Angle BCD is a right triangle. The length of the hypotenuse is 18 centimeters. The length of one of the legs is 13 centimeters. What is the length of the other leg? Enter your answer, as a decimal rounded to the nearest tenth, in the box.

Answers

Answer 1

Answer:12.4

Step-by-step explanation:

18^2-13^2=155
Square root of 155 to the nearest tenth is 12.4


Related Questions

There are 80 boxes and each box weighs 22. 5 how many boxes does the truck have to deliver to cross a bridge that has to have a mass less than 4700

Answers

Answer:

The truck can deliver up to 209 boxes without exceeding a mass of 4700.

Step-by-step explanation:

To solve this problem, we need to use the formula:

[tex]\sf:\implies Total_{(Mass)} = Number_{(Boxes)} \times Weight_{(Per\: Box)}[/tex]

We know that each box weighs 22.5, so the formula becomes:

[tex]\sf:\implies Total_{(Mass)} = 22.5 \times Number_{(Boxes)}[/tex]

We want to find the maximum number of boxes that the truck can deliver without exceeding a mass of 4700. So we set up an inequality:

[tex]\sf:\implies 22.5 \times Number_{(Boxes)} \leqslant 4700[/tex]

To solve for number of boxes, we isolate it by dividing both sides by 22.5:

[tex]\sf:\implies Number_{(Boxes)} \leqslant 4700 \div 22.5[/tex]

[tex]\sf:\implies Number_{(Boxes)} \leqslant 209.33[/tex]

Since we can't have a fraction of a box, we round down to the nearest integer:

[tex]\sf:\implies \boxed{\bold{\:\:Number_{(Boxes)} \leqslant 209\:\:}}\:\:\:\green{\checkmark}[/tex]

Therefore, the truck can deliver up to 209 boxes without exceeding a mass of 4700.

A translation is applied to the square formed by the points A(−3, −4) , B(−3, 5) , C(6, 5) , and D(6, −4) . The image is the square that has vertices ​ A′(−3, −6) ​, ​ B′(−3, 3) ​, C′(6, 3) and D′(6, −6) . Select the phrase from the drop-down menu to correctly describe the translation. The square was translated Choose... .

Answers

The square was translated 2 units downwards.

Describing the transformation

From the question, we have the following parameters that can be used in our computation:

Points A(−3, −4) , B(−3, 5) , C(6, 5) , and D(6, −4) . The image is the square that has vertices ​ A′(−3, −6) ​, ​ B′(−3, 3) ​, C′(6, 3) and D′(6, −6)

The square was translated 2 units downward since all the y-coordinates of the vertices of the image square are 2 units less than the corresponding y-coordinates of the vertices of the pre-image square.

Read more about transformation at

https://brainly.com/question/27224272

#SPJ1

Solve the following pair of equations by substitution method:
0.2x + 0.3y − 1.1 = 0, 0.7x − 0.5y + 0.8 = 0

Answers

Answer:

  (x, y) = (1, 3)

Step-by-step explanation:

You want to solve this system of equations by substitution:

0.2x +0.3y -1.1 = 00.7x -0.5y +0.8 = 0

Expression for x

We can solve the first equation for an expression in x:

  x = (1.1 -0.3y)/0.2 = (11 -3y)/2

Substitution

Substituting for x in the second equation gives ...

  0.7(11 -3y)/2 -0.5y +0.8 = 0

  7.7 -2.1y -y +1.6 = 0 . . . . . . . . . multiply by 2, eliminate parentheses

  -3.1y +9.3 = 0 . . . . . . . . . . . . collect terms

  y -3 = 0 . . . . . . . . . . . . . . . divide by -3.1

  y = 3 . . . . . . . . . . . . . . . add 3

  x = (11 -3(3))/2 = 2/2 = 1 . . . . . find x

The solution is (x, y) = (1, 3).

__

Additional comment

A graphing calculator confirms the solution.

What are the domain and range of f(x)=2(x−8)2−10?



Drag the answers into the boxes

Answers

The domain and range of f(x) = 2(x-8)² - 10 are Domain: (-∞, ∞) ,Range: [-10, ∞)

The given function, f(x) = 2(x-8)² - 10, is a quadratic function in the form of f(x) = a(x-h)² + k. In this case, a = 2, h = 8, and k = -10. Since the coefficient of the squared term (a) is positive, the parabola opens upwards.

The domain of a quadratic function is always all real numbers, so the domain is (-∞, ∞).

For the range, we need to find the minimum value of the function. Since the parabola opens upwards, the vertex of the parabola represents the minimum point. The vertex is located at (h, k), which in this case is (8, -10). Thus, the range of the function is all real numbers greater than or equal to the y-coordinate of the vertex, which is [-10, ∞).

