Answer:
a) [tex]1,000,000 \times (1.06)^{t}[/tex]
b) The function is recursive
c) The benefits includes;
1) Simplification of information
2) Faster data access
3) Lesser storage requirement
4) Good for forecasting
5) Simplifies information analysis.
Step-by-step explanation:
The given information are;
The current population = 1,000,000
The rate of increase of the population = 6%
a) With the standard function notation is [tex]P_f[/tex] = [tex]P_p[/tex] × [tex](1 + r)^{t}[/tex]
Where;
[tex]P_f[/tex] = Future population
[tex]P_p[/tex] = Present population
r = Rate of population increase
t = The number of years
Therefore, we have;
[tex]P_f[/tex] = 1,000,000 × [tex](1 + 0.06)^{t}[/tex] = 1,000,000 × [tex](1.06)^{t}[/tex]
The population increases by a factor of [tex](1.06)^{t}[/tex] given the number of years, t
b) The function is recursive as it takes account of the number of years and the previous population to calculate the future population
c) The benefits includes;
1) Simplification of the relationship of a given data with time
2) Provides a more faster way to access data that is recursive than using complex regular function with more variables
3) Reduces data storage space for statistical calculations as several particular data can be accessed using one function
4) Provides improved forecasting
5) Enables detailed information analysis.
This problem is kinda hard can you help me
Answer:
B - 5
Step-by-step explanation:
K: 60
M: 60 x 25%; 60 x .25 = 75
K: 1500/60 = 25
M: 1500/75 = 20
25-20=5
what is the vertex of g(x)=-3x^2+18x+2? a) (3,-25) b) (-3,-25) c) (3,29) d) (-3,29)
C). (3, 29) would be your answer.
Explanation?:
Rewrite the equation in vertex form.
y = -3(x - 3)^2 + 29
use the vertex form, y = a(x - h)^2 + k, to determine the values of a, h, and k.
a = -3
h = 3
k = 29
The vertex = (h, k)/(3, 29)
Hope this helps!
Answer:
It would be c
Step-by-step explanation:
Hope is the coach of the Wilson High School girls' soccer team. There are 3 minutes left in the game they are currently playing, and they are losing by 1 goal. In the past, when losing by 1 goal, Hope has pulled a defender out of the game and replaced her with a forward a total of 9 times. When in the same position, she has left the defender in the game 10 times. In the situations when Hope has pulled her defender, the team has lost 4 times, tied 2 times, and won 3 times. In situations when she has left her defender in the game, the team has lost 1 time, tied 3 times, and won 6 times. Based on the information above, if the goal is to either tie or win the game, should Hope pull the defender or leave her in the game?
Answer:
Hope should not pull her defender.
Step-by-step explanation:
When Hope has pulled her defender:
The team had lost 4 times, tied 2 times, and won 3 times.
Hence, the total number of times she meets her goal is:
6 times (Since the goal is to either tie or win the game )
Hence, the probability that she meets her goal is = 6/9=2/3=0.66
When she left her defender in the game:
The team has lost 1 time, tied 3 times, and won 6 times.
Hence, the total number of times she meets her goal is: 9
Hence, the probability that she meets her goal is: 9/10=0.9
As the probability of meeting her goal is more when she left her defender in the game is more.
Hence, Hope should not pull her defender.
A rectangular storage container with an open top is to have a volume of 10 m3. The length of this base is twice the width. Material for the base costs $20 per square meter. Material for the sides costs $12 per square meter.
