To solve this problem, we need to use the balanced chemical equation for the reaction between zinc (Zn) and hydrochloric acid (HCl):
[tex]Zn + 2HCl - > ZnCl_2 + H_2[/tex]
According to the stoichiometry of this equation, one mole of Zn reacts with two moles of HCl to produce one mole of H2. Therefore, we need to determine the number of moles of Zn in 25 g, and then use the mole ratio to find the number of moles of H2 produced.
Finally, we can convert the number of moles of H2 to volume at STP using the molar volume of a gas.
First, we need to calculate the number of moles of Zn in 25 g:
The molar mass of Zn is 65.38 g/mol
The number of moles of Zn in 25 g is:
25 g / 65.38 g/mol = 0.383 mol Zn
Next, we use the mole ratio from the balanced equation to find the number of moles of H2 produced:
According to the balanced equation, one mole of Zn reacts with one-half mole of H2, so we produce 0.5 x 0.383 = 0.192 mol H2.
Finally, we can use the molar volume of a gas at STP to convert the number of moles of H2 to volume:
The molar volume of a gas at STP is 22.4 dm3/mol
Therefore, the volume of H2 produced is:
V = (0.192 mol) x (22.4 dm3/mol) = 4.30 dm3 or 4,300 ml
Therefore, the volume of hydrogen gas produced at STP is 4.30 dm3 or 4,300 ml when 25 g of zinc is added to excess dilute hydrochloric acid at 31°C and 778 mm Hg pressure.
learn more about molar volume here
https://brainly.com/question/11676583
#SPJ1
A silver block, initially at 55.1∘C
, is submerged into 100.0 g
of water at 25.0∘C
in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 27.9∘C
. The specific heat capacities for water and silver are Cs,water=4.18J/(g⋅∘C)
and Cs,silver=0.235J/(g⋅∘C)
.
The mass of the silver block, given that it was initially at 55.1 °C and is submerged into 100.0 g of water at 25.0°C is 189.8 g
How do i determine the mass of the silver?We'll begin our calculation by obtaining the heat absorbed by the water. Details below:
Mass of water (M) = 100 gInitial temperature (T₁) = 25 °CFinal temperature (T₂) = 27.9 °CChange in temperature (ΔT) = 27.9 - 25 = 2.9 °CSpecific heat capacity of water (C) = 4.184 J/gºC Heat absorbed by water (Q) =?Q = MCΔT
Q = 100 × 4.184 × 2.9
Q = 1213.36 J
Finally, we shall determine the mass of the silver block. Details below:
Heat absorbed by water (Q) = 6108.64 JHeat released by silver block (Q) = -1213.36 JInitial temperature of silver block (T₁) = 55.1 °CFinal temperature of silver block (T₂) = 27.9 °CChange in temperature (ΔT) = 27.9 - 55.1 = -27.2 °C Specific heat capacity of silver (C) = 0.235 J/gºC Mass of silver block (M) =?Q = MCΔT
-1213.36 = M × 0.235 × -27.2
-1213.36 = M × -6.392
Divide both sides by -6.392
M = -1213.36 / -6.392
M = 189.8 g
Thus, we can conclude that the mass of the silver block is 189.8 g
Learn more about mass:
https://brainly.com/question/1674804
#SPJ1
Complete question:
A silver block, initially at 55.1∘C, is submerged into 100.0 g of water at 25.0∘C in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 27.9∘C. The specific heat capacities for water and silver are Cs,water = 4.18J/(g⋅∘C) and Cs, silver = 0.235J/(g⋅∘C). What is the mass of the silver block?
6. A 90.0 gram sample of an unknown solid is heated to 80 °C and placed into a calorimeter containing 120 grams of water at 24 °C. If the final temperature of the solid sample and the water is 32 °C, what is the specific heat of solid?
PLEASE SHOW WORK
Answer:
1.02 J/g°C.
Explanation:
We can use the equation:
q = m * c * ΔT
where q is the heat absorbed or released, m is the mass of the substance (in grams), c is the specific heat, and ΔT is the change in temperature (in Celsius).