To know more about quadratic function click on below link:

https://brainly.com/question/30929439#

#SPJ11

The formula for Mr. McGordy's chocolate milk is 2 ounces of chocolate syrup to 4 cups of milk. How many ounces of chocolate are needed to make a gallon of chocolate milk?

(1 gallon = 16 cups)

Answers

8 ounces of chocolate are needed to make a gallon of chocolate milk. The solution has been obtained by using the arithmetic operations.

What are arithmetic operations?

The four basic operations, also referred to as "arithmetic operations," are meant to explain all real numbers. Operations like division, multiplication, addition, and subtraction come before operations like quotient, product, sum, and difference in mathematics.

We are given that for making chocolate milk, in four cups of milk, 2 ounces of chocolate syrup is needed.

It is also given that 1 gallon = 16 cups

So, using multiplication operation gives

⇒ For 16 cups = 2 * 4

⇒ For 16 cups = 8 ounces

Hence, 8 ounces of chocolate are needed to make a gallon of chocolate milk.

Learn more about arithmetic operations from the given link

brainly.com/question/30283549

#SPJ1

Find any domain restrictions on the given rational equation:


select all that apply.
o a. x = 0
o b. x= 3
o c. x= -1
d. x= -4

Answers

Domain restrictions on the given rational equation is x = 3, x = -1 , x = -4

The rational equation is =  [tex]\frac{x}{x+4} + \frac{12}{x^{2} +5x+4} =\frac{8x}{5x-15}[/tex]

Solving each denominator to find out about domain restriction

Putting each value equal to zero

x+4 = 0

x = -4

Here domain restriction is x = -4

x²+5x+4 = 0

x² + 4x + x+ 4 = 0

x(x+4) + 1(x+4) = 0

(x+1)(x+4) = 0

x+1 = 0 and x+4 = 0

x = -1 and x = -4

Here domain restriction is x = - 1 and x =-4

5x-15 = 0

5(x-3) =0

x=3

Here domain restriction is x = 3

To know more about domain click here :

https://brainly.com/question/28135761

#SPJ4

Question is incomplete complete question is :

Find any domain restrictions on the given rational equation:

select all that apply.

o a. x = 0

o b. x= 3

o c. x= -1

d. x= -4

The circumstances of the base of the cone is 6π cm. If the volume of the cone is 12π. what is the height?

Answers

Answer: 4

Step-by-step explanation:

[tex]\frac{1}{3} \pi 3^{2} h=12\pi \\3h=12\\h=4[/tex]

A lube and oil change business believes that the number of cars that arrive for service is the same each day of the week. If the business is open six days a week (Monday - Saturday) and a random sample of n = 200 customers is selected, the critical value for testing the hypothesis using a goodness-of-fit test is x2 = 9. 2363 if the alpha level for the test is set at. 10

Answers

The hypothesis to be tested here is that the number of cars arriving for service is the same for each day of the week.

The null hypothesis, denoted as H0, is that the observed frequency distribution of cars is the same as the expected frequency distribution.

The alternative hypothesis, denoted as H1, is that the observed frequency distribution of cars is not the same as the expected frequency distribution.

To test this hypothesis, we use a goodness-of-fit test with the chi-square distribution. The critical value for a chi-square distribution with 6 - 1 = 5 degrees of freedom (one for each day of the week) and alpha level of 0.10 is 9.2363.

If the computed chi-square statistic is greater than 9.2363, then we reject the null hypothesis and conclude that the observed frequency distribution is significantly different from the expected frequency distribution.

Thus, if the computed chi-square statistic is greater than 9.2363, we can conclude that the number of cars arriving for service is not the same for each day of the week, and there is evidence to support the alternative hypothesis.

If the computed chi-square statistic is less than or equal to 9.2363, then we fail to reject the null hypothesis, and there is not enough evidence to suggest that the observed frequency distribution is different from the expected frequency distribution.

To know more about hypothesis, refer here:

https://brainly.com/question/29519577#

#SPJ11

You have $10000. You are going to transfer this into Japanese yen and then into Bitcoin.
For $1 US dollar is 107.35 Japanese ven.
For 1,086,300 yen for 1 Bitcoin.
Round your answer to the nearest whole Bitcoin.

1

5

9

0

Answers

Using the given exchange rate, $10,000 will give 1 Bitcoin if rounded to whole number. Therefore the correct answer is Option (A).

