Ava wants to figure out the average speed she is driving. She starts checking her car’s clock at mile marker 0. It takes her 4 minutes to reach mile marker 3. When she reaches mile marker 6, she notes that 8 minutes total have passed since mile marker 0. What is the average speed of the car in miles per minute? What is an equation of the line that represents n, the number of mile marker passed, as a function of t, time in minutes? PLEASE HELP

Answers

Answer 1

Answer:

Below

Step-by-step explanation:

The average speed is given by the following formula:

● V = d/t

● d is the distance covered

● t is the time spent to cover the distance d

■■■■■■■■■■■■■■■■■■■■■■■

Ava takes 8 minutes to go from mile marker 0 to mile marker6.

● the distance Ava traveled is 6 miles

● the time Ava spent to reach mile marker 6 is 8 minutes

So the average speed of Ava is:

● V = 6/ 8 = 3/4 = 0.75 mile per min

●●●●●●●●●●●●●●●●●●●●●●●●

Let's The equation of the line that links the number of milemarkers (n) and the time (t).

Ava went from mile marker 0 to mile marker 6.

At t=0 Ava just started travelling from mile marker 0 to 1.

Afrer 8 minutes,she was at mile marker 6.

So 8 min => 6 mile markers (igonring mile marker 0 since the distance there was 0 mile)

6/8= 0.75

Then n/t = 0.75

● n = 0.75 * t

Let's check

● n= 0.75*4 = 3

That's true since after 4 minutes Ava was at mile marker 3.


Related Questions

Translate the sentence into an equation seven times the sum of a number and 5 is 4

Answers

Answer:

7(x+5) = 4

Step-by-step explanation:

"A number" refers to a variable. Seven is multiplied to the sum of a number and 5, meaning they must be in parentheses, indicating it is the sum.

HELP ASAP I NEED THIS RIGHTNOW 30 points

Answers

Answer:

Pretty sure it is c

Step-by-step explanation:

Answer:

C.

Step-by-step explanation:

She will be painting the outsides of the table, so we need to find the surface area of the table.

There is the flat part of the table, which is a rectangular prism. There are also four legs, which are rectangular prism.

So, she will paint C. the surface area of 6 rectangular prisms.

Hope this helps!

What is the degree of the polynomial?​

Answers

Answer: 3rd Degree

Step-by-step explanation:

In a random sample of 400 residents of Boston, 320 residents indicated that they voted for Obama in the last presidential election. Develop a 95% confidence interval estimate for the proportion of all Boston residents who voted for Obama.

Answers

Answer:

C.I =  0.7608   ≤ p ≤   0.8392

Step-by-step explanation:

Given that:

Let consider a  random sample n = 400 candidates where  320 residents indicated that they voted for Obama

probability [tex]\hat p = \dfrac{320}{400}[/tex]

= 0.8

Level of significance ∝ = 100 -95%

= 5%

= 0.05

The objective is to  develop a 95% confidence interval estimate for the proportion of all Boston residents who voted for Obama.

The confidence internal can be computed as:

[tex]=\hat p \pm Z_{\alpha/2} \sqrt{\dfrac{ p(1-p)}{n } }[/tex]

where;

[tex]Z_{0.05/2}[/tex] = [tex]Z_{0.025}[/tex] = 1.960

SO;

[tex]=0.8 \pm 1.960 \sqrt{\dfrac{ 0.8(1-0.8)}{400 } }[/tex]

[tex]=0.8 \pm 1.960 \sqrt{\dfrac{ 0.8(0.2)}{400 } }[/tex]

[tex]=0.8 \pm 1.960 \sqrt{\dfrac{ 0.16}{400 } }[/tex]

[tex]=0.8 \pm 1.960 \sqrt{4 \times 10^{-4}}[/tex]

[tex]=0.8 \pm 1.960 \times 0.02}[/tex]

[tex]=0.8 \pm 0.0392[/tex]

= 0.8 - 0.0392     OR   0.8 + 0.0392  

= 0.7608    OR    0.8392

Thus; C.I =  0.7608   ≤ p ≤   0.8392

A rectangle has length 4 inches and width 2 inches. If the length and width of the rectangle are
reduced by 50 percent, by what percent will the area of the rectangle be reduced?
40 percent
50 percent
60 percent
75 percent

Answers

Answer:

75%

Step-by-step explanation:

First we can solve the area of the rectangle originally the answer is:

4 × 2 = 8

Then we decrease both measurements by 50% to get the dimensions 1 and 2. The new area will be 1 × 2 which is 2.

2 is 25% of 8 which means that the area of the rectangle has been reduced by 75%.

Farmers Jay, Peter, and Sam own rectangular farms, as indicated in the figure. Jay owns 2 acres of land, Peter owns 4 acres and Sam owns 6 acres. Find the area of the common pasture. PLEASE HELP ASAP!

Answers

Answer:

Area of the common pasture = 12 acres

Step-by-step explanation:

Let the dimensions of the farm owned by Jay are 'a' units and 'b' units.