First, we can calculate the heat gained by the water:
q_water = m_water * c_water * ΔT_water
where m_water is the mass of the water (in grams), c_water is the specific heat of water (4.184 J/g°C), and ΔT_water is the change in temperature of the water.
m_water = 120 g
c_water = 4.184 J/g°C
ΔT_water = (32°C - 24°C) = 8°C
q_water = (120 g) * (4.184 J/g°C) * (8°C) = 4009 J
This means that the heat lost by the unknown solid is equal to the heat gained by the water:
q_solid = -q_water
q_solid = -4009 J
Next, we can calculate the change in temperature of the solid:
ΔT_solid = (32°C - 80°C) = -48°C
Now, we can solve for the specific heat of the solid:
q_solid = m_solid * c_solid * ΔT_solid
-4009 J = (90.0 g) * c_solid * (-48°C)
c_solid = -4009 J / (90.0 g * -48°C)
c_solid = 1.02 J/g°C
Therefore, the specific heat of the unknown solid is 1.02 J/g°C.
Compared to chemical reactions, most nuclear reactions result in the
OA. formation of new compounds
OB. formation of new elements
O C. formation of new bonds
OD. loss of valence electrons
Answer:
OB. formation of new elements.
Nuclear reactions involve changes in the nucleus of an atom, such as the splitting of a nucleus or the combining of two nuclei. These reactions can result in the formation of new elements, as the number of protons in the nucleus determines the element. In contrast, chemical reactions involve the rearrangement of electrons between atoms to form new compounds, but do not involve changes to the nucleus.
Find the concentration of all ions present in a 0.223 M solution of PbCl2.
Answer:
Since that means that we have 0.223 moles of PbCl2 in 1000mL of solution.
Also since mole ratio of the ions Pb2+:Cl- is 1:2
Thus, moles of Pb2+ = 0.223moles
concentration of Pb2+= 0.223M
Moles of Cl- = 2x0.223 moles
Concentration of Cl- = 0.446M
Explanation:
What best describes the energy in light?
A. It increases as it is absorbed by an atom.
B. It increases as the light moves from violet toward red.
C. It is absorbed and emitted in discrete chunks.
D. It is absorbed when it comes into contact with an object.
C. It is absorbed and emitted in discrete chunks.
The energy in light is carried by particles called photons, which behave both like waves and like particles. According to the theory of quantum mechanics, photons can only be absorbed or emitted in discrete amounts of energy, known as quanta. This means that the energy in light is not continuous, but rather comes in specific packets or chunks. This phenomenon is known as quantization, and it has important implications for many areas of physics, including atomic and molecular physics, as well as the study of electromagnetic radiation.
Answer: C it is absorbed and emitted in descrete chunks.
Explanation:
photons of light are emitted or absorbed as electrons change energy levels
d. Given this law, 4 of 4.
Select Choice
of hydrogen (H2) is produced in the following reaction.
Zn + 2HCl → ZnCl2 + H2
65 g 72 g 135 g ?
The mass of hydrogen produced in the reaction is 2g.
What is Mole?The mole is an amount unit similar to familiar units like pair, dozen, gross, etc. It provides a specific measure of the number of atoms or molecules in a bulk sample of matter.
A mole is defined as the amount of substance containing the same number of atoms, molecules, ions, etc. as the number of atoms in a sample of pure 12C weighing exactly 12 g.
Given,
Mass of Zn = 65g
Mass of HCl = 72g
Moles of Zn = mass / molar mass
= 65 / 65 = 1 mole
Moles of HCl = 72 / 36.5
= 1.97 moles
Since moles of Zn is lesser, therefore it is the limiting reagent.
From the reaction, 1 mole of Zn gives 1 mole of hydrogen
Moles of hydrogen = 1 mole
mass of hydrogen = moles × molar mass
= 1 × 2 = 2g
Therefore, the mass of hydrogen produced in the reaction is 2g.