Understanding Bitcoin Conversion

To convert $10,000 to Japanese yen, we can multiply by the exchange rate:

Given the exchange rates:

1 US Dollar ($1)  =  107.35 Japanese Yen

1 Bitcoin (BTC) = 1,086,300 Japanese Yen

First convert the US Dollar to Japanese Yen

10,000 * 107.35 = 1,073,500 yen

Now let us convert the Japanese Yen to Bitcoin (BTC)

1,086,300 Japanese Yen = 1 Bitcoin (BTC)

1,073,500 Japanese Yen = x Bitcoin

Do a cross multiplication and you will get

1,086,300x = 1,073,500

Divide both sides by 1086300

x = 1,073,500 / 1,086,300

x = 0.98821688 Bitcoin

To the nearest whole Bitcoin

x = 1 Bitcoin

Learn more about bitcoin here:

https://brainly.com/question/9170439

#SPJ1

4 m - (30cm+40mm)=………………m

Answers

Answer:

3.966m

Step-by-step explanation:

4m - (30cm + 40mm)

Converting cm and mm to metre by dividing by 100 and 1000 respectively

=> 4.000m - (30/100 m + 40/1000 m)

=> 4.000m - (0.030m + 0.004m)

=> 4.000m - 0.034m

=> 3.966m

Answer:

3.66m

Step-by-step explanation:

First, we have units measured in meters, centimeters, and millimeters.  This means we have to convert everything to the same measurement.

The easiest way is to convert everything to meters, as that's what the unit in the final answer will be.

To convert centimeters to meters, divide by 100

30/100=0.3

To convert millimeters to meters, divide by 1,000

40/1000=0.04

Next, plug the values back into the original equation:

4m-(0.3+0.04)

solve the parenthesis first

4-0.34

3.66

So, this equals 3.66 meters.

Hope this helps! :)

exercise 4.11. on the first 300 pages of a book, you notice that there are, on average, 6 typos per page. what is the probability that there will be at least 4 typos on page 301? state clearly the assumptions you are making.

Answers

The probability that there will be at least 4 typos on page 301 is 0.847

To solve this problem, we need to make some assumptions. Let's assume that the number of typos on each page follows a Poisson distribution with a mean of 6 typos per page, and that the number of typos on one page is independent of the number of typos on any other page.

Under these assumptions, we can use the Poisson distribution to calculate the probability of observing a certain number of typos on a given page.

Let X be the number of typos on page 301. Then X follows a Poisson distribution with a mean of 6 typos per page. The probability of observing at least 4 typos on page 301 can be calculated as follows

P(X ≥ 4) = 1 - P(X < 4)

= 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3)

Using the Poisson distribution formula, we can calculate the probabilities of each of these events

P(X = k) = (e^-λ × λ^k) / k!

where λ = 6 and k is the number of typos. Thus,

P(X = 0) = (e^-6 × 6^0) / 0! = e^-6 ≈ 0.0025

P(X = 1) = (e^-6 × 6^1) / 1! = 6e^-6 ≈ 0.015

P(X = 2) = (e^-6 × 6^2) / 2! = 18e^-6 ≈ 0.045

P(X = 3) = (e^-6 × 6^3) / 3! = 36e^-6 ≈ 0.091

Plugging these values into the equation above, we get

P(X ≥ 4) = 1 - (e^-6 + 6e^-6 + 18e^-6 + 36e^-6)

≈ 0.847

Learn more about probability here

brainly.com/question/11234923

#SPJ4

Mr. ross needed a box for his tools. he knew that the box had to be between 100 cubic inches and 150 cubic inches. which dimension shows the tool he can use

Answers

Mr. Ross can choose any dimensions for the length, width, and height as long as their product falls within the given volume range of 4 * 5 * 5 to 6 * 5 * 5 cubic inches.

To help you find the dimensions for Mr. Ross's tool box that can hold between 100 and 150 cubic inches, let's consider the following terms: volume, length, width, and height.

1. Volume: The space occupied by the tool box, which should be between 100 and 150 cubic inches.


2. Length, Width, and Height: The dimensions of the tool box that will determine its volume.

To find the dimensions for the tool box that meets Mr. Ross's requirements, we can use the formula for volume of a rectangular box:

Volume = Length × Width × Height

We need to find the Length, Width, and Height such that 100 ≤ Volume ≤ 150.

Unfortunately, without more specific information about the dimensions Mr. Ross prefers or the shape of the box, we cannot provide an exact set of dimensions. However, he can choose any dimensions for the length, width, and height as long as their product falls within the given volume range of 100 to 150 cubic inches.

To know more about dimensions refer here:

https://brainly.com/question/28688567

#SPJ11

Gross Monthly Income: Jackson works for a pipe line company and is paid $18. 50 per hour. Although he will have overtime, it is not guaranteed when or where, so Jackson will only build a budget on 40 hours per week. What is Jackson’s gross monthly income for 40 hours per week? Type in the correct dollar amount to the nearest cent. Do not include the dollar sign or letters.


A. Gross Annual Income: $


B. Gross Monthly Income: $

Answers

Jackson's gross monthly income for 40 hours per week is approximately $3,201.70 and gross annual income s $38,480.

