Answer:
The answer is below
Step-by-step explanation:
To be able to get equation B from equation A, we have to compare equation A with equation B. Given that equation A. is 5x-2+x=x-4 and equation B is 5x+x=x-4.
Equation B: 5x+x=x-4.
Equation A: 5x-2+x=x-4.
Simplifying equation A to be in the form of equation B:
5x -2 + x = x - 4
Adding 2 to both sides:
5x + x -2 + 2 = x - 4 + 2
5x + x = x - 4 + (+2)
= equation A + 2
But 5x+x=x-4 = equation A
Therefore Equation B is the same as Equation A + 2
Answer:ADD/SUBTRACT A QUANTITY TO/FROM ONLY ONE SIDE
And part 2: is NO
x^2+8x=20 Solve by completing the square
Answer:
x = 2, x = -10
Step-by-step explanation:
(x+4)^2 = 36
(x+4) = 6, -6
x = 2, x = -10
Which graph represents the function of f(x) = 9x^2 – 36/3x+6?
Answer:
This graph represents the function above.
Please answer it now in two minutes
Answer:
Remember to round!
Help with alll❤️ Please
Plz
Answer:
A, B, A
Step-by-step explanation:
(3)
Given
- 2x² + 10x + 12 ← factor out - 2 from each term
= - 2(x² - 5x - 6) ← factor the quadratic
Consider the factors of the constant term (- 6) which sum to give the coefficient of the x- term (- 5)
The factors are - 6 and + 1, since
- 6 × 1 = - 6 and - 6 + 1 = - 5, thus
x² - 5x - 6 = (x - 6)(x + 1) and
- 2x² + 10x + 12 = - 2(x - 6)(x + 1) → A
(4)
[tex]x^{4}[/tex] - 81 ← is a difference of squares and factors in general as
a² - b² = (a - b)(a + b), thus
[tex]x^{4}[/tex] - 81
= (x² )² - 9²
=(x² - 9)(x² + 9) ← note that x² - 9 is also a difference of squares
= (x - 3)(x + 3)(x² + 9) ← in factored form
x² - 3 is not a factor → B
(5)
Given
5[tex]x^{4}[/tex] - 320 ← factor out 5 from each term
= 5([tex]x^{4}[/tex] - 64) ← difference of squares
= 5(x² - 8)(x² + 8) → A
Just need to know the elements of (A n B)
Answer:
{ 1,2}
Step-by-step explanation:
The ∩ means intersection, or what is in common for the two sets
The intersection of A and B is what is in the overlapping circles
The intersection of A and B is { 1,2}
help me answer this question.
The midpoint of the diagonal of a square is 2 units from the vertex of the square. Calculate the area of the square
I will mark u as the brainliest.
Answer:
8 units²Step-by-step explanation:
Let side of the square = a
The , Area of square = a²
Now, Midpoint of Diagonal DB is E
And DE = 2 units
So, DB = 2 DE = 2 × 2 = 4 units
Now, using Pythagoras theorem in ∆ BCD
DB² = DC² + BC²
plug the values
[tex] {4}^{2} = {a}^{2} + {a}^{2} [/tex]
Collect like terms
[tex] {4}^{2} = 2 {a}^{2} [/tex]
Evaluate the power
[tex]16 = 2 {a}^{2} [/tex]
Swipe the side of the equation
[tex]2 {a}^{2} = 16[/tex]
Divide both sides of the equation by 2
[tex] \frac{2 {a}^{2} }{ 2 } = \frac{16}{2} [/tex]
Calculate
[tex] {a}^{2} = 8[/tex]
Therefore, The area of the square is 8 sq.units.
Hope this helps..
Best regards!!
The area of the square is 8 square units.
Let's assume that the side length of the square is "s". Since the midpoint of the diagonal is 2 units from the vertex of the square, the diagonal of the square is 4 units (twice the distance from the vertex to the midpoint).