Learn more about Moles, here:
https://brainly.com/question/31597231
#SPJ2
1. While doing a calorimetry experiment, you notice the temperature of 50.0 g of water changes by 7ºC. What is the energy of the chemical reaction? (Cwater= 4.18 J/g*°C)
2. Which of the following is an example of a kinetic energy change?
a solution is made by mixing 100 ml of ethanol and 200 mL of water identified the solute of solvent of the solution and calculate the total volume of the solution
The total volume of the solution is 300 mL.
To calculate the total volume of the solution, we simply add the volumes of the ethanol and water together:
The total volume of solution = volume of ethanol + volume of water
= 100 mL + 200 mL
= 300 mL
Therefore, the total volume of the solution is 300 mL.
When two or more compounds are combined to form a solution, the substance present in the smallest amount is known as the solute, and the material present in the largest amount and which dissolves is known as the solvent.
The solute, which can be a solid, liquid, or gas, dissolves in the solvent, which is often a liquid.
In this scenario, 100 mL of ethanol and 200 mL of water are combined to make the solution. The solute in this solution is ethanol, a colorless liquid. Water is a polar solvent that can dissolve a wide range of compounds, including ethanol. When ethanol and water are combined, they dissolve and form a homogeneous mixture.
learn more about ethanol here
https://brainly.com/question/20814130
#SPJ1
need help with this problem
Answer:
Na < Al < Mg < S < Cl
Explanation:
Sodium has the smallest ionization energy because it wants to lose an electron as an alkali metal.
Aluminum has the second smallest because losing an electron would leave it with just a full s orbital.
Magnesium has the third smallest because although it's removing an electron from a full s orbital, it has less protons than sulfur and chlorine to keep the electron in the shell.
Sulfur has the second largest because it has more protons to pull at the electrons.
Chlorine has the largest ionization energy because it really wants an electron to fill the p orbital. Due to its number of protons, the element is also very small and it will be difficult to remove an electron.
Review-Chemical Reactions
Write balanced chemical equations for the following reactions:
a. chlorine gas and aqueous sodium iodide react to form aqueous sodium chloride and
solid iodine
b. solid sodium chlorate is heated to form solid sodium chloride and oxygen gas
c. solid potassium reacts with liquid water to produce aqueous potassium hydroxide and
hydrogen gas
Answer:
a. Cl2 (g) + 2NaI (aq) → 2NaCl (aq) + I2 (s)
b. 2NaClO3 (s) → 2NaCl (s) + 3O2 (g)
c. 2K (s) + 2H2O (l) → 2KOH (aq) + H2 (g)
Explanation:
5. A sample of unknown metal has a mass of 135 grams. As the sample cools from 100.5 °C to 35.5 °C, it releases 7500 joules of energy. What is the specific heat of the sample?
please show work
The sample of the unknown metal has the mass of the 135 grams. The sample cools from the 100.5 °C to the 35.5 °C, and it releases the 7500 joules of the energy. The specific heat of the sample is 0.854 J/g °C.
Th mass of the metal = 135 g
The initial temperature = 100.5 °C
The final temperature = 35.5 °C
The heat energy releases = - 7500 J
The heat energy is expressed as :
Q = mc ΔT
Where,
The m is mass of the metal = 135 g
The c is the specific heat capacity = ?
The Q is heat energy releases = - 7500 J
The ΔT is the change in the temperature = final temperature - initial temperature.
The ΔT is the change in the temperature = 35.5 - 100.5
The ΔT is the change in the temperature = - 65 °C
The specific heat capacity, c = Q / m ΔT
The specific heat capacity, c = - 7500 / 135 × - 65
The specific heat capacity, c = 0.854 J/g °C
The specific heat capacity of metal is 0.854 J/g °C.
To learn more about specific heat here
https://brainly.com/question/19907993
#SPJ1
What is the family puzzle worksheet answer? Please make the pedigree and give me the answers
Interpreting Data:
Joshua's parents must be heterozygous carriers for cystic fibrosis (Nn).Bella's parents must be homozygous for the normal allele (NN).How to analyze family pedigrees?Predicting:
Joshua's brother has a 50% chance of being a carrier for cystic fibrosis (Nn) and a 50% chance of having the normal genotype (NN). This is because Joshua's parents are both carriers, so each of their children has a 50% chance of inheriting the recessive allele.