To find Jackson's gross monthly income, we first need to find his gross weekly income.

Jackson's hourly wage is $18.50, so his weekly gross income for 40 hours of work is:

40 hours/week x $18.50/hour = $740/week

Calculate annual income:

To determine the gross annual income, we need to consider how many weeks there are in a year. Assuming 52 weeks in a year:

Annual income = Weekly income * Number of weeks in a year

Annual income = $740 * 52 = $38,480

To find Jackson's gross monthly income, we can multiply his weekly gross income by the number of weeks in a month (approximately 4.33):

$740/week x 4.33 weeks/month ≈ $3,201.70/month

Therefore, Jackson's gross monthly income for 40 hours per week is approximately $3,201.70.

To know more about gross monthly income, visit:

https://brainly.com/question/30617016#

#SPJ11

Maths ice cream shop has 7 cups of sprinkles to use on Sundays for the rest of the day if each Sunday serves with one 8th cup of sprinkles how many Sundays can they serve

Answers

56 Sundays Maths Ice Cream Shop can serve with 7 cups of sprinkles using one-eighth (1/8) cup of sprinkles per Sunday.

Converting the cups of sprinkles into eighths:

  7 cups × 8 eighths/cup

= 56 eighths


Dividing the total eighths by the eighths used per Sunday:

  56 eighths / (1/8 cup per Sunday)

= 56 Sundays

So, Maths Ice Cream Shop can serve for 56 Sundays using 7 cups of sprinkles with each Sunday serving one-eighth cup of sprinkles.

To learn more about fraction: https://brainly.com/question/17220365

#SPJ11

(2 points) Find the Laplace transform of f(t) = -1, 0 3 { F(x) = (2 points) Find the Laplace transform of f(t) = S (t - 5), 0 5 - F(3) = )

Answers

Laplace transform of f(t) = -1, 0 3 { F(x)

The Laplace transform of f(t) = S(t - 5), 0, 5 - F(3) is F(s) = (1/s) [tex]e^{(-5s)[/tex] - (1/3) [tex]e^{(-15)[/tex].

Laplace transform:

The Laplace transform of a function f(t) is given by:
F(s) = ∫[0,∞) e^(-st) f(t) dt
where s is a complex variable.
Using this formula, we can find the Laplace transform of f(t) as follows:
F(s) = ∫[0,∞) e^(-st) f(t) dt
    = ∫[0,∞) e^(-st) (-1) dt + ∫[0,∞) e^(-st) (0) dt + ∫[0,∞) e^(-st) (3) dt
    = -1/s + 0 + 3/s
    = (2/s) - (1/s)
Therefore, the Laplace transform of f(t) = -1, 0, 3 is F(s) = (2/s) - (1/s).
Now, let's move on to the second part of the question.

We need to find the Laplace transform of f(t) = S(t - 5), 0, 5 - F(3).
Here, S(t - 5) is the Heaviside step function, which is defined as:
S(t - 5) = 0, for t < 5
        = 1, for t ≥ 5
Using the Laplace transform formula, we can write:
F(s) = ∫[0,∞) e^(-st) S(t - 5) dt
Since S(t - 5) is equal to 0 for t < 5, we can split the integral into two parts:
F(s) = ∫[0,5) [tex]e^(-st)[/tex]S(t - 5) dt + ∫[5,∞) [tex]e^(-st)[/tex] S(t - 5) dt
The first integral is equal to 0, since S(t - 5) is 0 for t < 5.
For the second integral, we can use the fact that S(t - 5) = 1 for t ≥ 5. So, we get:
F(s) = ∫[5,∞) e^(-st) dt
    = [-1/s e^(-st)]_[5,∞)
    = (1/s) [tex]e^(-5s)[/tex]
Finally, we need to find F(3). Substituting s = 3 in the Laplace transform, we get:
[tex]F(3) = (1/3) e^(-15)[/tex]
Therefore, the Laplace transform of f(t) = S(t - 5), 0, 5 - F(3) is F(s) = (1/s) [tex]e^(-5s) - (1/3) e^(-15).[/tex]

To know more about Laplace transform:

https://brainly.com/question/31041670

#SPJ11

Q4 (6 points) Use Mean value theorem to prove va + 3 1. Using methods other than the Mean Value Theorem will yield no marks. (Show all reasoning). Hint: Choose a > 1 and apply MVT to f(x) = V6x +3 - x - 2 on the interval [1.a) +

Answers

Using the Mean Value Theorem, we have proven that √(6a+3) < a + 2 for all a > 1.

To prove √(6a+3) <a + 2 for all a > 1 using the Mean Value Theorem, we will begin by defining a function f(x) as:

f(x) = √(6x+3)

We can see that f(x) is a continuous and differentiable function for all x > -1/2.