Answer:
$ 327.08
Step-by-step explanation:
Let x = width of the container,
Then Length of the container = 2x
Let h = height of the container,
volume of the container can be calculated as length × width × height
= 2x × x × h
= 2x² h
Then we can say Volume =
= 2x² h=10
If we simplify inorder to get h
We have h= 5/x²
Then the area= (2L×h) +(2xh)
Where L is lenght
x= wish
h= height
= 2× 2x × h+ x× h
= 4x× 5/x + 2x × 5/x
Area = 30/x
Now, the area of the base = length × width
But from question, for the base costs $20 per square meter. Material for the sides costs $12 per square meter
Then the cost C(x)= 2x²× 20+30/x ×12
C(x)= 40x²+35/x²
If we differenciate wrt x we have
C(x)= 80-360/x²
If we equate C(x)=0the
80=360/x²
x= 1.651
If substitute to C(x)= 40x²+35/x²
C(x) = 40(1.651)² + 35/(1.651)²
We have cost= 327.08
factor the equation using zero product property. x2+7x=-6
Answer:
x = -6 x = -1
Step-by-step explanation:
We want to solve using the zero product property
x^2+7x=-6
Add 6 to each side
x^2 +7x +6 = 0
Factor
What 2 numbers multiply to 6 and add to 7
( x+6) (x+1) =0
Using the zero product property
x+6 =0 x+1 =0
x+6-6 =0-6 x+1-1 = 0-1
x = -6 x = -1
6) Which expressions are equivalent to 12x + 36y? Choose ALL that apply.
12(x + 3y)
9(3x + 4y)
6(2x + 6y)
4(3x + 9y)
2(6x + 24y)
3(4x + 12y)
the 1st one
third one
fourth one
the last one
each of the equation has one of the common factor out
12(x + 3y), 6(2x + 6y), 4(3x + 9y) and 3(4x + 12y) are the equivalent expressions of 12x + 36y.
What is Expression?An expression is combination of variables, numbers and operators.
Equivalent expressions are expressions that work the same even though they look different.
The given expression is 12x + 36y.
Twelve times of x plus thirty six times of y.
When we solve each expression we have to get 12x + 36y.
1. 12(x + 3y)- Equivalent expression
By distributive property
=12x+36y
2. 9(3x + 4y)- Not Equivalent expression.
27x+36y
3. 6(2x + 6y)- Equivalent expression
12x+36y
4. 4(3x + 9y)-Equivalent expression
5. 2(6x + 24y)- Not Equivalent expression.
12x+48y
6. 3(4x + 12y)-Equivalent expression
12x+36y
Hence, 12(x + 3y), 6(2x + 6y), 4(3x + 9y) and 3(4x + 12y) are the equivalent expressions of 12x + 36y.
To learn more on Expressions click:
https://brainly.com/question/14083225
#SPJ5
How many cubes are there . A - 26 B - 27 C - 28 D - 29 E - 30 or F - 31
Answer is 31 because you have to count the ones under and behind
(Mathematics Question)
House Insurance 50 per $100
Contents Insurance 25 per $100
The above shows the rates charged by an insurance company. How much will a person pay for his insurance, if his house is valued at $50,000, and the content at $10,000?
(A) $225
(B) $275
(C) $450
(D) $500
Answer: B.) $275
Step-by-step explanation:
Rates charged by insurance company :
House Insurance 50 per $100
Contents Insurance 25 per $100
Value of House = $50,000
Insurance Fee:
$50,000 / $100 = 500
500, 50 cent payment,
50 cent × 500 = 25000 cent
Value of content = $10,000
Insurance Fee:
$10,000 / $100 = 100
100, 25 cent payment
25 cent × 100 = 2500 cent
Total insurance fee:
(25000 + 2500) cent
= 27500 cent
27,500 cent / 100
= $275
The graph of f(x) = 2x3 – 19x2 + 57x – 54 is shown below.
On a coordinate plane, a graph of a function is in quadrants 1 and 4. The function goes through the x-axis at (2, 0), (3, ), and (4.5, 0).
How many roots of f(x) are rational numbers?
0
1
2
3
Mark this and return
Answer:
it'd be 3! :)
Step-by-step explanation:
took quiz
to be sure, the graph goes like
/ , then a hill like shape, then goes U, and then goes up
The number of rational roots of the equation are 3.
What is the root of an equation?The root of an equation are the solutions to an equation. The equation as shown is a cubic equation hence will have three roots shows as (2, 0), (3, 0), and (4.5, 0).