Communicating:
As a genetic counselor, information about many generations of a family is needed to draw conclusions about a hereditary condition because traits are passed down from generation to generation. By studying the family history, we can identify patterns of inheritance and determine the likelihood that a person has inherited a certain trait. This information can help us make informed decisions about genetic testing and treatment options.
Additionally, knowing the family history can help us determine the risk of passing on a genetic condition to future generations.
Find out more on pedigree here: https://brainly.com/question/14525981
#SPJ1
Image transcribed and complete question:
Family Puzzle
Problem
A husband and wife want to understand the probability that their children might inherit cystic fibrosis. How can you use the information in the labeled Case Study to predict the probability?
Skills Focus
interpreting data, predicting
Materials
12 index cards
scissors marker
Procedure
1. Read the Case Study. In your notebook, draw a pedigree that shows all the family members. Use circles to represent the females, and squares to represent the males. Shade in the circles or squares representing the individuals who have cystic fibrosis.
2. You know that cystic fibrosis is controlled by a recessive allele. To help you figure out Joshua and Bella's family pattern, create a set of cards to represent the alleles. Cut each of six index cards into four smaller cards. On 12 of the small cards, write N to represent the dominant normal allele. On the other 12 small cards, write n for the recessive allele.
Case Study:
Joshua and Bella
• Joshua and Bella have a son named lan. lan has been diagnosed with cystic fibrosis.
⚫ Joshua and Bella are both healthy.
• Bella's parents are both healthy.
• Joshua's parents are both healthy. • Joshua's sister, Sara, has cystic fibrosis.
Analyze and Conclude
Write your answers in the spaces provided.
1. Interpreting Data What were the genotypes of Joshua's parents? What were the genotypes of Bella's parents?
2. Predicting Joshua also has a brother. What is the probability that he has cystic fibrosis? Explain.
3. Communicating Imagine that you are a genetic counselor. A couple asks why you need information about many generations of their families to draw conclusions about a hereditary condition. Write an explanation you can give to them.
More to Explore
Review the pedigree that you just studied. What data suggest that the traits are not sex-linked? Explain.
The reactant concentration in a zero-order reaction was 6.00×10−2 M
after 175 s
and 3.50×10−2 M
after 315 s
. What is the rate constant for this reaction?
is this correct?............................................................................................................................................
............................................................................................................................................
...........................................................................................................................................
3.09 g is the theoretical mass of AlBr₃(s) produced.
How to setup dimensional analysis?The following dimensional analysis setup could be used to determine the theoretical mass of AlBr₃(s) (molecular mass = 266.69 g/mol) produced based on reacting 84.2 g of a 0.005 mol/L solution of Br₂(l) (density=1019 g/L) with excess Al(s) as described in the following equation:
3Br₂(l) + 2Al(s) → 2AIBr₃(s)
The dimensional analysis setup to calculate the mass of AlBr₃(s) produced is as follows:
84.2 g Br₂ (l) × (1 L solution / 1019 g Br₂(l)) × (0.005 mol Br₂(l) / 1 L solution) × (2 mol AlBr₃(s) / 3 mol Br₂(l)) × (266.60 g AlBr₃(s) / 1 mol AlBr₃(s)) = 3.09 g AlBr₃(s)
Therefore, the theoretical mass of AlBr₃(s) produced is 3.09 g.
Find out more on dimensional analysis here: https://brainly.com/question/24514347
#SPJ1
What happens to the particles of a gad when the gas is compressed
Answer:
When the gas is compressed, its molecules come closer and internal energy of gas is increased and the number of collisions will also increase. As the gas is compressed, the work done on it shows up as increased internal energy, which must be transferred to the surroundings to keep the temperature constant.
1. What is the percent of NaCl in a mixture that contains 23.5 g of NaCl and 212 g of water? Enter
answers in 2 decimal places
Answer:
9.98%
Explanation:
To find the percent of NaCl in the mixture, we need to divide the mass of NaCl by the total mass of the mixture, and then multiply by 100 to express it as a percentage.
