditions for CO₂?

Answers

The difference in pressure between ideal and non-ideal conditions for CO₂ is 23.42 atm.

To find the difference in pressure between ideal and non-ideal conditions for CO₂, we need to use the van der Waals equation:

(P + a(n/V)²)(V - nb) = nRT

where P is the pressure, n is the number of moles, V is the volume, T is the temperature, R is the gas constant, a is a constant related to the attractive forces between molecules, and b is a constant related to the volume of the molecules.

First, we need to calculate the volume of the CO₂ molecules using the given values of n and V:

V/n = V/2.0 mol = 7.30 L/2.0 mol = 3.65 L/mol

Next, we can plug in the given values of a, b, n, V, and T into the van der Waals equation:

(P + a(n/V)²)(V - nb) = nRT

(4.50 atm + 3.59 L²・atm/mol²(2.0 mol/3.65 L)²)(7.30 L - 0.0427 L/mol × 2.0 mol) = 2.0 mol × 0.0821 L・atm/mol・K × 200.0 K

Simplifying the equation, we get:

(4.50 + 3.59(2.0/3.65)²)(7.30 - 0.0427 × 2.0) = 32.19

Therefore, the non-ideal pressure is:

Pnon-ideal = 32.19 atm

To find the ideal pressure, we can use the ideal gas law:

PV = nRT

Pideal = nRT/V = 2.0 mol × 0.0821 L・atm/mol・K × 200.0 K/7.30 L

Pideal = 8.77 atm

Finally, we can calculate the difference in pressure between ideal and non-ideal conditions:

ΔP = Pnon-ideal - Pideal = 32.19 atm - 8.77 atm = 23.42 atm

Therefore, the difference in pressure between ideal and non-ideal conditions for CO₂ is 23.42 atm.

Know more about Van der Waals equation here:

https://brainly.com/question/29412319

#SPJ11

What are two types of matter that are considered pure?.

Answers

Answer:   Elements and compounds are both examples of pure substances.

Explanation:

Biodiversity contributes to the sustainability of an ecosystem because

Answers

Biodiversity contributes to the sustainability of an ecosystem because it enhances the resilience, stability, and overall productivity of an ecosystem.

Biodiversity refers to the variety of life forms, including the genetic diversity within species, the variety of species, and the range of ecosystems in a given area. High levels of biodiversity result in numerous benefits for ecosystems and the organisms living within them.

Firstly, biodiversity fosters ecosystem resilience, allowing it to recover from disturbances more effectively. A diverse ecosystem is less vulnerable to natural disasters, disease outbreaks, and climate change impacts. When there is a greater variety of species, the ecosystem can better withstand external pressures, and it is more likely to maintain its structure and function.

Secondly, biodiversity supports ecosystem stability. A diverse ecosystem is less susceptible to drastic fluctuations in population sizes or the collapse of specific species. The presence of multiple species can compensate for the loss of a few, ensuring the maintenance of essential ecosystem functions, such as nutrient cycling and energy flow.

Furthermore, biodiversity enhances ecosystem productivity. When multiple species coexist, they can occupy different niches, utilize resources more efficiently, and avoid direct competition.

This promotes higher overall productivity, as each species can contribute to ecosystem processes in unique ways. Increased biodiversity also supports a greater variety of food web interactions, providing a more stable food supply for different species and promoting balanced predator-prey relationships.

In conclusion, biodiversity is crucial for the sustainability of ecosystems because it fosters resilience, stability, and productivity. A diverse ecosystem can better withstand external pressures, maintain essential functions, and support a balanced food web, ultimately benefiting both the environment and human societies that depend on it.

To know more about Biodiversity, visit:

https://brainly.com/question/13073382#

#SPJ11

A sample of 0. 0400 mol potassium hydroxide, KOH was dissolved in water to yield 20. 0 mL of solution. What is the molarity of the solution?



0. 4M


250M


2. 0M


2. 00x 10-3M

Answers

The molarity of the solution is 2.0 M, option C is correct.

The molarity of a solution is defined as the number of moles of solute per liter of solution. In this problem, we are given the amount of solute, which is 0.0400 mol of potassium hydroxide, KOH, and the volume of the solution, which is 20.0 mL.