Area of the farm = ab = 2 acres

Similarly, areas of the farm owned by Peter with dimensions 'a' unit and 'c' unit = ac = 4 acres

And area of the farm owned by Sam with dimensions 'b' and 'd' units = bd = 6 acres

Now, [tex]\frac{ab}{ac}=\frac{2}{4}[/tex]

[tex]\frac{b}{c}=\frac{1}{2}[/tex] ---------(1)

[tex]\frac{ab}{bd}=\frac{2}{6}[/tex]

[tex]\frac{a}{d}=\frac{1}{3}[/tex] ---------(2)

[tex]\frac{b}{c}\times \frac{a}{d}=\frac{1}{2}\times \frac{1}{3}[/tex]

[tex]\frac{ab}{cd}=\frac{1}{6}[/tex]

cd = 6(ab)

cd = 6 × 2 [Since ab = 2 acres]

    = 12 acres

Therefore, area of the common pasture will be 12 acres.

Suppose that you expect SugarCane stock price to decline. So you decide to ask your broker to short sell 2000 shares. The current market price is $40. The proceeds from the short sale $80,000 is credited into your account. However, a few days later the market price of the stock jumps to $80 per share and your broker asks you close out your position immediately. What is your profit or loss from this transaction?

Answers

Answer:

Loss = $80000

Step-by-step explanation:

To determine if it's a profit or loss is simple.

He predicted the sugar cane stock to fall so he sold , but few days later the stock grew and went bullish.

He sold at$ 40 for 2000 shares

=$ 80000

But the stock went up to $80 per share that is gaining extra $40

So it was actually a loss.

The loss is =$40 * 2000

The loss = $80000

An object is moving at a speed of 7300 inches every 3 seconds. Express this speed in miles per day.

Answers

Answer:

≈3318 miles per day....

Step-by-step explanation:

um aluno tinha uma quantidade de questoes para resolver se ja resolveu a quinta parte da sua tarefa então a razão entre o numero de questoes resolvidas e o numero restante de questoes nessa ordem é a) 1/20 b)1/5 c)1/4 d)4 e)5

Answers

Answer:

can you please simplify that in English?

A man walking on a railroad bridge is 2/5 of the way along the bridge when he notices a train at a distance approaching at the constant rate of 45 mph . The man can run at a constant rate in either direction to get off the bridge just in time before the train hits him. How fast can the man run?

Answers

Answer:

The Man needs to run at 9 mph

Step-by-step explanation:

Let M stand for the man's speed in mph.  When the man  

runs toward point A, the relative speed of the train with respect  

to the man is the train's speed plus the man's speed (45 + M).  

When he runs toward point B, the relative speed of the train is the  

train's speed minus the man's speed (45 - M).

When he runs toward the train the distance he covers is 2 units.  

When he runs in the direction of the train the distance he covers  

is 3 units. We can now write that the ratio of the relative speed  

of the train when he is running toward point A to the relative speed  

of the train when he is running toward point B, is equal to the  

inverse ratio of the two distance units or

              (45 + M)          3

              -----------  =      ---

              (45 - M)          2

          90+2 M=135-3 M

⇒5 M = 45

⇒ M = 9 mph

The Man needs to run at 9 mph

Answer: 9 mph

Step-by-step explanation:

Given that a man walking on a railroad bridge is 2/5 of the way along the bridge when he notices a train at a distance approaching at the constant rate of 45 mph .

If the man tend to run in the forward direction, he will cover another 2/5 before the train reaches his initial position. The distance covered by the man will be 2/5 + 2/5 = 4/5

The remaining distance = 1 - 4/5 = 1/5

If the man can run at a constant rate in either direction to get off the bridge just in time before the train hits him, the time it will take the man will be

Speed = distance/time

Time = 1/5d ÷ speed

The time it will take the train to cover the entire distance d will be

Time = d ÷ 45

Equate the two time

1/5d ÷ speed = d ÷ 45

Speed = d/5 × 45/d

Speed = 9 mph

among a group of students 50 played cricket 50 played hockey and 40 played volleyball. 15 played both cricket and hockey 20 played both hockey and volleyball 15 played cricket and volley ball and 10 played all three. if every student played at least 1 game find the no of students and how many students played only cricket, only hockey and only volley ball

Answers

Answer:

Cricket only= 30

Volleyball only = 15

Hockey only = 25

Explanation:

Number of students that play cricket= n(C)

Number of students that play hockey= n(H)

Number of students that play volleyball = n(V)

From the question, we have that;

n(C) = 50, n(H) = 50, n(V) = 40

Number of students that play cricket and hockey= n(C∩H)

Number of students that play hockey and volleyball= n(H∩V)

Number of students that play cricket and volleyball = n(C∩V)

Number of students that play all three games= n(C∩H∩V)

From the question; we have,

n(C∩H) = 15

n(H∩V) = 20

n(C∩V) = 15

n(C∩H∩V) = 10

Therefore, number of students that play at least one game

n(CᴜHᴜV) = n(C) + n(H) + n(V) – n(C∩H) – n(H∩V) – n(C∩V) + n(C∩H∩V)

= 50 + 50 + 40 – 15 – 20 – 15 + 10

Thus, total number of students n(U)= 100.