Step 1: Find the total mass of the mixture
total mass = mass of NaCl + mass of water
total mass = 23.5 g + 212 g
total mass = 235.5 g
Step 2: Calculate the percent of NaCl
% NaCl = (mass of NaCl / total mass) x 100
% NaCl = (23.5 g / 235.5 g) x 100
% NaCl = 0.0997876857 x 100
% NaCl = 9.978768677%
% NaCl = 9.98%
Therefore, the percent of NaCl in the mixture is 9.98%.
Given Equation (Balance it) :
C2H4O2 + NaHCO3 —> NaC2H3O2 + H2O + CO2
Word Problem:
If you have 100 mg of Acetic Acid (C2H4O2) and 10 mg of NaHCO3 (Sodium Bicarbonate), how many grams of CO2 can be produced ?
also determine the theoretical yield of the chemical reaction.
C₂H₄O₂ + NaHCO₃ —> NaC₂H₃O₂ + H₂O + CO₂ the amount of Carbon dioxide produced is 5.28 mg.
Is the reaction between acetic acid and sodium bicarbonate exothermic or endothermic?Water, CO₂ , and C₂H₃NaO₂ were produced when acetic acid and NaHCO₃ were combined. The chemistry is as follows: The reaction between vinegar and baking soda was endothermic.
Acetic acid: 2(12.01 g/mol) + 4(1.01 g/mol) + 2(16.00 g/mol)
= 60.05 g/mol
NaHCO₃ 22.99 g/mol + 1.01 g/mol + 3(16.00 g/mol)
= 84.01 g/mol
100 mg of Acetic acid is equal to 0.1 g, and 10 mg of NaHCO₃ is equal to 0.01 g.
Number of moles of Acetic acid = 0.1 g / 60.05 g/mol
= 0.00167 mol
Number of moles of NaHCO₃ = 0.01 g / 84.01 g/mol
= 0.00012 mol
Since NaHCO₃ has fewer moles, it is the limiting reactant.
Therefore, 0.00012 mol of NaHCO₃ will produce 0.00012 mol of CO₂
The mass of CO₂ produced can be calculated as follows:
Mass of CO₂ = Number of moles of CO₂ x Molar mass of CO₂
Mass of CO₂ = 0.00012 mol x 44.01 g/mol
= 0.00528 g or 5.28 mg
Therefore, the amount of CO₂ produced is 5.28 mg.
The theoretical yield of CO₂ is 0.00012 mol x 44.01 g/mol
= 0.00528 g or 5.28 mg.
This is equal to the actual yield of CO₂ produced.
To know more about Bicarbonate :
brainly.com/question/8560563
#SPJ1
Complete combustion of a 0.0200 mol sample of a hydrocarbon, CxHy, gives 4.032 L of CO2 at STP and 3.602 g of H2O.
(a) What is the molecular formula of the hydrocarbon? (b) What is the empirical formula of the hydrocarbon?
The hydrocarbon's molecular structure is [tex]C_9H_20[/tex].The hydrocarbon's empirical formula is [tex]C_9[/tex]/4H5.
To solve this problem, we need to use stoichiometry to relate the amount of [tex]CO__2[/tex] and [tex]H_2O[/tex] produced to the amount of [tex]CxHy[/tex] burned.
(a) To find the molecular formula of the hydrocarbon, we need to first calculate the number of moles of [tex]CO__2[/tex] and [tex]H_2O[/tex] produced. From the ideal gas law, we know that 1 mole of gas at STP (standard temperature and pressure) occupies 22.4 L. Therefore, 4.032 L of [tex]CO__2[/tex] at STP corresponds to:
4.032 L / 22.4 L/mol = 0.180 mol [tex]CO__2[/tex]
Similarly, the mass of H2O produced corresponds to:
3.602 g / 18.02 g/mol = 0.200 mol [tex]H_2O[/tex]
Since the hydrocarbon undergoes complete combustion, it reacts with oxygen to form [tex]CO__2[/tex] and [tex]H_2O[/tex] according to the balanced chemical equation:
[tex]CxHy[/tex] + (x + (y/4))O2 → [tex]CO__2[/tex] + (y/2)[tex]H_2O[/tex]
where x and y are the coefficients of the balanced equation. We can use the stoichiometric ratios to set up two equations:
0.180 mol [tex]CO__2[/tex] = x mol [tex]CxHy[/tex] → x = 0.180 mol / 0.0200 mol = 9
0.200 mol [tex]H_2O[/tex] = (y/2) mol [tex]CxHy[/tex] → y = 0.400 mol / 0.0200 mol = 20
Therefore, the molecular formula of the hydrocarbon is [tex]C_9H_20[/tex].