It thus implies from the foregoing that the number of rational roots of the equation are 3.
Learn more about root of an equation:https://brainly.com/question/12029673
#SPJ5
Please help fast! 25 points and brainliest!!
Let f(x) = 36x5 − 44x4 − 28x3 and g(x) = 4x2. Find f of x over g of x
Answer:
The answer is
9x³ - 11x² - 7xStep-by-step explanation:
f(x) = 36x^5 − 44x⁴ − 28x³
g(x) = 4x²
To find f(x) / g(x) Divide each term of f(x) by g(x)
That's
[tex] \frac{f(x)}{g(x)} = \frac{ {36x}^{5} - {44x}^{4} - {28x}^{3} }{ {4x}^{2} } \\ \\ = \frac{ {36x}^{5} }{ {4x}^{2} } - \frac{ {44x}^{4} }{ {4x}^{2} } - \frac{ {28x}^{3} }{ {4x}^{2} } \\ \\ = {9x}^{3} - {11x}^{2} - 7x[/tex]
Hope this helps you
Answer:
9x³ - 11x² - 7x
Step-by-step explanation:
guy abpove is right or bwlowe
describe the end behavior f(x)=5x^4+3x^2-1.
Martin will earn $25 per hour at a new job. During training, he will earn $20 per hour. What percent of Martin's regular hourly rate will he earn during training?
Answer:
He will earn 80% during training
Step-by-step explanation:
Lets take $25 as 100%
And take $20 as x
Using equivalent ratios, the equation would look like: $25:100% = $20:x
Next, turn them into fractions: $25 = $20
100% x
Cross multiply to get:
(25)x = $20×100%
The next step:
25x = $20×100%
25 25
25 and 25 will cancel each other out leaving x, and 25 will divide 100% which will give you 4
Leaving it as:
x= 20×4%
x= 80%
Miguel is playing a game in which a box contains four chips with numbers written on them. Two of the chips have the number 1, one chip has the number 3, and the other chip has the number 5. Miguel must choose two chips, and if both chips have the same number, he wins $2. If the two chips he chooses have different numbers, he loses $1 (–$1).
Let X = the amount of money Miguel will receive or owe. Fill out the missing values in the table. (Hint: The total possible outcomes are six because there are four chips and you are choosing two of them.)
Answer:
[tex]P(X_i=2) =\dfrac{1}{6}[/tex]
[tex]P(X_i=-1) =\dfrac{5}{6}[/tex]
Step-by-step explanation:
Given the numbers on the chips = 1, 1, 3 and 5
Miguel chooses two chips.
Condition of winning: Both the chips are same i.e. 1 and 1 are chosen.
Miguel gets $2 on winning and loses $1 on getting different numbers.
To find:
Probability of winning $2 and losing $1 respectively.
Solution:
Here, we are given 4 numbers 1, 1, 3 and 5 out of which 2 numbers are to be chosen.
This is a simple selection problem.
The total number of ways of selecting r numbers from n is given as:
[tex]_nC_r = \frac{n!}{r!(n-r)!}[/tex]
Here, n = 4 and r = 2.
So, total number of ways = [tex]_4C_2 = \frac{4!}{2!\times 2!} = 6[/tex]
Total number of favorable cases in winning = choosing two 1's from two 1's i.e. [tex]_2C_2 = \frac{2!}{2! 0! } = 1[/tex]
Now, let us have a look at the formula of probability of an event E:
[tex]P(E) = \dfrac{\text{Number of favorable ways}}{\text{Total number of ways}}[/tex]
So, the probability of winning.
[tex]P(X_i=2) =\dfrac{1}{6}[/tex]
Total number of favorable cases for -1: (6-1) = 5
So, probability of getting -1:
[tex]P(X_i=-1) =\dfrac{5}{6}[/tex]
Please refer to the attached image for answer table.