Note;n(U)= the universal set

Let a = number of people who played cricket and volleyball only.

Let b = number of people who played cricket and hockey only.

Let c = number of people who played hockey and volleyball only.

Let d = number of people who played all three games.

This implies that,

d = n (CnHnV) = 10

n(CnV) = a + d = 15

n(CnH) = b + d = 15

n(HnV) = c + d = 20

Hence,

a = 15 – 10 = 5

b = 15 – 10 = 5

c = 20 – 10 = 10

Therefore;

For number of students that play cricket only;

n(C) – [a + b + d] = 50 – (5 + 5 + 10) = 30

For number of students that play hockey only

n(H) – [b + c + d] = 50 – ( 5 + 10 + 10) = 25

For number of students that play volleyball only

n(V) – [a + c + d] = 40 – (10 + 5 + 10) = 15

Answer:

Cricket only= 30

Volleyball only = 15

Hockey only = 25

Explanation of the answer:

Number of students that play cricket= n(C)

Number of students that play hockey= n(H)

Number of students that play volleyball = n(V)

From the question, we have that;

n(C) = 50, n(H) = 50, n(V) = 40

Number of students that play cricket and hockey= n(C∩H)

Number of students that play hockey and volleyball= n(H∩V)

Number of students that play cricket and volleyball = n(C∩V)

Number of students that play all three games= n(C∩H∩V)

From the question; we have,

n(C∩H) = 15

n(H∩V) = 20

n(C∩V) = 15

n(C∩H∩V) = 10

Therefore, number of students that play at least one game

n(CᴜHᴜV) = n(C) + n(H) + n(V) – n(C∩H) – n(H∩V) – n(C∩V) + n(C∩H∩V)

= 50 + 50 + 40 – 15 – 20 – 15 + 10

Thus, total number of students n(U)= 100.

Note;n(U)= the universal set

Let a = number of people who played cricket and volleyball only.

Let b = number of people who played cricket and hockey only.

Let c = number of people who played hockey and volleyball only.

Let d = number of people who played all three games.

This implies that,

d = n (CnHnV) = 10

n(CnV) = a + d = 15

n(CnH) = b + d = 15

n(HnV) = c + d = 20

Hence,

a = 15 – 10 = 5

b = 15 – 10 = 5

c = 20 – 10 = 10

Therefore;

For number of students that play cricket only;

n(C) – [a + b + d] = 50 – (5 + 5 + 10) = 30

For number of students that play hockey only

n(H) – [b + c + d] = 50 – ( 5 + 10 + 10) = 25

For number of students that play volleyball only

n(V) – [a + c + d] = 40 – (10 + 5 + 10) = 15

▬▬▬▬▬▬▬▬▬▬▬▬

What is the rate of change of the function

Answers

The average rate of change between two input values is the total change of the function values (output values) divided by the change in the input values.

The average rate of change between two input values is the total change of the function values (output values) divided by the change in the input values.

Section 8
Find the mean of these numbers:
24 18
37
82 17
26​

Answers

Answer:

[tex]\boxed{Mean = 34.33}[/tex]

Step-by-step explanation:

Mean = Sum of Observations / No. Of Observations

Mean = (24+18+37+82+17+26)/6

Mean = 206 / 6

Mean = 34.33

Suppose the weather forecast calls for a 60% chance of rain each day for the next 3 days. What is the probability that it will NOT rain during the next 3 days

Answers

Answer:

Probability that it'll not rain during the next three days = 0.064

Step-by-step explanation:

Given

Let:

P(R) represent the probability that it'll rain each day

P(R') represent the probability that it'll not

[tex]P(R) = 60\%[/tex]

Required

Probability that it'll not rain during the next three days

From concept of probability;

[tex]P(R) + P(R') = 1[/tex]

Substitute 60% for P(R)

[tex]60\% + P(R') = 1[/tex]

Subtract 60% from both sides

[tex]60\% - 60\% + P(R') = 1 - 60\%[/tex]

[tex]P(R') = 1 - 60\%[/tex]

Convert % to decimal

[tex]P(R') = 1 - 0.6[/tex]

[tex]P(R') = 0.4[/tex]

The probability that it'll not rain during the next 3 days is:

[tex]P(R') * P(R') * P(R')[/tex]

[tex]P(R') * P(R') * P(R') =0.4 * 0.4 * 0.4[/tex]

[tex]P(R') * P(R') * P(R') = 0.064[/tex]

WILL MARK AS BRAINLIEST!!! 5. A 2011 study by The National Safety Council estimated that there are nearly 5.7 million traffic accidents year. At least 28% of them involved distracted drivers using cell phones or texting. The data showed that 11% of drivers at any time are using cell phones . Car insurance companies base their policy rates on accident data that shows drivers have collisions approximately once every 19 years. That’s a 5.26% chance per year. Given what you know about probability, determine if cell phone use while driving and traffic accidents are related. Step A: Let DC = event that a randomly selected driver is using a cell phone. What is P(DC)? (1 point) Step B: Let TA = event that a randomly selected driver has a traffic accident. What is P(TA)? Hint: What is the probability on any given day? (1 point) Step C: How can you determine if cell phone use while driving and traffic accidents are related? (1 point) Step D: Given that the driver has an accident, what is the probability that the driver was distracted by a cell phone? Write this event with the correct conditional notation. (1 point) Step E: What is the probability that a randomly selected driver will be distracted by using a cell phone and have an accident? (2 points) Step F: For a randomly selected driver, are the events "driving while using a cell phone" and "having a traffic accident" independent events? Explain your answer. (2 points)

Answers

Answer:

Step-by-step explanation:

Hello!