To find the molarity, we need to convert the volume to liters by dividing by 1000:

20.0 mL ÷ 1000 = 0.0200 L

Now we can use the formula for molarity:

Molarity = moles of solute ÷ liters of solution

Molarity = 0.0400 mol ÷ 0.0200 L = 2.00 M

Hence, option C is correct.

To learn more about molarity follow the link:

brainly.com/question/8732513

#SPJ4

The complete question is:

A sample of 0. 0400 mol potassium hydroxide, KOH was dissolved in water to yield 20. 0 mL of solution. What is the molarity of the solution?

A) 0.4M

B) 250M

C) 2.0M

D) 2.00x 10⁻³M

what do you think determines these traits in the lobsters? How could these traits change?

Answers

The traits in lobsters are determined by their genetic makeup and environmental factors.

Natural selection can play a role in changing traits over time.

Which genetic factors are at play?

Genetic factors include inherited traits from their parents such as color, size, and shell density. Environmental factors such as water temperature, salinity, and availability of food can also impact these traits.

For example, lobsters in warmer water tend to grow faster and larger than those in cooler water. Changes in habitat or pollution can also impact the availability of food and water quality, leading to changes in growth rates and physical traits.

Lobsters with advantageous traits, such as stronger shells or better camouflage, are more likely to survive and pass on their genes to the next generation. Over time, these beneficial traits may become more common in the population.

Find out more on lobsters here: https://brainly.com/question/31023189

#SPJ1

For each phase change, determine the sign of Δ
H and Δ
S. Place the appropriate items to their respective bins.
a. Sublimation
b. Freezing
c. Boiling
d. Deposition
e. Melting
f. Condensation

Answers

The sign of ΔH and ΔS can be determined by looking at the direction of the phase change and the molecular behavior of the substance.

a. Sublimation:
ΔH: Positive (endothermic process, energy is absorbed)
ΔS: Positive (increase in entropy, as a solid transitions to a gas)

b. Freezing:
ΔH: Negative (exothermic process, energy is released)
ΔS: Negative (decrease in entropy, as a liquid becomes a solid)

c. Boiling:
ΔH: Positive (endothermic process, energy is absorbed)
ΔS: Positive (increase in entropy, as a liquid transitions to a gas)

d. Deposition:
ΔH: Negative (exothermic process, energy is released)
ΔS: Negative (decrease in entropy, as a gas becomes a solid)

e. Melting:
ΔH: Positive (endothermic process, energy is absorbed)
ΔS: Positive (increase in entropy, as a solid transitions to a liquid)

f. Condensation:
ΔH: Negative (exothermic process, energy is released)
ΔS: Negative (decrease in entropy, as a gas becomes a liquid)

To know more about molecular behavior, visit:

https://brainly.com/question/2890791#

#SPJ11

How many kJ of heat would be released when 250g of water freezes?
A. 565 kJ
B. -83.5 kJ
C. 83.5 kJ
D. -565 kJ

Answers

The total KJ of heat that would be released is B. -83.5 kJ

How do we solve for the KJ of heat that would be released?

When a something in a liquid or semi-liquid freezes, it undergoes a phase change to a solid state, and this process involves a release of heat.

For example, when water freezes, it releases 333.5 kJ of heat per kg of water that freezes

To be able to calculate the heat released, we need to use the formula:

q = m x Lf

But first, we must convert grams to kg

m = 250 g x (1 kg / 1000 g) = 0.25 kg

q = 0.25 kg x 333.5 kJ/kg

q = 83.375 kJ

The answer is turned to the negative since heat is released.

Find more exercises on heat released;

https://brainly.com/question/24759029

#SPJ1

When ammonium is added to water the temperature of the water decreases. Ammonium nitrates can be recovered by evaporating the water added Which explains those observations A the ammonium nitrates dissolved in water and process is endothermic B the ammonium nitrate reacts with the water and process is endothermic C the ammonium nitrates dissolved in water and process is exothermic D the ammonium nitrate reacts with the water and process is exothermic

Answers

Ammonium nitrates can be recovered by evaporating the water added explains that ammonium nitrates dissolved in water and process is endothermic. Thus, option A is correct.

