A driver translation a speed of 115km/hr received a text message on his mobile phone how far is he ,in kilometers,20s later from when he received the text message?

Answers

Answer 1

Answer:

S=d/t.

distance is= speed multiplied by the time

D= 115 multiplied by 20

the answer is 2300km

Answer 2

Driver is approximately 0.63888 kilometers away from where he received the text message after 20 seconds.

To determine the distance the driver travels 20 seconds after receiving the text message, we need to calculate the distance covered during that time interval.

First, we convert the driver's speed from km/h to m/s for consistent units. The conversion factor is 1 km/h = 0.27778 m/s.

Driver's speed = 115 km/h × 0.27778 m/s = 31.944 m/s

Next, we use the formula for distance traveled:

Distance = Speed × Time

Distance = 31.944 m/s × 20 s = 638.88 meters

Therefore, the driver will be 638.88 meters away from the point where he received the text message after 20 seconds.

To convert this distance to kilometers, we divide by 1000:

Distance = 638.88 m ÷ 1000 = 0.63888 km

So, the driver is approximately 0.63888 kilometers away from where he received the text message after 20 seconds.

To know more about distance traveled, here

brainly.com/question/29055485

#SPJ2


Related Questions

PLEASE ANSWER QUICK (7th grade science measurment of volume)
Estimate the water volume in the graduated cylinder to the nearest 0.1 mL.

(Remember to read from the bottom of the curved meniscus.)


Answers

Answer : The volume of water in graduated cylinder is 15.5 mL.

Explanation :

As we know that for the measurement of the volume of liquid in graduated cylinder are shown by placing the graduated cylinder on the flat surface and then view the height of the liquid in the graduated cylinder with the naked eyes directly level with the liquid.

The liquid will tend to curve downward that means this curve is known as the meniscus.

In the case of colored liquid, we are always read the upper meniscus of the liquid for the measurement.

In the case of colorless liquid, we are always read the lower meniscus of the liquid for the measurement.

In the given image, there are 5 larger and 5 smaller division between the 15 and 20 and the solution is colored. The value of larger division is 1 mL and smaller division is 0.5 mL.

So, we will read the upper meniscus of the liquid for the measurement.

Hence, the volume of water in graduated cylinder is 15.5 mL.

(15 points) How does change in a roller coasters motion depend on the sum of the forces and the mass of the ride?

Answers

The sum of the forces divided by the mass is equal to the acceleration of the roller coaster. Acceleration causes a change in the motion.

giving brainlist down below pick one form of government that is easy to do


Direct Democracy, Representative Democracy, Dictatorship, Oligarchy, Communism, or Socialism

Answers

Answer:

Representative Democracy.

Explanation:

It is simple and easy because you choose a representative to make choices for the good of your people. It is much simpler then all the rest.

An airplane with a speed of 92.3 m/s is climbing upward at an angle of 51.1 ° with respect to the horizontal. When the plane's altitude is 532 m, the pilot releases a package.
(a) Calculate the distance along the ground, measured from a point directly beneath the point of release, to where the package hits the earth.
(b) Relative to the ground, determine the angle of the velocity vector of the package just before impact. (a) Number Units (b) Number Units

Answers

Answer:

a

[tex]D =  1162.7 \  m [/tex]

b

[tex]\beta =- 65.55^o[/tex]

Explanation:

From the question we are told that

  The speed of the airplane is  [tex]u  =  92.3 \ m/s[/tex]

   The  angle is  [tex]\theta = 51.1^o[/tex]

    The altitude of the plane is  [tex]d =  532 \  m[/tex]

Generally the y-component of the airplanes velocity is  

       [tex]u_y  =  v *  sin (\theta )[/tex]

=>     [tex]u_y  =   92.3 *  sin ( 51.1 )[/tex]

=>     [tex]u_y  =  71.83  \ m/s[/tex]

Generally the displacement  traveled by the package in the vertical direction is

       [tex]d =  (u_y)t +  \frac{1}{2}(-g)t^2[/tex]

=>       [tex] -532  = 71.83 t +  \frac{1}{2}(-9.8)t^2[/tex]

Here the negative sign for the distance show that the direction is along the negative y-axis

 =>   [tex]4.9t^2 - 71.83t - 532 = 0[/tex]

Solving this using quadratic formula we obtain that

    [tex]t =  20.06 \  s[/tex]

Generally the x-component of the velocity is  

     [tex]u_x  =  u  *  cos (\theta)[/tex]

=>    [tex]u_x  =   92.3  *  cos (51.1)[/tex]

=>   [tex]u_x  =   57.96 \ m/s[/tex]

Generally the distance travel in the horizontal  direction is    

     [tex]D =  u_x  *  t[/tex]

=>   [tex]D =  57.96  *   20.06 [/tex]

=>    [tex]D =  1162.7 \  m [/tex]