Now, let's choose two values of a, such that a > 1 and b = a + h, where h is a positive number. By the Mean Value Theorem, there exists a value c between a and b such that

f(b) - f(a) = f'(c)(b-a)

where f'(c) is the derivative of f(x) evaluated at c.

Now, let's evaluate the derivative of f(x) as:

f'(x) = 3/(√(6x+3))

Thus, we can write

f(b) - f(a) = f'(c)(b-a)

√(6(a+h)+3) - √(6a+3) = f'(c)h

Dividing both sides by h and taking the limit as h → 0, we get

lim h→0 (√(6(a+h)+3) - √(6a+3))/h = f'(a)

Now, we can evaluate the limit on the left-hand side using L'Hopital's rule

lim h→0 (√(6(a+h)+3) - √(6a+3))/h = lim h→0 [3/(√(6(a+h)+3)) - 3/(√(6a+3))] = 3/(2√(6a+3))

Therefore, we have

f'(a) = 3/(2√(6a+3))

Now, we can use this value to rewrite the inequality as

√(6a+3) - (a + 2) < 0

Multiplying both sides by 2√(6a+3) and simplifying, we get

3 < 4a + 2√(6a+3)

Subtracting 4a from both sides and squaring, we get

9 < 16a^2 + 16a + 24a + 12

Simplifying, we get

0 < 16a^2 + 40a + 3

This inequality holds for all a > 1, so we have proved that

√(6a+3) < a + 2 for all a > 1.

Learn more about Mean value theorem here

brainly.com/question/30403137

#SPJ4

The given question is incomplete, the complete question is:

Use Mean value theorem to prove √(6a+3) <a + 2 for all a > 1. Using methods other than the Mean Value Theorem will yield

Suppose the judge decides to acquit all defendants, regardless of the evidence, what is the probability of type i error?

Answers

The judge in this scenario is acquitting all defendants regardless of the evidence.

How does the judge decide to acquit all defendants?

If the judge decides to acquit all defendants, regardless of the evidence, then the probability of a Type I error would be 1, meaning that the judge will always reject the null hypothesis (that the defendant is guilty) when it is actually true.

A Type I error occurs when we reject a null hypothesis that is actually true. In the context of a criminal trial, this would mean that the judge is acquitting a defendant who is actually guilty.

In statistical hypothesis testing, we typically set a threshold (called the "level of significance") for the probability of making a Type I error. The most commonly used level of significance is 0.05, which means that we are willing to accept a 5% chance of making a Type I error.

However, if the judge in this scenario is acquitting all defendants regardless of the evidence, then the probability of making a Type I error would be 1, which is much higher than the typically acceptable level of significance.

Learn more about the hypothesis

brainly.com/question/29519577

#SPJ11

what is the range of the exponential function

Answers

Answer:

y > -1

Step-by-step explanation:

The range is about the y, not the x, so we can eliminate options B & D.

We see the y touch -1 and then go up to ∞, so the answer is y > -1

The demand function for a company's product is P=26e^{-.04q} where Q is measured in thousands of units and P is measured in dollars.
(a) What price should the company charge for each unit in order to sell 2500 units? (Round your answer to two decimal places.) (b) If the company prices the products at $8.50 each, how many units will sell? (Round your answer to the nearest integer.) units

Answers

A.  the company should charge approximately $18.08 per unit to sell 2500 units.

B.  Q is measured in thousands, this means the company will sell about 6350 units (rounded to the nearest integer) when the price is set at $8.50 per unit.

(a) To find the price for each unit to sell 2500 units, we need to plug Q = 2.5 (since Q is in thousands) into the demand function P = 26e^(-0.04Q):

P = 26e^(-0.04 * 2.5)

After calculating the value, we get:

P ≈ 18.08

So, the company should charge approximately $18.08 per unit to sell 2500 units.

(b) To find how many units will sell if the price is $8.50, we need to solve the equation P = 26e^(-0.04Q) for Q:

8.50 = 26e^(-0.04Q)

First, we need to isolate the exponential term:

(8.50 / 26) = e^(-0.04Q)

Now, take the natural logarithm (ln) of both sides:

ln(8.50 / 26) = -0.04Q

Next, divide both sides by -0.04:

Q = ln(8.50 / 26) / -0.04

After calculating the value, we get:

Q ≈ 6.35

Since Q is measured in thousands, this means the company will sell about 6350 units (rounded to the nearest integer) when the price is set at $8.50 per unit.

