Answer:
a) percentage of the employees that will experience lost-time accidents in both years = 1.2%
b) percentage of the employees that will suffer at least one lost-time accident over the two-year period = 10.8%
Step-by-step explanation:
given
percentage of lost time accident last year
P(L) = 8% = 0.08 of the employees
percentage of lost time accident current year
P(C) = 4% = 0.04 of the employees
P(C/L) = 15% = 0.15
using the probability
P(L ∩ C) = P(C/L) × P(L)
= 0.08 × 0.15 = 0.012 = 1.2%
percentage of the employees will experience lost-time accidents in both years = 1.2%
b) Using the probability of the event
P(L ∪ C) = P(L) + P(C) - P(L ∩ C)
= 0.08 + 0.04 -0.012 = 0.108 = 10.8%
percentage of the employees will suffer at least one lost-time accident over the two-year period = 10.8%
please help as soon as possible:)
Answer:
h = 536 ftStep-by-step explanation:
To find the height h we use tan
tan ∅ = opposite / adjacent
From the question
The adjacent is 2000 ft
The opposite is h
So we have
tan 15° = h / 2000
h = 2000 tan 15
h = 535.89 ft
h = 536 ft to the nearest foot
Hope this helps you
The length of a rectangle is four times its width. If the perimeter of the rectangle is 50 yd, find its area.
Answer:
Area of rectangle is 100 square inches.
Step-by-step explanation:
Area of rectangle = length * width
a=l*w
a=4w*w
a=4w^2............(1)
Put the value of w in (1)
a=4(5)^2
a=4(25)
a=100in^2
Answer:
100 yards
Step-by-step explanation:
the length is 4 times the width of the rectangle, so I used guess and check and figured 20 is four times greater than 5 and plugged those two numbers in and it worked.
A passcode can have 5 or 6 digits. Digits can be repeated and leading 0s are allowed. So, 1234 would be a 4 digit code that is different from 01234, which is a 5 digit code. How many different passcodes are possible
Answer:
The number of passcodes possible is 1,100,000
Step-by-step explanation:
Here , we want to calculate the number of different possible passcodes.
For the five digit code,
each number in the code has a possibility of choosing from the digits 0 to 9, so this means that each of the numbers in the code has 10 options.
So for a five digit code, the number of possible choices would be 10 * 10 * 10 * 10 * 10 = 10^5
For a six digit code, the number of possible choice would be 10 * 10 * 10 * 10 * 10 * 10 * 10 = 10^6
So for 5 or 6 digits code, the number of possible choices would be;
10^5 + 10^6 = 10^5(1 + 10)
= 11(10^5) = 1,100,000
The number of passcodes possible is 1,100,000
Calculation of the no of passcode:For the five-digit code, the no of possible choices should be [tex]10^5[/tex]
For the six-digit code, the no of possible choices should be [tex]10^6[/tex]
So, the possible choices should be
[tex]10^5 + 10^6 = 10^5(1 + 10)\\\\= 11(10^5)[/tex]
= 1,100,000
Hence, The number of passcodes possible is 1,100,000
Learn more about code here: https://brainly.com/question/24418415
What is the value of x in the diagram below?
Answer:
7.2option B is the right option.
Step-by-step explanation:
Using leg rule[tex] \frac{bc}{ab} = \frac{ab}{bd} [/tex]
Plug the values:
[tex] \frac{20}{12} = \frac{12}{x} [/tex]
Apply cross product property
[tex]20 \times x = 12 \times 12[/tex]
Calculate the product
[tex]20x = 144[/tex]
divide both sides of the equation by 20
[tex] \frac{20x}{20} = \frac{144}{20} [/tex]
Calculate:
[tex]x = 7.2[/tex]
hope this helps..
Good luck...
this is another type of lazy.... : )
Step-by-step explanation:
if elf =gjh ef=12 and Lf=7.8 find ij
Answer:
IJ= 4.98
Step-by-step explanation:
EF = 12
KF = 6
LF = 7.8
LK = sqrt(7.8^2-6^2) = 4.98
IJ = LK (4.98)
Brainliest for whoever gets this correct! What is the sum of the rational expressions below?