Generally the angle of the velocity vector relative to the ground is mathematically represented as

       [tex]\beta  =  tan ^{-1}[\frac{v_y}{v_x } ][/tex]

Here [tex]v_y[/tex] is the final  velocity of the package along the vertical  axis and this is mathematically represented as  

     [tex]v_y  =  u_y  -   gt[/tex]

=>  [tex]v_y  =  71.83  -    9.8 *  20.06[/tex]

=>  [tex]v_y  =  -130.05 \  m/s [/tex]  

and  v_x is the final  velocity of the package which is equivalent to the initial velocity [tex]u_x[/tex]

So

       [tex]\beta  =  tan ^{-1}[-130.05}{57.96 } ][/tex]

       [tex]\beta =- 65.55^o[/tex]

The negative direction show that it is moving towards the south east direction

   

Your friend has decided to make some money during the next State Fair by inventing a game of skill. In the game as she has developed it so far, the customer shoots a rifle at a 5.0 cm diameter target falling straight down. Anyone who hits the target in the center wins a stuffed animal. Each shot would cost 50 cents. The rifle would be mounted on a pivot 1.0 meter above the ground so that it can point in any direction at any angle. When shooting, the customer stands 100 meters from where the target would hit the ground if the bullet misses. At the instant that the bullet is fired (with velocity of 1200 ft/sec according to the manual), the target is released from its holder 7.0 meters above the ground. (You see, the trigger is electronically connected to the release mechanism.) Your friend asks you to try out the game which she has set up on a farm outside of town. Before you fire the gun you calculate where you should aim. You may, as usual, neglect any effects of air resistance. Your conclusion? At what angle from the vertical should you aim?

Answers

Answer: from the vertical, one should aim  86.6°

Explanation:

height of the center of object = 7.0 m - 0.05 m = 6.95 m

now let the bullet hits centre at point A height x meters from the ground

also let t be the time taken for the bullet to hit the object

so distance travelled by the target will be

d = h - x = 6.95 - x

now using the equation of motion

d = 1/2gt²

so 1/2gt² = 6.95 - x

x = 6.95 - 1/2gt² .........let this be equ 1

let angle of fire be ∅

so v(cos∅) × t = 100

our velocity v is 1200 ft/sec = 365.76 m/s

365.76(cos∅) × t = 100 ........equ 2

also vertical position of the bullet after t is

y = y₀ + c(sin∅)t - 1/2gt²

y = 1 + 365.76(sin∅)t - 1/2gt² ----- equ 3

After time t. the vertical position x and y are same, else the bullet wouldn't have strike target at centre, so;

x = y

we substitute

equ 1 = equ 3

6.95 - 1/2gt² = 1 + 365.76(sin∅)t - 1/2gt²

6.95 - 1 = 365.76(sin∅)t - 1/2gt² +  1/2gt²

5.95 = 365.76(sin∅)t

t = 5.96 / 365.76(sin∅)

now input the above equ  into equ 2

365.76(cos∅) ×  5.96/365.76(sin∅) = 100

5.95(cos∅)/sin∅ = 100

tan∅ = 5.95/100 = 0.0595

∅ =  3.40°

therefore from the vertical, one should aim (90° - 3.40°) = 86.6°

Tendon forces Ta and Tb are exerted on the patella. The femur exerts force F on the patella. If the magnitude of Tb is 80 N, what are the magnitudes of Ta and F, if no motion is occurring at the joint? (Answer: Ta = 44.8 N, F = 86.1 N)

Answers

Complete question

The diagram for this question is shown on the first uploaded image

Answer:

 [tex]T_a   =  44.8 \  N [/tex] ,   [tex]  F =  86.03 \ N  [/tex]

Explanation:

From the question we are told that

    The magnitude of  [tex]T_b  =  80 N[/tex]

From the diagram we can see that

     [tex]Ta * sin (38) +  F *  sin (29) =   T_b *  cos  (30) \  \cdots (1)[/tex]

    [tex]Ta * sin (38) +  F *  sin (29) = 80 *  cos  (30) \  \cdots (1)[/tex]

   [tex]0.616 Ta +  0.485F  = 69.3 \  \cdots (1)[/tex]

=>  [tex]T_a   = \frac{69.3 - 0.485F}{0.616}[/tex]

Also

    [tex]T_a  *  cos(38) + T_b *  sin (30)= F *  cos (29) \  \cdots  (2)[/tex]

=>   [tex]T_a  *  cos(38) + 80*  sin (30)= F *  cos (29) \  \cdots  (2)[/tex]

=>   [tex]0.788 T_a + 40 =  0.875 F \  \cdots  (2)[/tex]

=>  [tex]0.788 [\frac{69.3 - 0.485F}{0.616}]+ 40 =  0.875 F[/tex]

=>  [tex]  88.65  -  0.6204 F + 40 =  0.875 F[/tex]