Regarding the reasons that traffic accidents occur:

28% are caused by distracted drivers using cell phones or texting

11% of the drivers' user their phones at any time

The probability of a driver having an accident is 5.26%

a)

DC = event that a randomly selected driver is using a cell phone.

P(DC)= 0.11

b)

TA = event that a randomly selected driver has a traffic accident.

P(TA)= 0.0526

c) and f)

If both events are related, i.e. dependent, then you would expect that the occurrence of one of these events will affect the probability of the other one. If they are not related, i.e. independent events, then their probabilities will not be affected by the occurrence of one or another:

If both events are independent P(TA|DC)= P(TA)

If they are dependent, then:

P(TA|DC)≠ P(TA)

P(TA|DC)= 0.28

P(TA)= 0.0526

As you can see the probability of the driver having an accident given that he was using the cell phone is different from the probability of the driver having an accident. This means that both events are related.

d) and e)

You have to calculate the probability that "the driver was distracted with the phone given that he had an accident", symbolically P(DC|TA)

P(DC|TA) = [tex]\frac{P(DCnTA)}{P(TA)}[/tex]

[tex]P(TA|DC)= \frac{P(TAnDC}{P(DC)}[/tex] ⇒ P(DC∩TA)= P(TA|DC)*P(DC)= 0.28 *  0.11= 0.0308

P(DC|TA) = [tex]\frac{0.0308}{0.0526}= 0.585= 0.59[/tex]

I hope this helps!

A candidate for political office wants to determine if there is a difference in his popularity between men and women. To test the claim of this difference, he conducts a survey of voters. The sample contains 250 men and 250 women, of which 44% of the men and 52% of the women favor his candidacy. Do these values indicate a difference in popularity?Use a 0.01 significance level.
What are the hypothesis statements?
a) H0:pm=pw
HA:pm b) H0:pm=pw
HA:pm>pw
c) H0:pm=pw
HA:pm≠pw

Answers

Answer:

c) H0:pm=pw

HA:pm≠pw

Step-by-step explanation:

We formulate our hypothesis as

H0: pm = pw  " probability of men = probabilityof women" meaning there's no difference in the probabilityof the men and women in favor of his candidacy.

Alternate Hypothesis HA :pm≠pw " probability of men ≠ probabilityof women" meaning there's a difference in the probability of the men and women in favor of his candidacy.

the significance level α= 0.01

The test statistic under H0 is

Z = pm- pw/ √p`q` ( 1/n.m + 1/n.w)

pm= probability of men= 0.44

pw= probability of women = 0.52

p`= n.m pm+ n.w pw/ n.m + n.w

p`= 250 *0.44 + 250 *0.52/ 250 + 250

p`= 110 + 130 /500 = 240 /500 = 0.48

q`= 1- p`= 1-0.48= 0.52

Putting the values

Z= 0.44- 0.52/ √ 0.48 * 0.52

z= 0.08 / √0.2496

z=  0.08/ 0.4995

z= 0.1601

The critical region for α= 0.01 is Z= ± 2.58

Conclusion: Since the calculated z = 0.1601 does not fall in the critical region , so we accept the null hypothesis H0:pm=pw and conclude that the data does not appear to indicate that the tow probabilities are different.

Using the z-distribution, it is found that since the absolute value of the test statistic is less than the critical value, there values do not indicate a difference in popularity.

At the null hypothesis, it is tested if the proportions are equal, that is, their subtraction is of 0, hence:

[tex]H_0: p_w - p_m = 0[/tex]

At the alternative hypothesis, it is tested if they are different, that is, their subtraction is different of 0, hence:

[tex]H_1: p_w - p_m \neq 0[/tex]

The proportions and standard errors are:

[tex]p_m = 0.44, s_m = \sqrt{\frac{0.44(0.56)}{250}} = 0.0314[/tex]

[tex]p_w = 0.52, s_w = \sqrt{\frac{0.52(0.48)}{250}} = 0.0316[/tex]

For the distribution of the differences, the mean and the standard error are given by:

[tex]\overline{p} = p_w - p_m = 0.52 - 0.44 = 0.08[/tex]

[tex]s = \sqrt{s_m^2 + s_w^2} = \sqrt{0.0314^2 + 0.0316^2} = 0.0445[/tex]

The test statistic is given by:

[tex]z = \frac{\overline{p} - p}{s}[/tex]

In which p = 0 is the value tested at the null hypothesis.