To learn more about logarithm, refer below:

https://brainly.com/question/30085872

#SPJ11

Your current CD matures in a few days. You would like to find an investment with a higher rate of return than the CD. Stocks historically have a rate of return between 10% and 12%, but you do not like the risk involved. You have been looking at bond listings in the newspaper. A friend wants you to look at the following corporate bonds as a possible investment. Bond Cur. Yld. Vol Close Net Chg. 7. 5 128 3 ABC 7-15 104- 2 4 8. 4 17 XYZ 7- 15 100- 2 1 3 1 1 +- 4 4 What price would you pay for each bond if you purchased one of them today? (Remember the face value is $1000) а. ABC: $1047. 50 XYZ. $1,005. 00 b ABC $1104. 75 XYZ: $1100. 50 ABC: $872 XYZ. $983 d. ABC: $750 XYZ: $840 C. â

Answers

Note that the price to be paid for each bond if they are purchased today a.

ABC: $1047.50

XYZ: $1005.00 (Option A)

How is this so ?

The formula to determine the price to pay for a bond,  is ...

Price = (Annual Interest Payment) / (Current Yield)

where Annual Interest Payment = (Coupon Rate / 100) x Face Value, and

Current Yield = (Annual Interest Payment / Price) x 100.

Using the given information, we can calculate the price to pay for each bond

For ABC bond

Annual Interest Payment

= (7.5 / 100) x $1000 = $75

Current Yield

= (Annual Interest Payment / Price) x 100 = (75 / $1042.50) x 100

= 7.2%

Price = (Annual Interest Payment) / (Current Yield)

= $75 / (7.2/100)

= $1041.67

So .... the price to pay for the ABC bond is approximately $1041.67.

For XYZ bond

Annual Interest Payment

= (8.4 / 100) x $1000

= $84

Current Yield

= (Annual Interest Payment / Price) x 100

= (84 / $1003.125) x 100

= 8.37%

Price = (Annual Interest Payment) / (Current Yield)

= $84 / (8.37/100)

= $1003.84

So, the price to pay for the XYZ bond is approximately $1003.84.

So, the closest option to the calculated prices is:

a. ABC: $1047.50

XYZ: $1,005.00

Learn more about Bonds:
https://brainly.com/question/14064867
#SPJ1

When solving the equation 6x² - 2x = -3 with the quadratic formula.
If a = 6, what are the values of b and c?
b =
C =
A/

Answers

a, b, and c are just the coefficients of the terms
a = 6
b = -2
c = 3

Gloria had a rectangular garden plot last year with an area of 60 square feet. This year, Gloria's plot is 1 foot wider and 3 feet shorter than last year's garden, but it has the same area. What were the dimensions of the garden last year?

Answers

The dimensions of the garden last year were 15 feet by 4 feet.

How to solve for the dimension

Let the length of the garden last year be L feet, and the width be W feet. We are given that the area of the garden last year was 60 square feet:

L * W = 60

This year, the garden is 1 foot wider and 3 feet shorter than last year's garden:

Length: L - 3

Width: W + 1

The area of the garden remains the same:

(L - 3) * (W + 1) = 60

Now we have two equations with two variables:

L * W = 60

(L - 3) * (W + 1) = 60

We can solve this system of equations using substitution or elimination. Let's use substitution. From equation 1, we can write L as:

L = 60 / W

Now substitute this expression for L in equation 2:

(60 / W - 3) * (W + 1) = 60

Simplify and solve for W:

60 + 60 / W - 3W - 3 = 60

Combine like terms:

60 / W - 3W = 3

Multiply both sides by W to eliminate the fraction:

60 - 3W² = 3W

Move all terms to one side:

3W² + 3W - 60 = 0

Divide the equation by 3:

W² + W - 20 = 0

Factor the quadratic equation:

(W + 5)(W - 4) = 0

The possible values for W are -5 and 4. However, since width cannot be negative, W must be 4 feet. Now, use the expression for L to find the length:

L = 60 / W = 60 / 4 = 15 feet

So, the dimensions of the garden last year were 15 feet by 4 feet.

Read more on dimensions here:https://brainly.com/question/26740257

#SPJ1

Help!!!

which is a feature of function g if g(x) = -4 log(x – 8)?

a. the domain is x< 8.

b. the range is y > -8.

c. the value of the function decreases as x approaches positive infinity.

d. the value of the function increases as x approaches positive infinity.


wrong answers will be reported!!

Answers

The correct answer is option c i.e. the value of the function decreases as x approaches positive infinity.

The function g(x) = -4 log(x – 8) has the following features:

a. The domain is x > 8, because the expression x - 8 must be greater than 0 for the logarithm to be defined. Therefore, x must be greater than 8, so the domain is x > 8.

b. is incorrect because the range of the function is y < 0, not y > -8.

c. The value of the function decreases as x approaches positive infinity. As x gets larger and larger, the expression x - 8 gets larger and larger, so log(x - 8) gets larger and larger, approaching infinity. Multiplying by -4 makes the function more and more negative, so the value of the function decreases as x approaches positive infinity.

d. The value of the function does not increase as x approaches positive infinity, because as we just explained, the value of the function actually decreases as x approaches positive infinity. Therefore, option d is not correct.