=>  [tex]  88.65  + 40 =  0.875 F+0.6204 F [/tex]

=>  [tex]  128.65  =  1.4954 F [/tex]

=>  [tex]  F =  86.03 \ N  [/tex]

substituting  this obtained value  for F in the above equation

       [tex]T_a   = \frac{69.3 - 0.485(86.03)}{0.616}[/tex]

      [tex]T_a   =  44.8 \  N [/tex]


Objects can be charged by the transfer of electrons.
True
False

Answers

Answer:

True

Explanation:

Whenever electrons are transferred between objects, neutral matter becomes charged. For example, when atoms lose or gain electrons they become charged particles called ions. Three ways electrons can be transferred are conduction, friction, and polarization. In each case, the total charge remains the same.

I tried, hope this helps :)

* I might be wrong though

If you were unfortunate enough to be 5.5 mm away from such a lightning bolt, how large a magnetic field would you experience

Answers

The question is incomplete. Here is the complete question.

Lightning bolts can carry currents up to approximately 20kA. We can model such a current as the equivalent of a very long, straight wire.

(a) If you were unfortunate enough to be 5.5m away from such a lightning bolt, how large a magnetic field would you experience?

(b) How does this field compare to one you would experience by being 5.5cm from a long, straight household current of 5A?

Answer: (a) B = 7.27 x 10⁻⁴ T

              (b) Approximately 40 times higher than a household one.

Explanation: Using Biot-Savart Law, the magnetic field in a straight, long wire is given by

[tex]B=\frac{\mu_{0}I}{2.\pi.r}[/tex]

where:

[tex]\mu_{0}[/tex] (permeability of free space) = [tex]4.\pi.10^{-7}[/tex]T.m/A

(a) If lightning bolt is compared to a long and straight wire, then magnetic field is

[tex]B=\frac{4.\pi.10^{-7}.10.10^{3}}{2.\pi.5.5}[/tex]

B = 7.27 x 10⁻⁴ T

The magnitude of magnetic field in a lightning bolt is 7.27 x 10⁻⁴ T

(b) Magnetic field in a household wire will be

[tex]B=\frac{4.\pi.10^{-7}.5}{2.\pi.5.5.10^{-2}}[/tex]

B = 1.82 x 10⁻⁵ T

Comparing fields:

[tex]\frac{7.27.10^{-4}}{1.82.10^{-5}}[/tex] ≈ 40

The filed for a lightning bolt is approximately 40 times higher than for a household wire.

Which is a characteristic of thermal energy transfer through convection

Answers

Answer:  The thermal energy transfer is When a fluid, such as air or a liquid, is heated and then travels away from the source, it carries the thermal energy along.

Explanation: heat transfer is called convection.  hopefully this was helpful.

A car in front of the school goes from rest to 27 m/s in 3.0 seconds. What is its acceleration (assuming
it is constant)?

Answers

The answer is 13.5 because 27÷3.0=13.5

Although we have discussed single-slit diffraction only for a slit, a similar result holds when light bends around a straight, thin object, such as a strand of hair. In that case, a is the width of the strand. From actual laboratory measurements on a human hair, it was found that when a beam of light of wavelength 633.0nm was shone on a single strand of hair, and the diffracted light was viewed on a screen 1.40m away, the first dark fringes on either side of the central bright spot were 5.34cm apart. How thick was this strand of hair?

Answers

Answer:

a = 16.5 x 10⁻⁶ m = 16.5 μm

Explanation:

Here we will use the diffraction equation:

y = mλL/a

where,

y = distance between two consecutive dark fringes = 5.34 cm = 0.0534 m

m = order of diffraction = 1

λ = wavelength of light = 633 nm = 6.33 x 10⁻⁷ m

L = Distance between hair and screen = 1.4 m

a = thickness of hair = ?

0.0534 m = (1)(6.33 x 10⁻⁷ m)(1.4 m)/(a)

a = (6.33 x 10⁻⁷ m)(1.4 m)/(0.0534 m)

a = 16.5 x 10⁻⁶ m = 16.5 μm

The world record for the 100-meter dash is 9.76 s. What is the runner's average speed?

Answers

Answer:

mine is 9.75 so take that as you will

Explanation:

Please im begging you help me

Answers

Answer:

21

Explanation:

21

Answer:

speed is equal to distance divided by time

(for the chart i'm assuming that the time is measure in seconds but if not just change the s with whatever time unit you are using)

A. 0.224 m/s

B. 0.230 m/s

C. 0.258 m/s

D. 0.265 m/s

E. 0.301 m/s     (fastest speed)

F. 0.217 m/s     (slowest speed)

What energy conversions take place during these activities?
Riding uphill, the boy's work is converted into magnetic energy, riding on level ground, his work is converted into thermal energy
A
B
Riding uphill the boy's work is converted into thermal energy, riding on level ground, his work is converted into potential energy
c С
Riding uphill, the boy's work is converted into potential energy, riding on level ground, his work is converted into kinetic energy
D
Riding uphill, the boy's work is converted into kinetic energy, riding on level ground, his work is converted into magnetic energy

Answers

I'm pretty sure your answer should be

C. Riding uphill, the boy's work is converted into potential energy, riding on level ground, his work is converted into kinetic energy.