We can use the Pythagorean theorem to find the side length "s" of the square:
[tex]s^2 + s^2 = 4^2\\2s^2 = 16[/tex]
Divide both sides by 2:
[tex]s^2 = 8[/tex]
Now, to find the area of the square, we use the formula:
[tex]Area = side length^2\\Area = s^2 = 8[/tex]
So, the area of the square is 8 square units.
To know more about area:
https://brainly.com/question/33403734
#SPJ2
PLEASE HURRY! Use the diagram to answer the question. What is the measure of ∠A? Enter the correct value. Do not enter the degree symbol. (This is from Primavera. I've tried 60.07, and it is not correct.)
Answer: 60.1
Step-by-step explanation: If you did 13/15 and then took sin-1 and got 60.07356513, you did everything right.
But sometimes they want the answer rounded to one decimal point.
So try 60.1
Answer this please :(
Answer:
Part A: check B, E and F.
Part B: check E and G.
Step-by-step explanation:
The equation [tex]y = a(x - b)^2 + c[/tex] is the equation of a parabola written in the vertex form, where the vertex will be (b, c).
So, if the vertex is (2, -1), we have that b = 2 and c = -1
To find the c value, we use the information that the y-intercept is 3, so we have the point (0, 3). Using x = 0 and y = 3, we have:
[tex]3 = a(0 - 2)^2 - 1[/tex]
[tex]3 = 4a - 1[/tex]
[tex]4a = 4[/tex]
[tex]a = 1[/tex]
So we have a = 1, b = 2 and c = -1.
Part A: check B, E and F.
To find the x-intercepts, we need to find the values of x where y = 0:
[tex]0 = (x - 2)^2 - 1[/tex]
[tex]x^2 - 4x + 4 - 1 = 0[/tex]
[tex]x^2 - 4x + 3 = 0[/tex]
Solving using Bhaskara's formula (a = 1, b = -4 and c = 3), we have:
[tex]\Delta = b^2 - 4ac = 16 - 12 = 4[/tex]
[tex]x_1 = (-b + \sqrt{\Delta})/2a = (4 + 2)/2 = 3[/tex]
[tex]x_2 = (-b - \sqrt{\Delta})/2a = (4 - 2)/2 = 1[/tex]
So the x-intercepts are 1 and 3
Part B: check E and G.
Triangle T U V is shown. Side T U has a length of 5 units, side U V has a length of 8 units, and side T V has a length of 11 units. Which statement is true regarding triangle TUV? Angle T is the smallest angle. Angle V is the smallest angle. Angles U and V must be equal. Angles U and T must be equal.
Answer:
b
Step-by-step explanation:
edg 2020
The smallest measure of angle is angle ∠ V due to opposite angle of smallest side which is correct option(B).
What is a Triangle?A triangle is defined as simple polygons with three sides and three internal angles make up triangles. One of the fundamental geometric shapes, it is represented by the symbol of Δ and consists of three connected vertices. Triangles can be categorized into a number of different varieties according on their sides and angles.
A triangle has three sides, three vertices, and three interior angles.
The angle sum property of a triangle states that the sum of the three interior angles of a triangle is always 180°
In ΔTUV,
Length of Side TU = 5 units
Length of Side UV = 8 units
Length of Side TV = 11 units
Side TU is opposite of angle ∠ V
Side UV is opposite of angle ∠ T
Side TV is opposite of angle ∠ U
The sides in order from longest to shortest : Side TV > Side UV = Side TU
The longest side is always opposite of the largest angle, and the smallest side is always opposite of the smallest angle.
Hence, the angle in order from longest to shortest : angle ∠ U > angle ∠ T > angle ∠ V
Thus, the smallest measure of angle is angle ∠ V.
Learn more about triangle here :
brainly.com/question/2773823
#SPJ5
PLZ HELP ASAPPP!! I'M NOT 100% SURE ON HOW TO DO THIS
Answer:
1) 4a + 8
2) 12a² - 8a
3) 2a² + 8a
4) 4 - 6a
Step-by-step explanation:
The GCF of two numbers is the greatest common number each of the original two numbers can be divided by to get a whole number.