Hence:

[tex]z = \frac{0.08}{0.0445}[/tex]

[tex]z = 1.795[/tex]

The critical value, for a two-tailed test, as we are testing if the mean is different of a value, with a significance level of 0.01, is of [tex]|z^{\ast}| = 2.5758[/tex]

Since the absolute value of the test statistic is less than the critical value, there values do not indicate a difference in popularity.

A similar problem, also involving an hypothesis test for a proportion, is given at https://brainly.com/question/24302053

Find all of the angle measures in the image.

Answers

Answer:

Angle 2= 45

Angle 3= 45

Angle 4= 135

Angle 5= 135

Angle 6= 45

Angle 7= 45

Angle 8= 135

helpppppp pleaseeee me helpppp

Answers

Answer:

$10 + $10 + $1 + 25¢ + 5¢

or

$20 + $1 + 25¢ + 5¢

Step-by-step explanation:

Each one must pay $21.30

helppppppppp pleasee me give bralienst,stars and thanks

Answers

Answer:

(Going from left to right)

Box #1=3

Box #2=5

Box #3=7

Box #4=2

Step-by-step explanation:

For Box #4, there is nothing for the 2 to subtract from so it just goes down

For Box #3, it has to be 7, because nothing can be subtracted from 1 to get 3, so you would have to bring a 1 from the 4 to the left to make the 1 to a 10. 10-7=3

For Box #2 and 1, 3(we changed it in the last step) -9 = a negative number so we have to bring a 1 from the number to the left. This is a hard step but what you have to do it look at the bottom number, which is a 2, so that number had to be a 3 because 3-1=2. 4 becomes 14, and 14-9=5

Hope this helps, if it did, please consider giving me brainliest, it will help me a lot. If you have any questions, feel free to ask.

Have a good day! :)

Find m<1 .Triangle Angle-Sum Theorem.

Answers

Answer:

m<1 = 30

Step-by-step explanation:

To find m<1, we can do 180 - 75 - 75, which will give us 30 degrees, so m<1 = 30

1. What is the length of the shortest side if the perimeter of the rectangle is
56 inches?

5х – 4

Answers

Answer:

Length of Shortest Side = 12 inches

Step-by-step explanation:

Length of Shortest Side = L = 3x

Length of Longest Side = W = 5x-4

Condition:

2L+2W = Perimeter

2(3x)+2(5x-4) = 56

6x+10x-8 = 56

16x-8 = 56

Adding 8 to both sides

16x = 56+8

16x = 64

Dividing both sides by 14

=> x = 4

Now,

Length of the Shortest Side = L = 3(4) = 12 inches

Length of the Longest Side = W = 5(4)-4 = 16 inches

Answer:

12 inches

Step-by-step explanation:

The length is the longest side.

The width is the shortest side.

Length : [tex]l=5x-4[/tex]

Width : [tex]w=3x[/tex]

Apply formula for the perimeter of a rectangle.

[tex]P=2l+2w[/tex]

[tex]P=perimeter\\l=length\\w=width[/tex]

Plug in the values.

[tex]56=2(5x-4)+2(3x)[/tex]

[tex]56=10x-8+6x[/tex]

[tex]56=16x-8[/tex]

[tex]64=16x[/tex]

[tex]4=x[/tex]

The shortest side is the width.

[tex]w=3x[/tex]

Plug in the value for x.

[tex]w=3(4)[/tex]

[tex]w=12[/tex]

Change Y - 4X = 0 to the slope-intercept form of the equation of a line.

Answers

Answer:

y=4x

Step-by-step explanation:

Add 4x to both sides to get y=mx+b

0 is y-intercept.

4x is the slope.

In a study of the accuracy of fast food​ drive-through orders, Restaurant A had 302accurate orders and 59that were not accurate.a. Construct a 95​%confidence interval estimate of the percentage of orders that are not accurate.b. Compare the results from part​ (a) to this 95​%confidence interval for the percentage of orders that are not accurate at Restaurant​ B: 0.143less thanpless than0.219.What do you​ conclude?

Answers

Answer:

(a) A 95​% confidence interval estimate of the percentage of orders that are not accurate is [0.125, 0.201].

(b) We can conclude that both restaurants can have the same inaccuracy rate due to the overlap of interval areas.

Step-by-step explanation:

We are given that in a study of the accuracy of fast food​ drive-through orders, Restaurant A had 302 accurate orders and 59 orders that were not accurate.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                          P.Q.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of orders that were not accurate = [tex]\frac{59}{361}[/tex] = 0.163

          n = sample of total orders = 302 + 59 = 361

          p = population proportion of orders that are not accurate

Here for constructing a 95% confidence interval we have used a One-sample z-test for proportions.

So, 95% confidence interval for the population proportion, p is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                    of significance are -1.96 & 1.96}  

P(-1.96 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.96) = 0.95

P( [tex]-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95

P( [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95

95% confidence interval for p = [ [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]

  = [ [tex]0.163 -1.96 \times {\sqrt{\frac{0.163(1-0.163)}{361} } }[/tex] , [tex]0.163 +1.96 \times {\sqrt{\frac{0.163(1-0.163)}{361} } }[/tex] ]

  = [0.125, 0.201]

(a) Therefore, a 95​% confidence interval estimate of the percentage of orders that are not accurate is [0.125, 0.201].