A spaceship left earth to collect samples from mars? Which statement is true about the strength of the earths gravity on moving spacecrafts

Answers

Answer:

The first one

Explanation:

a 25 kg object falls off a cliff and hits the ground 10 seconds later. How much force does the object apply to the ground on impact?

Answers

Answer:

Yes

Explanation:

Beacause u have 25 kg,and falls off from a cliff hanger cause its too bit heavy

The initial speed of a cannon ball is 0.20 km/s. If the ball is to strike a target that is at a horizontal distance of 3.0 km from the cannon, what is the minimum time of flight for the ball

Answers

Answer:

15 seconds

Explanation:

Given that the initial speed of a cannon ball is 0.20 km/s. If the ball is to strike a target that is at a horizontal distance of 3.0 km from the cannon. The minimum time of flight for the ball can be calculated by using the formula for speed

speed = distance / time

Where

speed = 0.2 km/s

distance = 3 km

Substitute the two parameters into the formula

0.2 = 3 / t

make t the subject of the formula

t = 3/0.2

t = 15 s

Therefore, the minimum time of flight for the ball is 15 seconds

HELP PLEASE THANKS!! Explain why Gravitational forces are always attractive.

Answers

Answer:

cause without gravity, the earth will start to move away from the orbit and crash into the sun like a raining meteor of babies diaper falling on the ground of smelly dunken doughnuts

Explanation:

lol

How far away are the Stars?

Answers

Answer:

25,300,000,000,000 miles away

Two speakers placed 0.94 m apart produce pure tones in sync with each other at a frequency of 1630 Hz. A microphone can be moved along a line parallel to the line joining the speakers and 9.4 m from it. An intensity maximum is measured a point P0 where the microphone is equidistant from the two speakers. As we move the microphone away from P0 to one side, we find intensity minima and maxima alternately. Take the speed of sound in air to be 344 m/s, and you can assume that the slits are close enough together that the equations that describe the interference pattern of light passing through two slits can be applied here.

Required:
a. What is the distance, in meters, between Po and the first intensity minimum?
b. What is the distance, in meters, between Po and the first intensity maximum?
c. What is the distance, in meters, between Po and the second intensity minimum?
d. What is the distance, in meters, between Po and the second intensity maximum?

Answers

Answer:

a. approximately [tex]1.1\; \rm m[/tex] (first minimum.)

b. approximately [tex]2.2\; \rm m[/tex] (first maximum.)

c. approximately [tex]3.4\; \rm m[/tex] (second minimum.)

d. approximately [tex]4.7\; \rm m[/tex] (second maximum.)

Explanation:

Let [tex]d[/tex] represent the separation between the two speakers (the two "slits" based on the assumptions.)

Let [tex]\theta[/tex] represent the angle between:

the line joining the microphone and the center of the two speakers, andthe line that goes through the center of the two speakers that is also normal to the line joining the two speakers.

The distance between the microphone and point [tex]P_0[/tex] would thus be [tex]9.4\, \tan(\theta)[/tex] meters.

Based on the assumptions and the equation from Young's double-slit experiment:

[tex]\displaystyle \sin(\theta) = \frac{\text{path difference}}{d}[/tex].

Hence:

[tex]\displaystyle \theta = \arcsin \left(\frac{\text{path difference}}{d}\right)[/tex].

The "path difference" in these two equations refers to the difference between the distances between the microphone and each of the two speakers. Let [tex]\lambda[/tex] denote the wavelength of this wave.

[tex]\displaystyle \begin{array}{c|c} & \text{Path difference} \\ \cline{1-2}\text{First Minimum} & \lambda / 2 \\ \cline{1-2} \text{First Maximum} & \lambda \\\cline{1-2} \text{Second Minimum} & 3\,\lambda / 2 \\ \cline{1-2} \text{Second Maximum} & 2\, \lambda\end{array}[/tex].

Calculate the wavelength of this wave based on its frequency and its velocity:

[tex]\displaystyle \lambda = \frac{v}{f} \approx 0.211\; \rm m[/tex].

Calculate [tex]\theta[/tex] for each of these path differences:

[tex]\displaystyle \begin{array}{c|c|c} & \text{Path difference} & \text{approximate of $\theta$} \\ \cline{1-3}\text{First Minimum} & \lambda / 2 & 0.112 \\ \cline{1-3} \text{First Maximum} & \lambda & 0.226\\\cline{1-3} \text{Second Minimum} & 3\,\lambda / 2 & 0.343\\ \cline{1-3} \text{Second Maximum} & 2\, \lambda & 0.466\end{array}[/tex].