Hope it helps <3
Answer:
4 4a+8
4a [tex]12a^{2}[/tex]+8a
2a [tex]2a^{2} +8a[/tex]
2 4-6a
Step-by-step explanation:
Okay basicly you wand to find the biggest number that can go into both numbers
like the greatest common fact for 4a+8 would be 4 since only one of the numbers have an a you would just leave that out
Since you can take a 4 and an a out of [tex]12a^{2} \\[/tex] and out of 8a the greatest common factor would be 4a
Since you are able to take a 2 and an a out of [tex]2a^{2} +8a[/tex] your greatest common factor would be a
Since the largest number that can go into 4 and 6 is 2 your answer would be 2
Hope this helps you understand!
Multiply the polynomial
(4x2-4)(2x+1)
PLEASE HELP!!! ASAP!!!
Answer:
4(2x^3+ x^2-2x-1)
Step-by-step explanation:
the explanation is given above in the picture
pls do mark me the brainliest.
Answer:
4(2x^3+x^2-2x-1)
Step-by-step explanation:
Mulitply each term:
8x^3+4x^2-8x-4
Now simplify: 4(2x^3+x^2-2x-1)
Please mark me brainliest!!
6
R). Express 2x2 - 8x + 5 in the form a(x + b)² + c where a, b and
c are integers
Answer:
[tex]\large \boxed{\sf \ \ a = 2, \ b = -2, \ c = -3 \ \ }[/tex]
Step-by-step explanation:
Hello,
[tex]2x^2 - 8x + 5=2(x^2-4x)+5\\\\\text{*** We notice that *** }\\\\\text{*** } x^2-4x=(x-2)^2-2^2=(x-2)^2-4\\\\\text{*** So we can write ***}\\\\2x^2 - 8x + 5=2(x^2-4x)+5=2\left( (x-2)^2-4\right)+5\\\\=2\left(x-2\right)^2-8+5=\boxed{2\left(x-2\right)^2-3}[/tex]
So a = 2, b = -2, c = -3
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
pls help me with this
Answer:
[tex]\boxed{\sf \frac{15}{22} }[/tex]
Step-by-step explanation:
The radius of the circle is 7 cm.
The two legs of the triangles are 7cm as well.
Area of a trinagle is ( base × height )/2.
[tex]\frac{7 \times 7}{2} =24.5[/tex]
Multiply the value by 2 since there are two triangles.
[tex]24.5 \times 2 = 49[/tex]
Calculate the area of the circle.
[tex]\pi r^2[/tex]
The radius is given.
[tex]\pi (7)^2[/tex]
Take [tex]\pi[/tex] as [tex]\frac{22}{7}[/tex]
[tex]49(\frac{22}{7} )[/tex]
[tex]=154[/tex]
Subtract the area of the two triangles from the area of the whole circle.
[tex]154-49=105[/tex]
The area of the shaded part is 105 cm². The total area of the shape is 154cm².
[tex]\frac{105}{154} =\frac{15}{22}[/tex]
A bicycle is on sale price for $300 it can be brought through a hire purchase with a deposit of $60 and 10%
interest the outstanding balance, to prepaid in 10 monthly installments calculate:
a)the amount of each monthly instalment
b)the total cost of buying the bicycle by hire purchase
Answer:
a) $26.4
b) $324
Step-by-step explanation:
Hire purchase is the purchase of an item which can be paid instalmentally.
The bicycle costs $300 for an instant purchase.
For a hire purchase, a $60 deposit must be made and the rest paid instalmentally over 10 months. An interest of 10% is included in the outstanding balance
The outstanding balance after paying deposit= $300 - $60 = $240
Hence, 10% of 240 = 10/100 × 240 = 24
An interest of $24 is added.