(b) To find the empirical formula of the hydrocarbon, we need to divide the subscripts by their greatest common factor. In this case, both subscripts are divisible by 4, so we get:
[tex]C_9H_20[/tex] → C9/4H5
Therefore, the empirical formula of the hydrocarbon is C9/4H5.
For more question on molecular
https://brainly.com/question/24191825
#SPJ11
Lab: Limiting Reactant and Percent Yield
Step 7: Determine the Limiting Reactant (Trial 2)
Analysis: aluminum
there is no aluminum left
yes
Convert Mass:
2.50g=.019
.25g=.0093
The limiting reactants is/are aluminum.
Are these answers correct?
Yes they are I did the lab.
The given answer statement "there is no aluminum left" and " limiting reactants is aluminum" are correct.
In the analysis of Trial 2, it was found that there was no aluminum left after the reaction had taken place. This indicates that all of the aluminum had reacted with the copper (II) chloride and that it was the limiting reactant in the reaction.
To confirm this, the mass of each reactant was converted to moles using their respective molar masses. It was found that the aluminum had a smaller number of moles than the copper (II) chloride, indicating that it would be used up first and thus be the limiting reactant.
Therefore, the limiting reactant in Trial 2 was aluminum.
To learn more about limiting reactants here
https://brainly.com/question/14225536
#SPJ1
Please help thanks!!!!!!!!!!!!!!!!!!
The correct ratio of components is: For every 3 moles of carbon dioxide produced, 5 moles of oxygen react.
This ratio can be derived directly from the balanced chemical equation:
C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
The balanced equation shows that for every 3 moles of carbon dioxide produced, 5 moles of oxygen are required. This means that if we have a certain amount of propane, we need to use this ratio to determine the amount of oxygen needed for the reaction. Similarly, if we have a certain amount of oxygen, we can use this ratio to calculate the amount of carbon dioxide that will be produced.
It is important to note that the other ratios provided in the question are incorrect because they do not match the coefficients in the balanced chemical equation.
Therefore, the correct option is: for every 3 moles of carbon dioxide produced, 5 moles of oxygen react.
To learn more about balanced equation here
https://brainly.com/question/31242898
#SPJ1
The hypochlorite ion, ClO-, is the active ingredient in bleach. The perchlorate ion, ClO4-, is a main component of rocket propellants. Draw Lewis structures for both ions.
(a) What is the formal charge of Cl in the hypochlorite ion?
(b) What is the formal charge of Cl in the perchlorate ion, assuming the ClㅡO bonds are all single bonds?
(c) What is the oxidation number of Cl in the hypochlorite ion?
(d) What is the oxidation number of Cl in the perchlorate ion, assuming the ClㅡO bonds are all single bonds?
(e) In a redox reaction, which ion would you expect to be more easily reduced?
(a) The formal charge of Cl in the hypochlorite ion (ClO-) is +1.
(b) The formal charge of Cl in the perchlorate ion (ClO4-) with single bonds is +3.
How to solveFor chlorine (Cl):
Valence electrons: 7
Non-bonding electrons: 6 (3 lone pairs)
Bonding electrons: 2 (1 single bond with oxygen)
Formal charge of Cl = 7 - 6 - (1/2 * 2) = 7 - 6 - 1 = +1
Hence, the formal charge of Cl in the hypochlorite ion is +1.
(c) The oxidation number of Cl in the hypochlorite ion is +1.
(d) The oxidation number of Cl in the perchlorate ion with single bonds is +7.