In each of these case, the distance between the microphone and [tex]P_0[/tex] would be [tex]9.4\, \tan(\theta)[/tex]. Therefore:

At the first minimum, the distance from [tex]P_0[/tex] is approximately [tex]1.1\; \rm m[/tex].At the first maximum, the distance from [tex]P_0[/tex] is approximately [tex]2.2\; \rm m[/tex].At the second minimum, the distance from [tex]P_0[/tex] is approximately [tex]3.4\; \rm m[/tex].At the second maximum, the distance from [tex]P_0[/tex] is approximately [tex]4.7\;\rm m[/tex].

Interference is the result when two or more waves combine

The distance between P₀ and

a. The first intensity minimum is approximately 1.06 m

b. The first intensity maximum is  approximately  2.165 m

c. The second intensity minimum is approximately 3.36 m

d. The second intensity minimum is approximately 4.72 m

The reasons the above values are correct are given as follows:

The known parameters are;

The distance between the two speakers = 0.94 m

Frequency of the tone produced by the two speakers = 1,630 Hz (in sync)

The line along which the microphone moves is parallel to the line between the two speakers

The distance between the parallel lines above = 9.4 m

The speed of sound in air, v₀ = 344 m/s

The interference pattern of light passing between two slits is to be applied

a. Based on the arrangement, we have;

P₀ = 9.4 × tan(θ)

Where;

θ = The angle formed formed by the line from the microphone to the midpoint of the distance between the two speakers and the perpendicular bisector to the line joining the two speakers

Based on Young's double-slit experiment, we have;

[tex]sin(\theta) = \dfrac{Path \ difference}{d}[/tex]

Where;

d = The distance between the two speakers representing the slits

The path difference for a minimum is n × λ/2

Where n = 1,  3, 5,...,(set of odd numbers)

The path difference for a maximum intensity sound is n·λ

Where n = 1, 2. 3, ..., n (n is an integer)

The wavelength, is given as follows;

[tex]\lambda = \dfrac{v}{f}[/tex]

Therefore;

[tex]\lambda = \dfrac{344}{1,630} = \dfrac{172}{815} \approx 0.211[/tex]

The wavelength, λ ≈ 0.211

Therefore, the angle, θ, for the first minima, θ, ≈arcsine(0.211/(2×0.94))

First minima, λ/2, P₀ =9.4 × tan(arcsine(0.211/(2×0.94))) ≈ 1.06

First maxima, λ, P₀ =9.4 × tan(arcsine(0.211/(94))) ≈ 2.165

Second minima, 3·λ/2, P₀ = 9.4 × tan(arcsine(3*0.211/(2×0.94))) ≈ 3.36

Second maxima, 2·λ, P₀ = 9.4 × tan(arcsine(2*0.211/(0.94))) ≈ 4.72

Therefore;

a. The distance between P₀ and the first intensity minimum is ≈ 1.06 m

b. The distance between P₀ and the first intensity maximum is ≈ 2.165 m

c. The distance between P₀ and the second intensity minimum is ≈ 3.36 m

d. The distance between P₀ and the second intensity minimum is ≈ 4.72 m

Learn more about interference of sound waves here:

https://brainly.com/question/14006922

https://brainly.com/question/12096166

Why does a solid keep its shape

Answers

Answer:

Solids can hold their shape because their molecules are tightly packed together. Atoms and molecules in liquids and gases are bouncing and floating around, free to move where they want. The molecules in a solid are stuck in a specific structure or arrangement of atoms.

Rank the following cubes in order of the amount of electric flux through their surfaces, from most positive to?
Rank the following cubes in order of the amount of electric flux through their surfaces, from most positive to most negative.
A cube with sides 10 cm long that contains a + 2.00 micro-coulomb point charge
A cube with sides 10 cm long that contains a + 1.00 micro-coulomb point charge
A cube with sides 20 cm long that contains a + 2.00 micro-coulomb point charge
A cube with sides 20 cm long that contains a + 1.00 micro-coulomb point charge

Answers

Answer: Ranking :  a = c  > b > d      

Explanation:

The amount of electric flux is directly proportional to the amount of charge enclosed.