Therefore, a total of $240 + $24 = $264 will be paid for the next 10 months.
a) Hence, the amount to be paid in instalment each month is $264/10 = $26.4
b) the total cost of buying the bicycle by hire purchase= deposit amount + instalment price
= $60 + $264
= $324
Hence, a total of $324 will be paid for the bicycle by hire purchase.
N.B: $300 is the sale price + $24 interest
can I please get help?
Answer:
3x^2 -4
Step-by-step explanation:
f(x) = 2x^2 +3
g(x) = x^2 -7
(f+g) (x) = 2x^2 +3 + x^2 -7
Combine like terms
= 3x^2 -4
Answer:
[tex]\boxed{3x^2-4}[/tex]
Step-by-step explanation:
[tex](f+g)(x)[/tex]
Rewrite.
[tex]f(x)+g(x)[/tex]
[tex](2x^2 +3)+(x^2-7)[/tex]
Combine like terms and simplify.
[tex](2x^2 +x^2 )+(3-7)[/tex]
[tex](3x^2 )+(-4)[/tex]
[tex]3x^2 +-4[/tex]
6 (x - 5) = 5 (x - 4) i need it asap with steps pls
Step-by-step explanation:
[tex]6x - 30 = 5(x - 4)[/tex]
[tex]6x - 30 = 5x - 20[/tex]
[tex]6x - 30 - 5x = - 20[/tex]
[tex]x - 30 = - 20[/tex]
[tex]x = - 20 + 30[/tex]
[tex]x = 10[/tex]
Hope this is correct and helpful
HAVE A GOOD DAY!
A candy store called "Sugar" built a giant hollow sugar cube out of wood to hang above the entrance to their store. It took 13.5\text{ m}^213.5 m
2
13, point, 5, start text, space, m, end text, squared of material to build the cube.
What is the volume inside the giant sugar cube?
Give an exact answer (do not round).
Answer:
it is 3.375
Step-by-step explanation:
The volume inside the giant sugar cube is of 3.375m³.
To solve this question, we first find the side of the cube, given it's surface area, and with the side, we find the volume.
-----------------------------------
Finding the side:
Considering it took 13.5 m² of material to build the cube, we have that it's surface area is of 13.5m².
The surface area of a cube of side s is:
[tex]S_A = 6s^2[/tex]
In this question:
[tex]6s^2 = 13.5[/tex]
[tex]s^2 = \frac{13.5}{6}[/tex]
[tex]s = \sqrt{\frac{13.5}{6}}[/tex]
[tex]s = 1.5[/tex]
-----------------------------------
Volume:
The volume of a cube of side s is:
[tex]V = s^3[/tex]
In this question, [tex]s = 1.5[/tex], so:
[tex]V = 1.5^3 = 3.375[/tex]
The volume inside the giant sugar cube is of 3.375m³.
A similar question is found at https://brainly.com/question/11862932
A box contains 4 white ribbons and 8 pink ribbons. Determine whether the events of picking a white ribbon and then another white ribbon without replacement are independent or dependent. Then identify the indicated probability.
a. independent; 1/11
b. dependent; 1/12
c. dependent; 1/11
d. independent; 1/12
Answer:
dependent, 1/11
Step-by-step explanation:
the probability of picking a white ribbon at first is 1/3
the probability of picking a white ribbon next is 3/11
1/3 * 3/11 = 3/33 = 1/11
it is dependent because picking the first ribbon affects picking the second.
Connie has saved up $15 to purchase a new CD from the local store. The sales tax in her county is 5% of the sticker price. Write an equation and solve it to determine the value of the highest priced CD Connie can purchase with her $15, including the sales tax. Round your answer to the nearest penny. (2 points) x − 0.05x = 15; x = $15.79 5x = 15; x = $3.00 x + 0.05x = 15; x = $14.29 0.5x = 15; x = $30
Answer:
[tex]x + 0.05x = 15[/tex], solution is $14.29
Step-by-step explanation:
We can create an equation for this scenario to try and solve it.