Answer:
two = 1/6
and -1 = 5/6
Step-by-step explanation:
The double number line shows that Faye can sort 150 recyclable items in 3 minutes. Based on the ratio shown in the double number line, how many recyclable items can Faye sort in 4 minutes? items
Answer:
200 Recyclables Items
Step-by-step explanation:
The first step is to find the common ratio using this formula
Common ratio= Numbers of recyclable items/Number of minutes it takes to sort the recyclable item
Let plug in the formula
Common ratio =150/3 = 50
This means that we have 50 Recyclables Items per minute.
Now let calculate how many recyclable items that Faye can sort in 4 minutes
This means we are going to multiply 4 minutes by the 50 recyclable items per minutes
Hence,
4 * 50 = 200 Recyclables Items
Therefore Based on the ratio shown in the double number line, this means that Faye can sort 200 recyclable item in 4 minutes
Answer: 200
Step-by-step explanation: Since 150 divided by 3 is 50 add a 50 to 150 and you get 200
2.
The roots of the equation x2-3x - m(m + 3) = 0,
where m is a constant, are
(a) m, m + 3
(b) -m, m + 3
(c) m,- (m+3) (d) -m, -(m + 3)
(AI 2011)
Answer:
(b) -m, m + 3
Step-by-step explanation:
x² − 3x − m(m + 3) = 0
x² − 3x = m(m + 3)
x² − 3x + 9/4 = m(m + 3) + 9/4
(x − 3/2)² = m(m + 3) + 9/4
(x − 3/2)² = m² + 3m + 9/4
(x − 3/2)² = (m + 3/2)²
x − 3/2 = ±(m + 3/2)
x − 3/2 = m + 3/2, -m − 3/2
x = m + 3, -m
if x= y^2/y^3 +1, what is the value of y in terms of x?
Answer:
1/(x-1)
Step-by-step explanation:
here,x=y^2/y^3 +1
x-1=y^2-3
x-1=y^-1
y=1/(x-1)
So, the value of y in terms of x is 1/(x-1)
I Hope this will be helpful for you
A group conducted a poll of 2022
likely voters just prior to an election. The results of the survey indicated that candidate A would receive 49
%
of the popular vote and candidate B would receive 46
%
of the popular vote. The margin of error was reported to be 5
%.
The group reported that the race was too close to call. Use the concept of a confidence interval to explain what this means.
Answer:
Step-by-step explanation:
number of likely voters = 2022
candidate A = 49%
candidate B = 46%
margin of error = 5%
using the concept of a confidence interval to explain
from the result of the poll conducted candidate A scored 49% of the votes while Candidate B scored 46% therefore the difference between the two voters is 3%.
also the margin of error is 5% which is higher than the 3% difference between the candidates. this margin error means that the 5% can vote for either candidate A or candidate B .which makes the results TOO CLOSE TO CALL
Which values for h and k are used to write the function f of x = x squared + 12 x + 6 in vertex form?
h=6, k=36
h=−6, k=−36
h=6, k=30
h=−6, k=−30
Answer:
h=−6, k=−30
Step-by-step explanation:
did on edge
Considering the equation of the parabola, the coefficients of the vertex are:
h=−6, k=−30
What is the vertex of a quadratic equation?A quadratic equation is modeled by:
[tex]y = ax^2 + bx + c[/tex]
The vertex is given by:
[tex](h,k)[/tex]
In which:
[tex]h = -\frac{b}{2a}[/tex]
[tex]k = -\frac{b^2 - 4ac}{4a}[/tex]
In this problem, the equation is:
[tex]f(x) = x^2 + 12x + 6[/tex]
Hence the coefficients are a = 1, b = 12, c = 6, thus:
[tex]h = -\frac{12}{2} = -6[/tex]
[tex]k = -\frac{120}{4} = -30[/tex]
More can be learned about the equation of a parabola at https://brainly.com/question/24737967
A car can go from rest to 90 km⁄h in 10 s. What is its acceleration?
Answer:
2.5 m/s^2
Step-by-step explanation:
Answer:
2.5 m/s²
Step-by-step explanation:
First, convert to SI units.