(e) In a redox reaction, the hypochlorite ion (ClO-) would be more easily reduced because it has a lower oxidation number (+1) compared to the perchlorate ion (+7).
Read more about oxidation number here:
https://brainly.com/question/27239694
#SPJ1
What is the minimum concentration of fluoride ions necessary to precipitate CaF2 from a 5.25 x 10-3 M solution of Ca(NO3)2? Ksp of CaF2 = 3.9 x 10-11
The minimum concentration of fluoride ions needed is 2.726 x 10⁻⁴ M.
How to solveTo find the minimum concentration of fluoride ions needed to precipitate CaF₂, we'll use the solubility product constant (Ksp) and the calcium ion concentration.
Ksp = [Ca²⁺][F⁻]²
Given: [Ca²⁺] = 5.25 x 10⁻³ M, Ksp = 3.9 x 10⁻¹¹
3.9 x 10⁻¹¹ = (5.25 x 10⁻³)[F⁻]²
Solve for [F⁻]:
[F⁻]² = (3.9 x 10⁻¹¹) / (5.25 x 10⁻³)
[F⁻]² = 7.4286 x 10⁻⁹
[F⁻] = 2.726 x 10⁻⁴ M
The minimum concentration of fluoride ions needed is 2.726 x 10⁻⁴ M.
Read more about concentration here:
https://brainly.com/question/17206790
#SPJ1
Answer the following questions in complete sentences, and justify your responses.
After how many time intervals (shakes) did one-half of your atoms (candies) decay?
What is the half-life of your substance?
If the half-life model decayed perfectly, how many atoms would be remaining (not decayed) after 12 seconds?
If you increased the initial number of atoms (candies) to 300, would the overall shape of the graph be altered? Explain your answer.
Go back to your data table and for each three-second interval, divide the number of candies decayed by the number previously remaining and multiply by 100. Show your work.
The above percentage calculation will help you compare the decay modeled in this experiment to the half-life decay of a radioactive element. Did this activity perfectly model the concept of half-life? If not, was it close?
Compare how well this activity modeled the half-life of a radioactive element. Did the activity model half-life better over the first 12 seconds (four decays) or during the last 12 seconds of the experiment? If you see any difference in the effectiveness of this half-life model over time, what do you think is the reason for it?
To answer these questions, we need to know what substance you are referring to, as well as the data from the experiment.
1. After a certain number of time intervals (shakes), one-half of your atoms (candies) would decay. This number would depend on the specific substance and its half-life.
2. The half-life of a substance is the time it takes for half of its atoms to decay.
3. If the half-life model decayed perfectly, the number of remaining atoms after 12 seconds would depend on the initial number of atoms and the half-life of the substance.
4. If you increased the initial number of atoms (candies) to 300, the overall shape of the graph would not be altered. This is because the half-life decay is a percentage-based process, meaning it would still follow an exponential decay pattern.
5. To calculate the percentage of decay for each three-second interval, you would divide the number of candies decayed by the number previously remaining and multiply by 100. This would show the percentage of decay for each interval.
6. This activity may not perfectly model the concept of half-life, but it can provide a close approximation. Any discrepancies may be due to experimental errors or limitations.
7. To compare how well this activity modeled the half-life of a radioactive element, you would need to analyze the decay percentages over time. If there are differences in the effectiveness of the half-life model, it could be due to the limitations of the experimental setup, such as using candies as a representation of atoms.
For more question on substance
https://brainly.com/question/24647756
#SPJ11
How many grams of NiNO can be produced if 35.1 g of ammonium nitrate and 552 g of sodium phosphate react?
Answer:its b
Explanation:
jusut bcss
The total pressure of gas collected over water is 725.0 mmHg and the temperature is 18.0 C what is the pressure of hydrogen gas formed in mmHg
The pressure of hydrogen gas formed is 709.5 mmHg.
Partial pressure is the pressure exerted by a single gas component in a mixture of gases, assuming all other gases are held constant.
In this case, the hydrogen gas is formed by a chemical reaction.