Assuming the cost of the CD is x, it’s sale tax will be 0.05x (as that is 5% of x, 0.05.)
We can write the equation in two ways:
[tex]x + 0.05x = 15[/tex] or [tex]1.05x = 15[/tex].
Assuming we take the second one (easier to work with), we can divide both sides by 1.05. The equation simplifies to x = 14.289... which rounds to x = 14.29.
Therefore, the equation is [tex]x + 0.05x = 15[/tex] and the solution is $14.29.
Hope this helped!
Answer:
x + 0.05x = 15; x = $14.29
Step-by-step explanation:
There are 20 cars in my building’s parking lot. All of the cars are red or white. 12 of them are red, 15 of them are 4-door, and 4 of them are 2-door and white. How many of the cars are 4-door and red?
Answer:
11 cars
Step-by-step explanation:
There are 20 cars in my building's parking lot, 15 cars are 4-door, then
20 - 15 = 5 cars are 2-door.
5 cars are 2-door, 4 of them are 2-door and white, then
5 - 4 = 1 car is 2-door and red.
12 cars are red, 1 car is 2-door and red, then
12 - 1 = 11 cars are 4-door and red.
plz give me brianlist
When x is divided by 4, the remainder is 3. When r^2 is divided by
4, what must the remainder be?
Answer:
If x=7 that means that if 7 substitute r which is 7^2 and 7*7=49 and 49/4
=12 1/4
So the remainder is 1
Step-by-step explanation:
Solve.
5x– 2y = 27
-3x +2y=-17
Enter your answer, in the form (x,y), in the boxes.
Answer:
x=5,y=-1
Step-by-step explanation:
5x– 2y = 27
-3x +2y=-17
Add the two equations together to eliminate y
5x– 2y = 27
-3x +2y=-17
----------------------
2x = 10
Divide by 2
2x/2 = 10/2
x = 5
Now find y
-3x +2y = -17
-3(5)+2y = -17
-15+2y =-17
Add 15 to each side
-15+15 +2y = -17+15
2y = -2
Divide by 2
2y/2 = -2/2
y =-1
Given the infirmation in the diagram, which theorem best justifies why lines j and k must be parallel
Answer:
Alternate Exterior Angles theorem
Answer:
alternate exterior angles
Step-by-step explanation:
alternate exterior angles are when two angles are on the far side of two lines and are not on the same side of the line cutting through the two parallel lines
Hope this is not redundunt or anything because I thought maybe I should just explain it so you would understand it next time :)
The dimensions of a closed rectangular box are measured as 90 centimeters, 50centimeters, and 90 centimeters, respectively, with the error in each measurement at most .2.2 centimeters. Use differentials to estimate the maximum error in calculating the surface area of the box.
Answer:
184 cm²
Step-by-step explanation:
Surface area of the rectangular box is expressed as S = 2(LW+LH+WH)
L is the length of the box = 90 cm
W is the width of the box = 50 cm
H is the height of the box= 90 cm
If there are error of at most 0.2 cm in each measurement, then the total surface area using differential estimate will be expressed as shown;
S = 2{(LdW+WdL) + (LdH+HdL) + (WdH+HdW)
Note that dL = dW = dH = 0.2 cm
Substituting the given values into the formula to estimate the maximum error in calculating the surface area of the box
S = 2{(90(0.2)+50(0.2)) + (90(0.2)+90(0.2)) + (50(0.2)+90(0.2))
S = 2{18+10+18+18+10+18}
S = 2(92)
S = 184 cm²
Hence, the maximum error in calculating the surface area of the box is 184cm²
If the triangle on the grid below is translated by using the rule (x, y) right-arrow (x + 5, y minus 2), what will be the coordinates of B prime? On a coordinate plane, triangle A B C has points (negative 1, 0), (negative 5, 0), (negative 1, 2). (–2, 0) (0, –2) (5, –7) (5, –2)
Answer:
(0, –2)
Step-by-step explanation:
I am assuming that point 'B' is (-5 , 0).