The greater the charge enclosed, the greater the electric flux through their surface

a)

 A cube with sides 10 cm long that contains a + 2.00 micro-coulomb point charge

∅ = Q/∈₀ = (2.00 x 10⁻³) / (8.85 x 10⁻¹²) = 2.26 x 10⁸ Nm²/C

b)

A cube with sides 10 cm long that contains a + 1.00 micro-coulomb point charge

∅ = Q/∈₀ = (1.00 x 10⁻³) / (8.85 x 10⁻¹²) = 1.13 x 10⁸ Nm²/C

c)  

A cube with sides 20 cm long that contains a + 2.00 micro-coulomb point charge

∅ = Q/∈₀ = (2.00 x 10⁻³) / (8.85 x 10⁻¹²) = 2.26 x 10⁸ Nm²/C

d)  A cube with sides 20 cm long that contains a + 1.00 micro-coulomb point charge

∅ = Q/∈₀ = (1.00 x 10⁻³) / (8.85 x 10⁻¹²) = 1.13 x 10⁸ Nm²/C

Ranking :

a = c  > b > d      

Answer:

Using Gauss's Law, the total amount of electric flux through a closed surface is proportional to the charge enclosed. (The surface integral of the electric field over the closed surface equals the enclosed charge divided by the constant of proportionality, the permittivity of free space.) So, since surfaces 1 and 3 have the most positive enclosed charge, they have the most positive electric flux (they have the same). Since surfaces 2 and 4 have the least positive enclosed charge, they have the least positive electric flux. and are the same

thus LHS to RHS; a=c > b=d

ANSWER QUICK ! WILL GIVE BRAINLIEST
(EDGE2020 PHYSICS)

Substance X transfers thermal energy to substance Y through conduction. What is an accurate conclusion about the condition of both substances before conduction occurred?

Their molecules had the same amount of energy.
The substances were the same temperature.
Substance X’s molecules were faster than substance Y’s.
Substance X was cooler than substance Y.

Answers

Answer:

Substance X transfers thermal energy to substance Y through conduction. What is an accurate conclusion about the condition of both substances before conduction occurred? Substance X's molecules were faster than substance Y's.

Explanation:

An accurate conclusion about the condition of both substances before conduction occurred is substance X’s molecules were faster than substance Y’s.

What is thermal energy?

Thermal energy is the energy released in the form of heat. It manifests itself by releasing heat. It results from the atoms' movement or vibration, so it displays the system's internal energy. We define thermal energy as part of the internal energy of a system.

It is an extensive quantity, it depends on the size of the system, or on the amount of substance it contains. The SI unit of thermal energy is the joule (J). It is the energy contained within the system, excluding the kinetic energy of motion of the system as a whole and the potential energy of the system. Thermal energy is often classified into various types on the basis of how this internal energy, in the form of heat, is transferred from one body to another.

The correct answer is option C.

Learn more about thermal energy, refer:

https://brainly.com/question/9621699

#SPJ2

Please help I would appreciate it

Answers

Answer:

3.176hours

Explanation:

270/85=3.126 hours DISTANCE / SPEED = TIME

Many biological systems are well-described by the laws of statistical physics. A simple yet often powerful approach is to think of a system as having only two states. For example, an ion channel may be open or closed. In this problem, consider a simple model of membrane channels for ions: The system is described by a Boltzmann distribution with only two states, with energies ε1 (open) and ε2 (closed). Assume the "open" state is the state of higher energy, so that ε1 > ε2.

If the probability of finding an ion channel open is popen and the probability of finding the ion channel closed is pclosed, which of the expressions below best represents the relative probability of open to closed, R = popen/pclosed? Use the notation z1 = e-ε1/kBT and z2 = e-ε2/kBT

a. z1-z2
b. z2-z1
c. z1/z2
d. z2/z1
e. Something else

Answers

Answer:

z1/z2

Explanation:

we have no quantum effects therefore we can make use of Maxwell Boltzmann distribution in the description of this system.

using the boltzman distribution the probability of finding a particle in energy state

[tex]P_{ei} = \frac{gie^{-ei/kol} }{z}[/tex]

we have

gi to be degeneration of the ith state

ei to be energy of ith state

[tex]z=e^{-ei/kbt}[/tex] summation

[tex]P_{ope} = \frac{e^{-ei/kBt} }{z} = \frac{Z_{1} }{Z}[/tex]

We have R to be equal to

[tex]\frac{P_{ope} }{P_{Close} } = \frac{Z1}{Z2}[/tex]

Two electrons, each with mass m and charge q, are released from positions very far from each other. With respect to a certain reference frame, electron A has initial nonzero speed v toward electron B in the positive x direction, and electron B has initial speed 3v toward electron A in the negative x direction. The electrons move directly toward each other along the x axis (very hard to do with real electrons). As the electrons approach each other, they slow due to their electric repulsion. This repulsion eventually pushes them away from each other.
A) Which of the following statements about the motion of the electrons in the given reference frame will be true at the instant the two speeds reach their separations?A) Electrons A is moving faster than electron B.B) Electron B is moving faster than electron A.C) Both electrons are moving at the same (nonzero) speed in the opposite direction.D) Both electrons are moving at the same (nonzero) speed in the same direction.E) Both electrons are momentarily stationary.
2) What is the minimum separation rmin that the electrons reach?