Answer:
second option
Step-by-step explanation:
x / x - 1 + 3x / x + 2
= x(x + 2) / (x - 1)(x + 2) + 3x(x - 1) / (x - 1)(x + 2)
= (x² + 2x) / (x² + x - 2) + (3x² - 3x) / (x² + x - 2)
= (4x² - x) / (x² + x - 2)
Segments AC and BD are diameters of circle O. Circle O is shown. Line segments A C and B D are diameters. Angle A O D is 73 degrees. What is the measure of Arc A D B? 107° 146° 253° 287°
Answer:
253°
Step-by-step explanation:
The central angle whose rays intercept a diameter of the circle has measure 180 deg.
m<AOD = 73 deg
m<DOB = 180 deg
m<ADB = m<AOD +m<DOB = 73 deg + 180 deg = 253 deg
The measure of an arc of a circle is equal to the measure of the central angle that subtends it.
m(arc)AOD = m<AOD = 253 deg
Answer: 253°
The solution is, the measure of Arc A D B is 253°.
What is an angle?In Plane Geometry, a figure which is formed by two rays or lines that shares a common endpoint is called an angle. The two rays are called the sides of an angle, and the common endpoint is called the vertex.
Here, we have,
given that AC and BD are diameters of circle O.
AC and BD intersect at point C the centre of the circle.
The central angle of a circle is the angle based at the circle's center. In other words, the vertex of the angle must be at the center of the circle. A central angle is formed by two radii that start at the center and intersect the circle itself.
The central angle whose rays intercept a diameter of the circle has measure 180 deg.
m<AOD = 73 deg
m<DOB = 180 deg
m<ADB = m<AOD +m<DOB = 73 deg + 180 deg = 253 deg
The measure of an arc of a circle is equal to the measure of the central angle that subtends it.
m(arc)AOD = m<AOD = 253 deg
Answer: the measure of Arc A D B is 253°.
To learn more on angle click:
brainly.com/question/28451077
#SPJ7
Graph the equation below by plotting the y-intercept and a second point on the line. When you click Done, your line will appear
Answer:
Step-by-step explanation:
Equation of the line has been given as,
[tex]y=\frac{3}{2}x-5[/tex]
By comparing this equation with the y-intercept form of the equation,
y = mx + b
Slope of the line 'm' = [tex]\frac{3}{2}[/tex]
and y-intercept 'b' = -5
Table for the points to be plotted on a graph will be,
x y
-4 -11
-2 -6
0 -5
2 -4
4 -3
By plotting y-intercept (0, -5) and any one of the points given in the table we can get the required line.
Answer: actually the answer to this question is (0, -5) and ( 2, -2)
Step-by-step explanation: I just took the test on Plato and got it right :)
For each statement, write the null and alternative hypotheses. State which hypothesis represents the claim. 17. Evaluate the limit, if it exists. Show work. lim→5 2−3−10 2−10
Answer:
Identify what you want to prove and you can test using ANOVA, Chi Square, F test ..... among many.
Step-by-step explanation:
Null and alternative hypothesis are always understood in terms of experiments.
In simple words,
null hypothesis = The results of your experiment are due to chance
alternative hypothesis = The results of your experiments are NOT due to chance
Therefore, identify what you want to prove and you can test using ANOVA, Chi Square, F test ..... among many.
BRAINLIEST ANSWER GIVEN Write a system of equations describing the situation. Do not solve the system. Two numbers add up to 14 and have a difference of 4.
Answer:
[tex]x+y =14\\x-y =4[/tex]
Step-by-step explanation:
[tex]Let -the -unknown- numbers -be ; x -and; y\\x+y =14\\x-y =4[/tex]
Suppose the results indicate that the null hypothesis should not be rejected; thus, it is possible that a type II error has been committed. Given the type of error made in this situation, what could researchers do to reduce the risk of this error? Choose a 0.01 significance level, instead of a 0.05 significance level. Increase the sample size.
Answer:
Increase the sample size.
Step-by-step explanation:
Increasing the sample size is the best way to reduce the likelihood of a type II error.
The type II error occurs when a hypothesis test accepts a false null hypothesis. That is, it fails to reject the null hypothesis that is false.
In such a situation, to increase the power of the test, you have to increase the sample size used in the test. The sampling size has the ability to detect the differences in a hypothesis test.
We have a bigger chance of capturing the difference if the sample size is larger, and it also increases the power of the test.