The translation rule is: [tex](x,y)\rightarrow(x+5,y-2)[/tex].
Apply the rule to point 'B':
[tex]\frac{(-5,0)\rightarrow(-5+5,0-2)}{(x,y)\rightarrow(x+5,y-2)}\rightarrow\boxed{(0,-2)}[/tex]
B' should be (0, -2).
Answer:
Guy above me might be right but Im not sure. Im on the cumulative exam on edge.
Step-by-step explanation:
Given: Circle k(O), m NM =65° ∠PNO≅∠PMO Find: m∠PNO, m∠ONM
Answer: m∠PNO =16.25° , m∠ONM=57.5°
Step-by-step explanation:
Given: Circle k(O), m NM =65° ∠PNO≅∠PMO
To find: m∠PNO, m∠ONM.
Since, central angle is equal to the measure of minor arc.
⇒∠MON = m NM =65°
In Δ MON , ON = OM [Radii of circle]
⇒ ∠ONM = ∠NMO (i) [Angle apposite to equal side of triangle are equal]
In Δ MON , ∠ONM + ∠NMO+∠MON =180°
⇒ ∠ONM + ∠ONM+65°=180° [from (i)]
⇒ 2∠ONM=115°
⇒ ∠ONM=57.5°
⇒ ∠ONM = ∠NMO =57.5°
Also, an inscribed angle is half of a central angle that subtends the same arc.
⇒∠MPN =half of∠MON
= [tex]\dfrac{65^{\circ}}{2}=32.5^{\circ}[/tex]
Also, ∠PNO≅∠PMO [Given]
⇒∠PNO =∠PMO
⇒ ∠PNO +∠ONM =∠PMO+∠NMO [∵∠ONM = ∠NMO]
⇒∠PNM=∠PMN
In ΔNPM
⇒ ∠MPN +∠PNM+∠PMN = 180°
⇒ 32.5° +∠PNM + ∠PNM= 180°
⇒ 2(∠PNM)= 147.5°
⇒ ∠PNM = 73.75°
Also, ∠PNM = ∠PNO+∠ONM
⇒73.75°= ∠PNO+57.5°
⇒ ∠PNO =16.25°
Hence, m∠PNO =16.25° , m∠ONM=57.5°
Answer:
Answer: m∠PNO =16.25° , m∠ONM=57.5°
Step-by-step explanation:
Given: Circle k(O), m NM =65° ∠PNO≅∠PMO
To find: m∠PNO, m∠ONM.
Since, central angle is equal to the measure of minor arc.
⇒∠MON = m NM =65°
In Δ MON , ON = OM [Radii of circle]
⇒ ∠ONM = ∠NMO (i) [Angle apposite to equal side of triangle are equal]
In Δ MON , ∠ONM + ∠NMO+∠MON =180°
⇒ ∠ONM + ∠ONM+65°=180° [from (i)]
⇒ 2∠ONM=115°
⇒ ∠ONM=57.5°
⇒ ∠ONM = ∠NMO =57.5°
Also, an inscribed angle is half of a central angle that subtends the same arc.
⇒∠MPN =half of∠MON
=
Also, ∠PNO≅∠PMO [Given]
⇒∠PNO =∠PMO
⇒ ∠PNO +∠ONM =∠PMO+∠NMO [∵∠ONM = ∠NMO]
⇒∠PNM=∠PMN
In ΔNPM
⇒ ∠MPN +∠PNM+∠PMN = 180°
⇒ 32.5° +∠PNM + ∠PNM= 180°
⇒ 2(∠PNM)= 147.5°
⇒ ∠PNM = 73.75°
Also, ∠PNM = ∠PNO+∠ONM
⇒73.75°= ∠PNO+57.5°
⇒ ∠PNO =16.25°
Hence, m∠PNO =16.25° , m∠ONM=57.5°
Step-by-step explanation:
What is the slope of the line through the points (4,2) and (-16,-6)
Answer:
2 / 5.