(b) We are given that the 95​% confidence interval for the percentage of orders that are not accurate at Restaurant​ B is [0.143 < p < 0.219].

Here we can observe that there is a common area of inaccurate order of 0.058 or 5.85% for both the restaurants.

So, we can conclude that both restaurants can have the same inaccuracy rate due to the overlap of interval areas.

find the maximum value of c=6x+2y

Answers

Answer:

  ∞

Step-by-step explanation:

c can have any value you like.

There is no maximum. We say it can approach infinity.

__

Additional comment

There may be some maximum imposed by constraints not shown here. Since we don't know what those constraints are, we cannot tell you what the maximum is.

What is x when: |5x|=3

Answers

Answer:

3/5

Step-by-step explanation:

5x= 3

x= 3/5

hope you understand the answer

stay at home stay safe

keep rocking

pls mark me as BRAINLIEST

5x=+/- 3
x=+/- 3/5
(plus-minus 3/5)


Tristan wants to buy a car and has a choice between two different banks. One bank is offering a simple interest rate of 3% and the other bank is offering a rate of 2.5%
compounded annually. If Tristan decides to deposit $7,000 for 4 years, which bank would be the better deal?

Answers

Answer:

The better deal would be simple interest rate of 3%

Step-by-step explanation:

In order to calculate which bank would be the better deal If Trsitam decides to deposit $7,000 for 4 years, we would have to make the following calculation:

simple interest rate of 3%.

Therefore, I= P*r*t

=$7,000*3%*4

I=$840

FV= $7,000+$840

FV=7,840

compound interest rate of 2.5%

Therefore, FV=PV(1+r)∧n

FV=$7,000(1+0.25)∧4

FV=$17,089

The better deal would be simple interest rate of 3%

Use spherical coordinates. Find the volume of the solid that lies within the sphere x2 + y2 + z2 = 16, above the xy-plane, and below the cone z = x2 + y2 .

Answers

The volume is given by the integral,

[tex]\displaystyle\int_0^{2\pi}\int_0^{\cos^{-1}((\sqrt{65}-1)/8)}\int_0^4\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta[/tex]

That is, [tex]\rho[/tex] ranges from the origin to the sphere of radius 4. The range for [tex]\varphi[/tex] starts at the intersection of the cone [tex]z=x^2+y^2[/tex] with the sphere [tex]x^2+y^2+z^2=16[/tex], which gives

[tex]z+z^2=16\implies z^2+z-16=0\implies z=\dfrac{\sqrt{65}-1}2[/tex]

and

[tex]z=4\cos\varphi\implies\varphi=\cos^{-1}\left(\dfrac{\sqrt{65}-1}8\right)[/tex]

and extends to the x-y plane where [tex]\varphi=\frac\pi2[/tex]. The range for [tex]\theta[/tex] is self-evident.

The volume is then

[tex]V=\displaystyle\int_0^{2\pi}\int_0^{\cos^{-1}((\sqrt{65}-1)/8)}\int_0^4\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta[/tex]

[tex]V=\displaystyle\left(\int_0^{2\pi}\mathrm d\theta\right)\left(\int_0^{\cos^{-1}((\sqrt{65}-1)/8)}\sin\varphi\,\mathrm d\varphi\right)\left(\int_0^4\rho^2\,\mathrm d\rho\right)[/tex]

[tex]V=2\pi\left(\dfrac{\sqrt{65}-1}8\right)\left(\dfrac{64}3\right)=\boxed{\dfrac{16\pi(9-\sqrt{65})}3}[/tex]

A sphere is a three-dimensional object with a round form. The volume of the sphere is [16π(9-√65)]/3 unit³.

What is a sphere?

A sphere is a three-dimensional object with a round form. A sphere, unlike other three-dimensional shapes, has no vertices or edges. Its centre is equidistant from all places on its surface. In other words, the distance between the sphere's centre and any point on its surface is the same.

We know that the volume of the given sphere can be given by the integral,

[tex]{\rm Volume} = \int^{2\pi}_0\int^{cos^{-1}(\frac{\sqrt{65}-1}{8})} \int_0^4\rho^2sin\varphi\ d\rho\ d\varphi\ d\theta[/tex]

where ρ ranges from the origin of the plot to the sphere of radius 4 while the range of φ starts at the intersection of the cone z=x²+y² with the sphere x²+y²+z²=16.