Therefore, the correct answer is option c

Learn more about Functions here

https://brainly.com/question/20199690

#SPJ4

PLEASE HELP



A cone frustum has height 2 and the radii of its bases are 1 and 2 1/2.



What is the volume of the frustum?



What is the lateral area of the frustrum?

Answers

The volume of the frustum is 132.84 cubic units.

The lateral area of the frustum is 7π√17/4 square units.

To calculate the volume of the frustum, we can use the formula:

V = (1/3) × π × h × (r₁² + r₂² + (r₁ * r₂))

where:

V is the volume of the frustum,

h is the height of the frustum,

r₁ is the radius of the smaller base,

r₂ is the radius of the larger base, and

π is a mathematical constant approximately equal to 3.14159.

Plugging in the values given:

h = 2,

r₁ = 1, and

r₂ =[tex]2\frac{1}{2}[/tex] = 5/2,

V = (1/3)× π × 2 × (1² + (5/2)² + (1 × (5/2)))

V = (1/3) × π × 2 × (1 + 25/4 + 5/2)

V = 132.84

Therefore, the volume of the frustum is approximately 132.84 cubic units.

To calculate the lateral area of the frustum, we can use the formula:

A = π × (r₁ + r₂) × l

To find the slant height, we can use the Pythagorean theorem:

l = √(h² + (r₂ - r₁)²)

Plugging in the values given:

h = 2, r₁ = 1, and r₂ =5/2

l = √ 2² + ((5/2) - 1)²

l = √(4 + (5/2 - 2)²)

l = √(17/4)

l = √(17)/2

Now, plugging in the values into the lateral area formula:

A = π×(1 + 5/2)× √17/2

A = π × (7/2) × √(17)/2

A = 7π√17/4

Therefore, the lateral area of the frustum is 7π√17/4 square units.

To learn more on Three dimensional figure click:

https://brainly.com/question/2400003

#SPJ12

A bookstore is offering a 25% discount for a new book during a two-


week sale. After the sale, the book will sell for the regular price of


$32. 0. The store has a total of 200 copies of the book.


If all of the copies of this book are sold, what is the number of


discounted books that the store sells to make a total of $5440. 00?

Answers

Let x be the number of discounted books that the store sells during the sale. Then, the number of books sold at the regular price after the sale is 200 - x.

During the sale, the discounted price of the book is 0.75 * 32 = $24.

The revenue from selling x discounted books is:

R1 = 24x

The revenue from selling (200 - x) books at the regular price is:

R2 = 32(200 - x)

The total revenue from selling all the books is:

R = R1 + R2

We want to find the value of x such that the total revenue is $5440.00:

R = 5440

Substituting the expressions for R, R1, and R2, we get:

24x + 32(200 - x) = 5440

Simplifying and solving for x, we get:

24x + 6400 - 32x = 5440

-8x = -960

x = 120

Therefore, the store sells 120 discounted books during the sale to make a total of $5440.00.

To know more about revenue refer here

https://brainly.com/question/31683012#

#SPJ11

Find the value of y

Answers

Step-by-step explanation:

x is the radius.....y is the diameter ...which is two times  'x'

find 'x' via the Pythagorean theorem

x^2 = 3.6^2 + 4^2

x = 5.38

y = 2x = 10.76  units

Question 6 < > Evaluate the integral: fa®V1+362'de : 1+ +C

Answers

To solve this integral, we'll use a trigonometric substitution. Let x = (1/6)tan(θ), which implies dx = (1/6)sec^2(θ)dθ.

Now, we can rewrite the integral as:

∫√(1 + 36(1/6tan(θ))^2) (1/6)sec^2(θ)dθ

Simplify the expression inside the square root:

∫√(1 + 6^2tan^2(θ)) (1/6)sec^2(θ)dθ

Now, recall the trigonometric identity: 1 + tan^2(θ) = sec^2(θ). Using this identity, we have:

∫√(sec^2(θ)) (1/6)sec^2(θ)dθ

Simplify and integrate:

(1/6)∫sec^3(θ)dθ

Unfortunately, the integral of sec^3(θ) is non-elementary, so we cannot find a closed-form expression for it. However, you can look up the techniques used to evaluate this integral, such as integration by parts or reduction formulas, if you need a more detailed solution.

Remember to convert the result back to the original variable x using the substitution x = (1/6)tan(θ), and don't forget to add the constant of integration, C, at the end.