Students in a statistics class are conducting a survey to estimate the mean number of units students at their college are enrolled in. The students collect a random sample of 47 students. The mean of the sample is 12.3 units. The sample has a standard deviation of 1.9 units. What is the 95% confidence interval for the average number of units that students in their college are enrolled in
Answer:
The 95% confidence interval for the average number of units that students in their college are enrolled in is :
Confidence Interval ( 11.76, 12.84).
Step-by-step explanation:
The formula for a Confidence Interval is:
C. I = μ ± z × σ/√n
Where
z = z score
μ is the sample mean
σ is the sample standard deviation
n = number of samples
We were given a 95% confidence interval
The z score for a 95% confidence interval = 1.96
μ = 12.3 units
σ = 1.9
n = 47 students
C. I = μ ± z × σ/√n
C.I = 12.3 ± 1.96 × 1.9/√47
C.I = 12.3 ± 0.5432012283
Hence,
Confidence interval = 12.3 ± 0.5432012283
12.3 - 0.5432012283 = 11.756798772 Approximately ≈ 11.76
12.3 + 0.5432012283 = 12.843201228
Approximately ≈ 12.84
Therefore, the 95% confidence interval for the average number of units that students in their college are enrolled in is :
Confidence Interval ( 11.76, 12.84).
Help me fast please
give the coordinates(enclose the coordinates in parentheses) of the
foci,vertices,and convertices of the ellipse with equation x²/169 + y²/25 = 1
Answer:
[tex]\frac{x^2}{169} +\frac{y^2}{25}=1[/tex]
If we compare this to the general expression for an ellipse given by:
[tex]\frac{(x-h)^2}{a^2} +\frac{(y-k)^2}{b^2}=1[/tex]
We can see that the vertex is [tex] V=(0,0)[/tex]
And we can find the values of a and b like this:
[tex] a=\sqrt{169}=13, b=\sqrt{25}=5[/tex]
in order to find the foci we can find the value of c
[tex] c =\sqrt{169-25}=\sqrt{144}=12[/tex]
The two focis are (12,0) and (-12,0)
The convertices for this case are: (13,0) and (-13,0) on the x axis
And for the y axis (0,5) and (0,-5)
Step-by-step explanation:
For this problem we have the following equation given:
[tex]\frac{x^2}{169} +\frac{y^2}{25}=1[/tex]
If we compare this to the general expression for an ellipse given by:
[tex]\frac{(x-h)^2}{a^2} +\frac{(y-k)^2}{b^2}=1[/tex]
We can see that the vertex is [tex] V=(0,0)[/tex]
And we can find the values of a and b like this:
[tex] a=\sqrt{169}=13, b=\sqrt{25}=5[/tex]
in order to find the foci we can find the value of c
[tex] c =\sqrt{169-25}=\sqrt{144}=12[/tex]
The two focis are (12,0) and (-12,0)
The convertices for this case are: (13,0) and (-13,0) on the x axis
And for the y axis (0,5) and (0,-5)
Copy the problem, mark the givens in the diagram. Given: CS ≅ HR, ∠CHS ≅ ∠HCR, ∠CSH ≅ ∠HRC, Prove: CR ≅ HS
Help urgently needed
Explanation:
1. CS ≅ HR, ∠CHS ≅ ∠HCR, ∠CSH ≅ ∠HRC — given
2. ∆CRH ~ ∆HSC — AA similarity theorem
3. ∠SCH ≅ ∠RHC — corresponding angles of similar triangles are congruent
4. CH ≅ HC — reflexive property of congruence
5. ∆CRH ≅ ∆HSC — SAS congruence theorem
6. CR ≅ HS — CPCTC
n rectangle ABCD, point E lies half way between sides AB and CD and halfway between sides AD and BC. If AB=11 and BC=2, what is the area of the shaded region? Write your answer as a decimal, if necessary.
Answer:
Step-by-step explanation:
Hello!
For the rectangle ABCD
AB= DC= 11
BC= AD= 2
Point E lies halfway between AB and CD
The shaded are forms two triangles, I'll refer to the upper triangle as "Triangle one" and the lower triangle will be "triangle 2"
The area of a triangle is calculated as
[tex]a= \frac{bh}{2}[/tex]
b= base
h= height
Triangle 1
b₁= AB= 11
[tex]h_1= \frac{BC}{2}= \frac{2}{2}= 1[/tex]
[tex]a_1= \frac{b_1h_1}{2}= \frac{11*1}{2}= 5.5[/tex]
Triangle 2
b₂= DC= 11
[tex]h_2= \frac{BC}{2}= \frac{2}{2} = 1[/tex]
[tex]a_2= \frac{b_2h_2}{2}= \frac{11*1}{2}= 5.5[/tex]
Now you add the areas of both triangles to get the area of the shaded region:
a₁ + a₂= 5.5 + 5.5= 11
Since point E is halfway to all sides of the rectangle, even tough it doesn't see so, the shaded area is equal to half the area of the rectangle:
area= bh= DC*AD= 11*2= 22
area/2= 22/12= 11
I hope this helps!