Now, the value of z and φ can be written as,

[tex]x^2+y^2+z^2 = 16\\\\(x^2+y^2)+z^2 = 16\\\\z+z^2 = 16\\\\z^2+z-16=0 \implies z=\dfrac{\sqrt{65}-1}{2}[/tex]

And

[tex]z =4\ cos\ \varphi \implies \varphi =cos^{-1}(\dfrac{\sqrt{65}-1}{8})[/tex]

Further, the volume of the sphere can be written as,

[tex]{\rm Volume} = \int^{2\pi}_0\int^{cos^{-1}(\frac{\sqrt{65}-1}{8})} \int_0^4\rho^2sin\varphi\ d\rho\ d\varphi\ d\theta\\\\\\{\rm Volume} = (\int^{2\pi}_0\ d\theta)(\int^{cos^{-1}(\frac{\sqrt{65}-1}{8})} sin\varphi\ d\varphi)(\int_0^4\rho^2 d\rho)\\\\\\V = 2\pi(\dfrac{\sqrt{65}-1}{8})(\dfrac{64}{3}) = \dfrac{16\pi(9-\sqrt{65})}{3}[/tex]

Hence, the volume of the sphere is [tex]\dfrac{16\pi(9-\sqrt{65})}{3}[/tex].

Learn more about Sphere:

https://brainly.com/question/11374994

According to a study done by the Gallup organization, the proportion of Americans who are satisfied with the way things are going in their lives is 0.82. What is the probability the sample proportion who are satisfied with the way things are going in their life is greater than 0.85

Answers

Complete Question

According to a study done by the Gallup organization, the proportion of Americans who are satisfied with the way things are going in their lives is 0.82. Suppose a random sample of 100 Americans is asked "Are you satisfied with the way things are going in your life?"

What is the probability the sample proportion who are satisfied with the way things are going in their life is greater than 0.85

Answer:

The probability is  [tex]P(X > 0.85 ) = 0.21745[/tex]

Step-by-step explanation:

From the question we are told that

   The population proportion is [tex]p = 0.82[/tex]

   The value considered is  x  =  0.85

     The  sample size is  n = 100

The standard deviation for this population proportion is evaluated as

        [tex]\sigma = \sqrt{\frac{p(1-p)}{n} }[/tex]

substituting values

       [tex]\sigma = \sqrt{\frac{0.82(1-0.82)}{100} }[/tex]

      [tex]\sigma = 0.03842[/tex]

Generally the probability that probability the sample proportion who are satisfied with the way things are going in their life is greater than x is mathematically represented as

       [tex]P(X > x ) = P( \frac{X - p }{ \sigma } > \frac{x - p }{ \sigma } )[/tex]

Where  [tex]\frac{X - p }{ \sigma }[/tex] is  equal to Z (the  standardized value of X ) so  

         [tex]P(X > x ) = P( Z> \frac{x - p }{ \sigma } )[/tex]

substituting values

        [tex]P(X > 0.85 ) = P( Z> \frac{ 0.85 - 0.82 }{ 0.03842 } )[/tex]

        [tex]P(X > 0.85 ) = P( Z> 0.78084)[/tex]

from the standardized normal distribution table [tex]P( Z> 0.78084)[/tex] is  0.21745

So  

      [tex]P(X > 0.85 ) = 0.21745[/tex]

Find the probability of each event. A six-sided die is rolled seven times. What is the probability that the die will show an even number at most five times?

Answers

Answer:

[tex]\dfrac{15}{16}[/tex]

Step-by-step explanation:

When a six sided die is rolled, the possible outcomes can be:

{1, 2, 3, 4, 5, 6}

Even numbers are {2, 4, 6}

Odd Numbers are {1, 3, 5}

Probability of even numbers:

[tex]\dfrac{\text{Favorable cases}}{\text{Total cases }} = \dfrac{3}{6} = \dfrac{1}{2}[/tex]

This is binomial distribution.

where probability of even numbers,  [tex]p =\frac{1}{2}[/tex]

Probability of not getting even numbers (Getting odd numbers) [tex]q =\frac{1}{2}[/tex]

Probability of getting r successes out of n trials:

[tex]P(r) = _nC_r\times p^r q^{n-r}[/tex]

Probability of getting even numbers at most 5 times out of 7 is given as:

P(0) + P(1) +P(2) + P(3) +P(4) + P(5)

[tex]\Rightarrow _7C_0\times \frac{1}{2}^0 \frac{1}{2}^{7}+_7C_1\times \frac{1}{2}^1 \frac{1}{2}^{6}+_7C_2\times \frac{1}{2}^2 \frac{1}{2}^{5}+_7C_3\times \frac{1}{2}^3 \frac{1}{2}^{4}+_7C_4\times \frac{1}{2}^4 \frac{1}{2}^{3}+_7C_5\times \frac{1}{2}^5 \frac{1}{2}^{2}[/tex]

[tex]\Rightarrow (\dfrac{1}{2})^7 (_7C_0+_7C_1+_7C_2+_7C_3+_7C_4+_7C_5)\\[/tex]

[tex]\Rightarrow (\dfrac{1}{2})^7 (1+7+\dfrac{7 \times 6}{2}+\dfrac{7 \times 6 \times 5}{3\times 2}+\dfrac{7 \times 6 \times 5}{3\times 2}+\dfrac{7 \times 6}{2})\\\Rightarrow \dfrac{120}{128} \\\Rightarrow \dfrac{15}{16}[/tex]

The following data values represent a sample. What is the variance of the
sample? X = 8. Use the information in the table to help you.
х
12
9
11
5
3
(x; - x)²
16
1
9
9
25

Answers

Answer:

The variance of the data is 15.