To learn more about integral  visit;

brainly.com/question/18125359

#SPJ11

WHATS THE AREAA OF THE PARALLELOGRAM

Answers

Answer:16 + (1/2) × 8 = 16 + 4 = 20 unit2

Step-by-step explanation:

1
(Lesson 8.2) Which statement about the graph of the rational function given is true? (1/2 point)
4. f(x) = 3*-7
x+2
A. The graph has no asymptotes.
B.
The graph has a vertical asymptote at x = -2.
C. The graph has a horizontal asymptote at y =
+

Answers

The statement about the graph of rational function which is true is option B.  that is "The graph has a vertical asymptote at x = -2

What is a rational function?

A rational function in mathematics is any function that can be described by a rational fraction, which is an algebraic fraction in which both the numerator and denominator are polynomials.

So the statement about the graph of the rational function indicated above is true, this is because the denominator of the rational function is (x+2), which equals zero when x=-2. Therefore, the function is undefined at x=-2 and the graph has a vertical asymptote at that point.

Learn more about vertical asymptote:
https://brainly.com/question/4084552
#SPJ1

Select the correct answer.


given a prism with a right triangle base and the dimensions and what is a correct expression for the volume of the prism?

Answers

The correct expression for the volume of a prism with a right triangle base can be obtained by multiplying the area of the base by the height of the prism. For a right triangle base, the area can be calculated as half the product of the base and height of the triangle, given by the formula A = (1/2)bh.

Let's say the dimensions of the right triangle base are b and h, and the height of the prism is denoted by H. Then, the volume of the prism can be expressed as V = A × H = (1/2)bh × H = (bhH)/2.

This expression represents the volume of the prism in terms of its base dimensions and height. It is important to note that the units of the dimensions should be consistent in order to get the volume in a suitable unit. For example, if the base dimensions are in centimeters and the height is in meters, the volume should be converted to cubic meters or cubic centimeters depending on the required accuracy.

In conclusion, the volume of a prism with a right triangle base can be calculated by multiplying the area of the base by the height of the prism. For a right triangle base, the area is given by (1/2)bh, and the volume can be expressed as (bhH)/2.

To know more about volume of a prism refer here:

https://brainly.com/question/11336446#

#SPJ11

Other Questions
To solve 61/4, james thinks about how the distance from his home to the store is 1/4 mile and he wonders how many times he would have to walk that distance to walk 6 miles. what is the quotient of 6 and 1/4? enter your answer in the box. The United States entered the war betweenNorth and South Vietnam...A. to try and stop the spread of communism.B . and freed South Vietnam from enslavement.C. by influencing surrounding countries tofight.D. to help spread communism throughout theworld. Click all that is true. The functions of proteins are: transport important things in your bodybuild the structures of your bodyenzymes to make chemical reactions go fastersend messages to cellsmake antibodies to fight viruses Any group or individual who is affected by the decisions of the organization is known as a: oShareholder oStakeholder oInvestor oStockholder How did illegal smuggling affect the Portuguese empire? A. The Portuguese rulers profited from it B. It caused a war between Spain and Portugal C. It caused economic hardship in the empire D. It led Portugal to expand its colonies I need help its Unit 4 Lesson 9, 7th grade test If you have the other answer that would be great Explain the sales presentation strategy for the wine or leather bags. focus on how the product will be presented to the prospect (marketing mix), how will you create desire for the product and how you plan to handle objections Solve 8 w 72. Graph the solution. Please help QUESTION IN PHOTO I MARK BRAINLIEST Colossal squids havebeen caught before.what is special about tjis one landed by new zealand fisherman? if there are 15 people from the bronx, brooklyn, manhattan queens and staten island and each borough has 3 people, if the people from each borough insist on standing together, how many possible ways are there to stand Is it fair that accountants can be held liable under securities laws? Why or why not? Is it fair to hold an accountant liable for not catching the fraud of management? why or why not? Read over William Blakes The Tyger as well as The Lamb. Then, write 3-5 sentences explaining how the poems are in conversation with one another. What do you think William Blake intended by writing these two animal-themed poems, one in the Songs of Innocence and the other in the Songs of Experience? The volume of this prism is 2990cm3. the area of the cross-section is 65cm2. work out x The curved path taken by the project object In complex numbers what is the multiplicative inverse of 2i Jessie has made a website using a WYSIWYG editor. However, she wants to make few changes to adjust the images and text. How can she make these changes? Jessie can change the in the tab of the WYSIWYG editor Taylor is making a large banner thatmeasures 6 yards in length. He split thebanner into 18 sections for him andsome of his friends to work on. Howmany inches long is each section? write an essay about how o solve 2 + 2. be sure to include the number 9 Olivia Kane, a 33-year-old female, came into Kinsey Imaging Center for her annual screening mammogram. Due to her family history of malignant neoplasms of the breast (both her mother and sister have been diagnosed), the mammogram was ordered with computer-aided detection (CAD). How many hydrogen molecules (h2) are needed to convert the triacylglycerol shown to saturated fat