Answers

Complete Question

Two electrons, each with mass m and charge q, are released from positions very far from each other. With respect to a certain reference frame, electron A has initial nonzero speed v toward electron B in the positive x direction, and electron B has initial speed 3v toward electron A in the negative x direction. The electrons move directly toward each other along the x axis (very hard to do with real electrons). As the electrons approach each other, they slow due to their electric repulsion. This repulsion eventually pushes them away from each other.

A) Which of the following statements about the motion of the electrons in the given reference frame will be true at the instant the two speeds reach their separations?

A) Electrons A is moving faster than electron B.

B) Electron B is moving faster than electron A.

C) Both electrons are moving at the same (nonzero) speed in the opposite direction

.D) Both electrons are moving at the same (nonzero) speed in the same direction.

E) Both electrons are momentarily stationary.

2) What is the minimum separation[tex]r_{min}[/tex] that the electrons reach?

Answer:

1

The  correct option is  E

2

[tex]r_{min} =  \frac{kq^2}{4 mv^2}[/tex]

Explanation:

From the question we are told that

   The mass of each electron  is  m  

    The  charge of each electron  is  q

    The speed of electron A is  v

    The  speed of electron B  is  3v

Generally at their point of separation the repulsion force is equal to the force that is propelling the electrons due to this the electrons are  momentarily stationary

Generally the total initial kinetic energy of both electron is mathematically represented as  

         [tex]K_{inT} =  K_A + K_B[/tex]

=>      [tex]K_{inT}  =  \frac{1}{2}m (v)^2 + \frac{1}{2} m (3v)^2[/tex]

=>      [tex]K_{inT} =  \frac{1}{2} (mv^2 + 9v^2m)[/tex]

=>      [tex]K_{inT} =  5mv^2 [/tex]

Generally the total  final  kinetic energy of both electron is mathematically represented as

         [tex]K_{fT} =  \frac{1}{2} *m * v^2 + \frac{1}{2} *m * v^2[/tex]

Here v is the velocity due to the repulsion force

          [tex]K_{fT} =  mv^2 [/tex]

Generally the final  potential energy of the both electrons is  

         [tex]P_f  =  \frac{ k *  q^2}{r_{min}}[/tex]

Here k is the coulombs constant

So according to energy conservation law

     [tex]K_{inT} =  K_{fT}  +  P_f[/tex]

=>   [tex]5mv^2 =  mv^2 +   \frac{ k *  q^2}{r_{min}} [/tex]

=>   [tex]r_{min} =  \frac{kq^2}{4 mv^2}[/tex]

PLEASEE HELPPP!!! GIVING 15 PT

Answers

Answer:

between point c and point D

2 QUESTION FOR 100 POINTS. PLEASE PROVIDE EXPLANATION

Answers

Answer:

(b) 0.0176

(c) -0.0124

(d) 209

(e) Also comes to rest

(a) 2.38

(b) 5.95

Explanation:

(a) Your answer is correct.  Angular momentum is conserved, so as the lighter beetle moves clockwise, the heavier turntable will move counterclockwise at a slower speed.

(b/c) Initial angular momentum = final angular momentum

L₀ = L

I₁ ω₁,₀ + I₂ ω₂,₀ = I₁ ω₁ + I₂ ω₂

0 = mr² ω₁ + ½ Mr² ω₂

0 = 2m ω₁ + M ω₂

The beetle's angular velocity relative to the turntable is 0.03 rad/s, so ω₁ = ω₂ + 0.03.  Plugging in:

0 = 2 (30 g) (ω₂ + 0.03 rad/s) + (85 g) ω₂

0 = 60ω₂ + 1.8 rad/s + 85ω₂

145ω₂ = -1.8 rad/s

ω₂ = -0.0124 rad/s

ω₁ = ω₂ + 0.03

ω₁ = 0.0176 rad/s

Relative to a stationary observer, the beetle moves 0.0176 rad/s clockwise and the turntable moves -0.0124 rad/s counterclockwise.

(d) Angular distance = angular velocity × time

2π rad = (0.03 rad/s) t

t = 209 s

(e) Angular momentum is conserved.  Since both the beetle and the turntable were originally at rest, the turntable will again come to rest when the beetle stops.

(a) Angular momentum is conserved.

L₀ = L

I₀ ω₀ + I₂ ω₀ = I ω + I₂ ω

(I₀ + I₂) ω₀ = (I + I₂) ω

(M (R/2)² + ½ (3M) (R)²) ω₀ = (M (R)² + ½ (3M) (R)²) ω

(¼ MR² + ³/₂ MR²) ω₀ = (MR² + ³/₂ MR²) ω

(¼ + ³/₂) ω₀ = (1 + ³/₂) ω

(1 + 6) ω₀ = (4 + 6) ω

7ω₀ = 10ω

ω = 0.7ω₀

ω = 0.7 (3.40 rad/s)

ω = 2.38 rad/s

(b) Angular momentum is conserved.