σ² = 15

Step-by-step explanation:

The mean is given as

X = 8

х        |    (x - X)    |    (x - X) ²

12       |        4         |    16

9        |        1         |     1    

11        |        3         |    9

5       |        -3        |    9

3       |        -5        |    25

The variance is given by

[tex]\sigma^2 = \frac{1}{n-1} \sum (x - X)^2[/tex]

[tex]\sigma^2 = \frac{1}{5 - 1} (16 + 1 + 9 + 9 +25) \\\\\sigma^2 = \frac{1}{4} ( 16 + 1 + 9 + 9 +25) \\\\\sigma^2 = \frac{1}{4} (60) \\\\\sigma^2 = 15[/tex]

Therefore, the variance of the data is 15.

Other Questions
The Box-and-Whisker plot shows the average temperatures in, atlanta, georgia, in march. which statement about the temperatures in atlanta must be true? A. about half the days in march had average temperatures above 60 degrees. B. about half the days in march had average temperatures either below 60 or above 73 degrees C. the coldest day in march was 51 D. the hottest day in march was 84 Which, if any, of the following proofs are correct demonstrations of the validity of this argument? A (B C) B (~C ~A) Proof 1 (1) A (B C) /B (~C ~A) Premise/Conclusion (2) (A B) C 1 Exp (3) (B A) C 2 Com (4) B (A C) 3 Exp (5) B (~C ~A) 4 Contra Proof 2 (1) A (B C) /B (~C ~A) Premise/Conclusion (2) B Assumption (3) A Assumption (4) B C 1, 3 MP (5) C 2, 4 MP (6) A C 35 CP (7) B (A C) 26 CP (8) B (~C ~A) 7 Contra Find the exact value of the following. The distance traveled by a car going 65 miles per hour for 3.5 hours is ____ miles. Read and choose the correct option to complete the sentence. Mi vuelo a Miami se ________ una hora. atras carg factur despeg Why are arabesques and geometric patterns prevalent in Islamic art and architecture? They are valued because they are more difficult to create. The use of figures in religious Islamic art is restricted. They represent the prophet Muhammed as a symbol of his works. They are prized as signs of wealth, devotion, and prosperity. when your starving does your stomech eat your fat or muscles first? State sales tax S S is directly proportional to retail price p p . An item that sells for 142 142 dollars has a sales tax of 12.32 12.32 dollars. Find a mathematical model that gives the amount of sales tax S S in terms of the retail price p p . Which expression is equivalent to -8? A=-2^-3 B=(-1/2)^-3 C=(1/2)^-3 D=2^-3 Which of the following statements best describes the relationship between the environment and the collectivehealth of the world?A. The environment does not affect our health.B. When the environment is damaged, our health improves.C. What is good for the environment is good for our health.D. Our collective health is not related to the health of the environment.Please select the best answer from the choices provided.Kk A car was sold at a 12% discount, which amounts to $1800. How much would the car sell for after the discount? question : Which sentence requires the personal a? answers: A. Fabin tiene ___ hermano. B. Marisol obedece ____ reglas. C. Dile ___ encargado. D. Tengo ____ amigos. E. Samuel mira ____ Pedro. A roller coasters velocity at the top of a hill is 21mls. Two seconds later it reaches the bottom of the hill with a velocity of 36mls. What is the acceleration of the roller coasters B. In each of the following questions, find the smallest number by which it should be multiplied to geta perfect square. Find the square root of the perfect squares so obtained.(a) 392(b) 216(c) 11.045(d) 3,698 (e) 11,094 Choose the correct statement. A. Unemployment is a serious personal problem but not a serious social economic problem. It is only an effect of the business cycle. B. In recent years, population growth has outstripped jobs growth, resulting in a serious unemployment problem. C. Prolonged unemployment increases a person's job prospects because they are willing to work for a lower wage. D. The class of 2017 had a better time in the job market than those of the decade that preceded it. Read the paragraph from a research-based essay on the benefits of a classroom with a learning centerbased layout for preschoolers. (1) A classroom should be set up as a series of learning centers, which are designated stations that encourage exploration. (2) This layout allows children to move freely throughout the room, delving into activities that interest them and possibly discovering new materials and games. (3) Self-directed play and learning promotes confidence and independence in kids. (4) Students are focused on a task of their choosing, enjoying themselves, and interacting in smaller groups. (5) Discipline problems are often reduced. What is the best way to revise the paragraph to connect ideas? Which of the following is an alkaline earth metal?A. Silicon (Si)B. Magnesium (Mg)C. Carbon (C)D. Aluminum (AI) Which of the following equations is equivalent to Please HELP best answer will receive a BRAINLIEST. Given the probability density function f ( x ) = 1/3 over the interval [ 4 , 7 ] , find the expected value, the mean, the variance and the standard deviation. -2x+3=9. What does x equal? In a discussion, Liya points out that the authors of the three articles beingdiscussed are all from the United States. She wonders if their perspective onclimate change is too narrow, and whether they should find more diversesources. Which discussion technique is she most clearly using?