To calculate the partial pressure of hydrogen gas, we need to subtract the vapor pressure of water from the total pressure of the gas collected.
The vapor pressure of water at 18.0 °C is 15.5 mmHg.
Therefore, the partial pressure of hydrogen gas can be calculated as:
Partial pressure of hydrogen gas = Total pressure - Vapor pressure of water
Partial pressure of hydrogen gas = 725.0 mmHg - 15.5 mmHg = 709.5 mmHg
To know more about hydrogen gas here
brainly.com/question/12494649
#SPJ1
A solution that is neutral has a pH of:
0
14
10
1
7
determine the solubility of NH and 90° C
The solubility of NH₃ in water at 90°C is approximately 0.03 g per 100 g of water.
What is the solubility of NH₃?The solubility can be determined from a solubility table or by using the appropriate equilibrium constant.
According to a solubility table, the solubility of ammonia in water at 90°C is approximately 88 g per 100 g of water.
Alternatively, the equilibrium constant for the dissolution of ammonia in water at 90°C can be used to calculate the solubility.
The equilibrium constant (K) for the reaction:
NH3 (g) + H2O (l) ⇌ NH4+ (aq) + OH- (aq)
is approximately 1.76 x 10⁻⁵ at 90°C.
Using the equilibrium constant expression:
K = [NH4+][OH-]/[NH3][H2O]
Assuming that the concentration of water remains constant at 100 g per 100 g of solution, and that the concentration of NH4+ and OH- are negligible compared to that of NH3, the solubility of NH3 can be calculated as:
[NH3] = K[H2O] = 1.76 x 10⁻⁵ x 100 = 1.76 x 10⁻³ mol/L
Converting to grams per 100 g of water:
1.76 x 10⁻³ mol/L x 17.03 g/mol = 0.03 g/100 g of water
Learn more about solubility here: https://brainly.com/question/23946616
#SPJ1
The complete question is below:
determine the solubility of NH₃ in water at 90° C
draw the lewis structure of ch3br
The Lewis structure of the compound[tex]CH_{3} Br[/tex] is shown in the image attached.
What is the Lewis structure?The Lewis structure of a molecule or ion is produced by arranging the atoms in a manner that lessens the attraction between their valence electron pairs and then distributes the valence electrons among the atoms to form covalent bonds.
The octet rule, which states that atoms normally gain or lose electrons to obtain a stable configuration with eight valence electrons, frequently serves as a guidance when arranging electrons in the Lewis structure.
Learn more about Lewis structure:https://brainly.com/question/20300458
#SPJ1
a solution is made by mixing 100 ml of ethanol and 200 mL of water identified the solute of solvent of the solution and calculate the total volume of the solution
The solution has a total volume of 300 mL and is composed of 100 mL of ethanol (the solute) and 200 mL of water (the solvent).
Does a solution form when 50 mL of ethanol and 50 mL of water are combined?Less than 100 ml will result from mixing 50 ml each of ethanol and water in an equal ratio. This happens because ethanol molecules, which are smaller than those of water, may fit inside big water molecules. As a result, the alcohol content in a 250 mL mix of water and alcohol is 60%.
The combined volumes of the ethanol and water make up the total volume of the solution, which is:
Total volume = 100 mL + 200 mL = 300 mL
Therefore, the solution is made up of 100 mL of ethanol (the solute) and 200 mL of water (the solvent), with a total volume of 300 mL.
To know more about solution visit:-
https://brainly.com/question/30665317
#SPJ1
Is the following reaction endothermic or exothermic?
C3H8 + 5 O2 --> 3 CO2 + 4 H2O
H= -2200 kJ
Since the ΔH for the given reaction has negative value, the reaction is exothermic reaction.
A reaction that is exothermic is one in which power is given off as heat or light. In contrast to an endothermic process, which draws energy from its surroundings, an exothermic reaction transfers energy into the environment. The alteration in enthalpy (H) during an exothermic reaction will be negative. Since the ΔH for the given reaction has negative value, the reaction is exothermic reaction.
To know more about exothermic reaction, here:
https://brainly.com/question/10373907
#SPJ1