L₀ = L

I₀ ω₀ + I₂ ω₀ = I ω

(I₀ + I₂) ω₀ = I ω

(M (R/2)² + ½ (3M) (R)²) (3.40 rad/s) = M (R)² ω

(¼ MR² + ³/₂ MR²) (3.40 rad/s) = MR² ω

(¼ + ³/₂) (3.40 rad/s) = ω

ω = 5.95 rad/s

Notice we could also have used our answer from part a and I₀ = MR².

(I₀ + I₂) ω₀ = I ω

(M (R)² + ½ (3M) (R)²) (2.38 rad/s) = M (R)² ω

(MR² + ³/₂ MR²) (2.38 rad/s) = MR² ω

(1 + ³/₂) (2.38 rad/s) = ω

ω = 5.95 rad/s

What is the average velocity of the object between t = 3 seconds and t = 4 seconds?
2
A
-1
Your answer:
-1 cm/s
-2 cm/s
O2 cm/s
o 1 cm/s
00 cm/s
O 0.5 cm/s
-0.5 cm/s

Answers

Answer:

it's uhh 0.05 my g yup that's the answer

Explanation:

5

One end of a spring with a force constant of k = 10.0 N/m is attached to the end of a long horizontal frictionless track and the other end is attached to a mass m = 2.20 kg which glides along the track. After you establish the equilibrium position of the mass-spring system, you move the mass in the negative direction (to the left), compressing the spring 2.48 m. You then release the mass from rest and start your stopwatch, that is x(t = 0) = −A, and the mass executes simple harmonic motion about the equilibrium position. Determine the following.(a) displacement of the mass (magnitude and direction) 1.0s after it is released
(b) velocity of the mass (magnitude and direction) 1.0s after it is released
(c) acceleration of the mass (magnitude and direction) 1.0s after it is released
(d) force the spring exerts on the mass (magnitude and direction) 1.0s after it is released
(e) How many times does the object oscillate in 12.0s?

Answers

Answer:

-2.478

0.379

11.14

24.78

Explanation:

Angular frequency of spring in harmonic motion is given by?

ω = √(k/m)

ω = √(10/2.2)

ω = √4.54

ω = 2.13 s^-1

If at t=0 the mass is in negative amplitude (x = -A = -2.48 m) then we describe the position with negative cosine

x(t) = -A * cos(ωt)

x(t) = -2.48 * cos(2.13 * 1)

x(t) = -2.48 * 0.9993

x(t) = -2.478

Velocity and acceleration are 1st and 2nd derivative of position

b)

v(t) = Aω * sin(ωt)

v(t) = 2.48 * 2.13 * sin(2.13 * 1)

v(t) = 5.282 * sin2.13

v(t) = 5.282 * 0.03717

v(t) = 0.379 m/s

c)

a(t) = Aω^2 * cos(ωt)

a(t) = 2.48 * 2.12² * cos(2.13 * 1)

a(t) = 2.48 * 4.494 * cos2.13

a(t) = 11.15 * 0.9993

a(t) = 11.14 m/s²

d)

F = -k * x(t)

F = -10 * -2.478

F = 24.78 N

Other Questions
what is Morgans third weigh-in? one of christianity's main beliefs is that:a. people shouldn't waste their time with holiday celebrationsb. When an angle is reflected across a line, what happens to its measure?A It remains the sameB It doublesC It halvesD Not enough information Someone help explains these question pls x Select four materials that engineers use most often in their design process.furdirtwoodglassrubbermetal please help me out thank you so much :) 7+7 Fiona was thinking of a number. Fiona adds 18 to it, then doubles it and gets an answer of 40.1. What was the original number? How did the treaty of Paris affect the american Indian's living on the land Britain claimed from France? what realization did you have with this lesson Solve each for the missing variable 1. 9x + 15 = 96 Though many colonies had strict laws about religion, which group settled the colony indicated on the map above as a place of religious tolerance, free of slavery? Which of the following equations will produce the graph shown below? Which of the following factors is associated with temperature decreasing by 3 degrees with the increase of height?latitudemountain barriersCocean currentsdelevation About 97% of the French people belonged to this class and were the main groupthat the French Revolution was supposed to help Which of the following are examples of system software? device drivers and system security utilities operating systems and Web browsers word processing programs and device drivers disk drive utilities and email programs If the calendar shows todays date, what is the correct response to this question? Cul es la fecha de hoy?A. Es el cinco de julio.B. Es el quince de junio.C. Es el cincuenta de junio.D. Es el quince de julio.D. Cuntos aos tienen? a natural store or gathering of something What is the equation in slope-intercept form of the line that passes through the points(4,2) and (12,6) crossing the international date line changes the date but not the hour.True or False all of the following are possible effects of increased global temperatures except