Step-by-step explanation:
The slope is the rise over the run.
In this case, the rise is 2 - (-6) = 2 + 6 = 8.
The run is 4 - (-16) = 4 + 16 = 20.
So, the slope is 8 / 20 = 4 / 10 = 2 / 5.
Hope this helps!
Answer:
the slope of the line that goes through (4,2) and (-16,-6) is 2/5
m= 2/5
Step-by-step explanation:
in order to find the slope we use the ∆y/∆x which is really the change in y over the change in x.
so all you have to do is find your y's and X's.
your y's are -6 and 2
your X's are -16 and 4
now in order to find the change in y and x you subtract your y's and x'x
the formula for this is:
∆y/∆x = y1-y2/x1-x2= (m aka the slope)
y1 is -6
and y2 is 2
-6 - 2 = -8
now do the X's
X1 is -16
and X2 is 4
-16 - 4 = -20
put that in fraction form and it's -8/-20
simplify that you get 2/5
PLEASSSSEEE HELP ! what number belongs in the box ? y=200+ ? x
Answer:
10
Step-by-step explanation:
It's the $10 that is to be added to the cost for each produced item.
Tina had d dollars. She bought three cupcakes for her and her friends, which cost c dollars each. How much money does she have left after being so nice?
Answer: $(d-3c)
Step-by-step explanation:
Total amount Tina had = $d
Cost of cupcakes = $c
Number of cupcakes purchased = 3
Therefore,
Total cost of cupcakes = cost per cupcake × number of cupcakes
Total cost of cupcakes = $c × 3 = $3c
Amount left after cupcake purchase:
Total amount Tina had - total cost of cupcakes :
$d - $3c
Determine the area under the standard normal curve that lies between â(a) Upper Z equals negative 0.12Z=â0.12 and Upper Z equals 0.12Z=0.12â, â(b) Upper Z equals negative 0.35Z=â0.35 and Upper Z equals 0Z=0â, and â(c) Upper Z equals 0.02Z=0.02 and Upper Z equals 0.82Z=0.82. â(a) The area that lies between Upper Z equals negative 0.12Z=â0.12 and Upper Z equals 0.12Z=0.12 is nothing. â(Round to four decimal places asâ needed.) â(b) The area that lies between Upper Z equals negative 0.35Z=â0.35 and Upper Z equals 0Z=0 is nothing. â(Round to four decimal places asâ needed.) â(c) The area that lies between Upper Z equals 0.02Z=0.02 and Upper Z equals 0.82Z=0.82 is nothing
Answer:
The answer is below
Step-by-step explanation:
The z score is a measure used in statistic to determine the number of standard deviations by which the raw score is above or below the mean. . The z score is given by:
[tex]z=\frac{x-\mu}{\sigma}\\ where\ \mu \ is \ the\ mean, \sigma\ is\ the\ standard\ deviation\ and\ x \ is\ the\ raw\ score[/tex]
(a) Z = -0.12 and Z = 0.12
From the normal distribution table, Area between z equal -0.12 and z equal 0.12 = P(-0.12 < z < 0.12) = P(z < 0.12) - P(z < -0.12) = 0.5478 - 0.4522 = 0.0956 = 9.56%
b) The area that lies between Z = - 0.35 and Z=0
From the normal distribution table, Area between z equal -0.35 and z equal 0 = P(-0.35 < z < 0) = P(z < 0) - P(z < -0.35) = 0.5 - 0.3594 = 0.1406 = 14.06%
c) The area that lies between Z = 0.02 and Z = 0.82
From the normal distribution table, Area between z equal 0.02 and z equal 0.82 = P(0.02 < z < 0.82) = P(z < 0.82) - P(z < 0.02) = 0.7939 - 0.5080 = 0.2859 = 28.59%