90 km/h × (1000 m/km) × (1 h / 3600 s) = 25 m/s
a = Δv / Δt
a = (25 m/s − 0 m/s) / 10 s
a = 2.5 m/s²
Which sign makes the statement true?
11
20
? 61%
>
<
Submit
ASAP
Find the value of f(-1)g(-1)
Answer:
4
Step-by-step explanation:
f(-1) = (-1)^2 +1 = 1 + 1 = 2
g(-1) = 3(-1) +5 = -3 +5 = 2
f(-1)g(-1) = (2)(2) = 4
PLEASE HELP What is the difference between a consistent and inconsistent system of equations?
Answer:
A consistent system of equations has at least one solution, and an inconsistent system has no solution.
Step-by-step explanation:
Answer:
A consistent system of equations has at least one solution, and an inconsistent system has no solution.
Step-by-step explanation:
nvm
PLEASE ANSWER QUICKLY: Two boxes have the same volume. One box has a base that is 5cm by 5cm. The other box has a base of 10cm by 10cm. How many times as tall is the box with the smaller base than the larger base?
Answer: 4 times as large
Step-by-step explanation:
The volume of a rectangular prism(box) can be calculated as base area*height. Because the base of one is 100 and the other 25, simply do 100/25 = 4, to determine that the box with the smaller base must be 4x as tall as the other box.
Hope it helps <3
the angle of elevation of the top of a tree from a point 27m away on the same horizontal ground as the foot on the tree is 30 degrees .find the height of the tree.
Answer:
The height of the tree = 15.59m
Step-by-step explanation:
let's make the height of the tree = x
tan30=x/27
x = 27 x tan30
x = 15.59m
What is the result of subtracting the second equation from the first? \begin{aligned} -2x+7y &= 10 \\\\ 3x+7y &= 2 \end{aligned} −2x+7y=10 3x+7y=2
Answer:
-5x = 8
Step-by-step explanation:
The result is shown here. The y-terms cancel.
[tex]\begin{array}{rccc}& -2x+7y &= &10 \\-&(\ \,3x+7y &= &2)\\\cline{1-4}&-5x+0y&=&8 \end{array}[/tex]
The simplified result is ...
-5x = 8
Answer:
The result is that 5x = -8
Step-by-step explanation:
Here, we want to subtract 3x + 7y = 2 from -2x + 7y = 10
Mathematically that would be;
(-2x+7y)-(3x+7y) = 10-2
-2x + 7y -3x -7y = 8
-2x -3x + 0 = 8
-5x = 8 or 5x = -8
At a central train station, there are 4 different train routes with trains that leave every 6 minutes, 10 minutes, 12 minutes, and 15 minutes. If each train can hold up to 200 passengers, what is the maximum number of passengers who can leave the station on a train in one hour?
Answer:
5,000 passengers
Step-by-step explanation:
1. Find out how many trains leave each hour.
6 min – 60/6 = 10 x 200 passengers = 2000
10 min – 60/10 = 6 x 200 passengers = 1200
12 min – 60/12 = 5 x 200 passengers = 1000
15 min – 60/15 = 4 x 200 passengers = 800
2. Add it all up.
2000 + 1200 + 1000 + 800 = 5000 passengers
Answer:
5000
Step-by-step explanation:
6 minute train leaves 10 times
10 x 200 = 2000 passengers
10 minute train leaves 6 times
6x200 = 1200
12 minute train leaves 5 times
5x200 =1000
15 minute train leaves 4 times
4x200 =800
2000+1200+1000+800=5000
assuming more than 1 train can be at the station at once
find the value of x in the triangle shown below
Answer:
46°
Step-by-step explanation:
We can tell that this triangle is an isosceles triangle because 2 of it's sides are the same, therefore, two of it's angles are the same.
Looking at it, we can assume that the two angles not defined (x and the other one) are the two angles that are the same because they look similar.
Now, the angles of all triangles add up to 180°. So, we can subtract 88° from 180 to see what the two angles add up to.