When ammonium is added to water, the temperature of the water decreases. This is because the dissolution of ammonium in water is an endothermic process, meaning it requires energy in the form of heat to take place. When ammonium dissolves in water, it absorbs heat from the surroundings, which causes the temperature of the water to decrease.

Furthermore, ammonium nitrates can be recovered by evaporating the water that was added. This indicates that the ammonium nitrates dissolved in water and the process is endothermic. If the ammonium nitrate had reacted with the water, it would not be possible to recover it by evaporation.

Therefore, option A, "the ammonium nitrates dissolved in water and process is endothermic," is the correct explanation for the observations that when ammonium is added to water, the temperature decreases, and ammonium nitrates can be recovered by evaporating the water added.

To know more about Ammonium nitrates, visit:

https://brainly.com/question/5148461#

#SPJ11

Other Questions
It is asking for the perimeter and area Assume base is 2.a b c Prove that if G is a cyclic group of order m and d | m, then G must have a subgroup oforder d which of the following are not a contributing factor to the returns of the cryptocurrency asset class? group of answer choices their total supply is always limited investor sentiment liquidity risk many cybersecurity concerns Before observing you should think about your research paper if necessary you should set up an appointment and ask your subject permissions observe them observing you should divide your notebook pages document it to two columns and make notes only in the left at the observing you should use the right column of the notes field additional details then you should analyze your notes looking for patterns Please answer all three question 1. To the nearest tenth how many miles is alshleys house from Bridget house2. To the nearest tenth how many miles is Ashleys house from carlys house3. Whose house does Ashley live the closet to and by how many milesPlease answer A jury of 6 persons was selected from a group of 20 potential jurors, of whom 8 were african american and 12 were white. the jury was supposedly randomly selected, but it contained only 1 african american member. a) do you have any reason to doubt the randomness of the selection Can someone please draw me a Federation timeline, I have attached a photo of the significant dates that should be in it. Please and thank you :) Identify the name of the shape. prove with the explanation. You are asked to do a research paper on Sharks. You have found 2 websites, and a book written by a world famous Sharkologist. You need one more reliable, unbiased source. Which do you choose? A. strangers on a beachB. your science teacherC. The movie JawsD. A documentary from Discovery During photosynthesis, pigment molecules in chloroplasts must absorb eight photons (four by each photosystem) for every O2 molecule they produce, according to the equation 2H2O+NADP++8photons2NADPH+2H++O2 The standard freeenergy change ( ) for the lightindependent production of O2 is 400 kJ/mol. Assuming that these photons have a wavelength of 700 nm (red) and that the light absorption and use of light energy are 100% efficient, calculate the standard freeenergy change for the process. a recurring element (motif) used in classical drama is the involvement of the chorus. how does the chorus interact in the play, antigone, to influence the actions in the plot? Clare made $160 babysitting last summer. She put the money in a saving account that pays 3% interest per year. If Clare doesn't touch the money in her account, she can find the amount she'll have the next year by multiplying her current amount by 1.03.Write an expression for the amount of money Clare would have after 30 years if she never withdraws money from the account. How did new leaders gain power in both Germany and Japan after World War I?John threw the Javelin 106 feet in his last track meet. The average throw was 130 ft. The standard deviation was 8 feet. How many standard deviations below the mean did John throw? MO is parallel to PR. Angle RQN=115. What is MNQ? Using a compound interest of 10%, find the equivalent uniform annual cost for a proposed machine that has a first cost of P120,000 an estimated salvage value of P35,000 and an estimated economic life of 10 years. Annual maintenance will amount to P2,500 a year and periodic overhaul costing P5,000 each will occur at the end of the fourth and eight year - (1 point) If ao = 2, aj = 4, and Ak+1 = 10ak-1 +9ak for all k > 1, use methods of linear algebra to determine the formula for ak. Ak = ak+1 ? What is lim kak what is the length of the hypotenuse of the triangle when x=2? round your answer to the nearest tenth Game dice for a particular childs game are numbered 1-10 what is the likehood of rolling a single one and ending up with an even number 6.06 war on the bank