[tex]180-88=92[/tex]
So both of these angles add up to 92 degrees. Since there are two, we divide 92 by 2.
[tex]92 \div 2 = 46[/tex]
Hope this helped!
x + 3y = 42
2x - y= 14
Answer:
x=12,y=10
Step-by-step explanation:
Step: Solve x+3y=42
x+3y=42
x+3y+−3y=42+−3y(Add -3y to both sides)
x=−3y+42
Step: Substitute−3y+42forxin2x−y=14:
2x−y=14
2(−3y+42)−y=14
−7y+84=14(Simplify both sides of the equation)
−7y+84+−84=14+−84(Add -84 to both sides)
−7y=−70
Divide both sides by -7
y=10
Step: Substitute10foryinx=−3y+42:
x=−3y+42
x=(−3)(10)+42
x=12(Simplify both sides of the equation)
Hope this Helps:)
-Ac<3-
PLEASE HELP the formula m=12,000+12,000rt/12t gives keri's monthly loan payment where t is the annual interest rate and t is the length of the loan, in years. Keri decideds that she can afoord at most a $275
Answer:
The answer is below
Step-by-step explanation:
The formula m = (12,000 + 12,000rt)/12t gives Keri's monthly loan payment, where r is the annual interest rate and t is the length of the loan, in years. Keri decides that she can afford, at most, a $275 monthly car payment. Give an example of an interest rate greater than 0% and a loan length that would result in a car payment Keri could afford. Provide support for your answer.
Answer: Let us assume an annual interest rate (r) = 10% = 0.1. The maximum monthly payment (m) Keri can afford is $275. i.e. m ≤ $275. Using the monthly loan payment formula, we can calculate a loan length that would result in a car payment Keri could afford.
[tex]m=\frac{12000+12000rt}{12t}\\ but\ m\leq275, \ and \ r=10\%=0.1\\275= \frac{12000+12000(0.1)t}{12t}\\275= \frac{12000}{12t} +\frac{12000(0.1)}{12t}\\275= \frac{1000}{t} + 100\\275-100= \frac{1000}{t} \\175= \frac{1000}{t} \\175t = 1000\\t= \frac{1000}{175}\\ t=5.72\ years[/tex]
The loan must be at least for 5.72 years for an annual interest rate (r) of 10%
Here's the keywords you need! :)
example of an interest rate and a loan length that costs under $275/month (example: 4-year loan at 2% interest)
monthly payment for the loan you described (example: 4-year loan at 2% interest is $270/month)
statement that the monthly payment for the loan you described is less than or equal to $275 (example: $270/month payment is less than $275)
Just got it right on edge 2020, hope this helps!! :)
create and solve a linear equation that represents the model, where circles and a square are shown evenly balanced on a balance beam.
A. + 7 = 12; x = 5
B. x = 5 + 7; x = 12
C. x + 5 = 7; x = 2
D. x + 7 = 5; x = -2
Answer:
C
Step-by-step explanation:
We can notice that the balance beam has in one side 7 balls and in the other one 5 balls and a square
The balance beam is balenced
Let x be the square mass
x+5 = 7 substract five from each side x+5-5 = 7-5 x = 2The solution is 2
C fits perfectly what we prooved
Answer:
C: x + 5 = 7; x = 2
Step-by-step explanation:
Refer to the given model. On the left-hand side of the balance beam, there are five circles and one square. On the right-hand side of the balance beam, there are seven circles. The balance beam is evenly distributed, so the value on the left-hand side of the balance beam must be the same as the value on the right-hand side of the balance beam.
The square stands for an unknown quantity. In algebra, variables are used to represent unknown quantities, so x will represent the value of the square.
The model shows that the value of x plus five circles is the same as seven circles. Replacing the word "plus" with a plus sign and replacing "is the same as" with an equal sign gives the equation x + 5 = 7.
To solve the equation, subtract 5 from both sides of the equation to isolate x.
Thus, the solution to the equation is x = 2.