What does it mean to say "correlation does not imply causation"? Choose the correct answer below. A. Two variables can only be strongly correlated if there existed a cause-and-effect relationship between the variables. B. The fact that two variables are strongly correlated does not in itself imply a cause-and-effect relationship between the variables. C. The fact that two variables are strongly correlated implies a cause-and-effect relationship between the variables. D. Two variables that have a cause-and-effect relationship are never correlated.
Answer:
B. The fact that two variables are strongly correlated does not in itself imply a cause-and-effect relationship between the variables.
Step-by-step explanation:
The term "correlation does not imply causation", simply means that because we can deduce a link between two factors or sets of data, it does not necessarily prove that there is a cause-and-effect relationship between the two variables. In some cases, there could indeed be a cause-and-effect relationship but it cannot be said for certain that this would always be the case.
While correlation shows the linear relationship between two things, causation implies that an event occurs because of another event. So the phrase is actually saying that because two factors are related, it does not mean that it is as a result of a causal factor. It could simply be a coincidence. This occurs because of our effort to seek an explanation for the occurrence of certain events.
Answer: B. The fact that two variables are strongly correlated does not in itself imply a cause-and-effect relationship between the variables.
Step-by-step explanation:
For the functions f(x)=2x−5 and g(x)=3x2−x, find (f∘g)(x) and (g∘f)(x).
Hi,
f°g means : apply first g then f . so calculate "g" and then use result as "x" in f.
g°f means : you apply first f then g
so : f°g = 2(3x²-x) -5 = 6x²-2x- 5
To improve in math, you need practice. have a try with g°f :)
give the answer in comments, and I will tell you if you are correct.
good luck.
The rate of earnings is 6% and the cash to be received in four years is $20,000. The present value amount, using the following partial table of present value of $1 at compound interest, is
Answer:
$15,842
Step-by-step explanation:
We use the Present value formula
Present Value = Future value/(1 + r)ⁿ
r = 6% = 0.06
n = 4 years
Future value = $20,000
Present value = 20,000/(1 + 0.06)⁴
= $15841.873265
≈ $15,842
find the number if 7/3 of it is 5 5/6
Answer: [tex]\dfrac{5}{2}.[/tex]
Step-by-step explanation:
To find: The number if [tex]\dfrac{7}{3}[/tex] of it is [tex]5\dfrac{5}{6}[/tex].
Let x be the number.
Then, as per the statement, we have
[tex]\dfrac{7}{3}x=5\dfrac{5}{6}[/tex]
Simplify [tex]5\dfrac{5}{6}[/tex] as [tex]\dfrac{5\times6+5}{6}=\dfrac{35}{6}[/tex]
Then, [tex]\dfrac{7}{3}x=\dfrac{35}{6}[/tex]
Multiply 3 on both sides, we get
[tex]7x=\dfrac{35}{2}[/tex]
Divide both sides by 7, we get
[tex]x=\dfrac{35}{2\times7}\\\\\Rightarrow\ x=\dfrac{5}{2}[/tex]
Hence, the number is [tex]\dfrac{5}{2}.[/tex]
We will see that the mixed number is:
N = 2 + 1/2
How to find the number?
We want to find a number N such that 7/3 times N is equal to 5 + 5/6.
So we just need to solve:
(7/3)*N = (5 + 5/6)
If we multiply both sides by 3/7, we get:
(3/7)*(7/3)*N = (3/7)*(5 + 5/6)
N = 15/7 + 15/42
If we multiply and divide the first fraction by 6, we get:
N = (6/6)*15/7 + 15/42 = 90/42 + 15/42
N = 105/42
Now we can write:
105 = 42 + 42 + 21
Replacing that in the fraction we would get:
N = 105/42 = (42 + 42 + 21)/42 = 42/42 + 42/42 + 21/42 = 2 + 21/42
N = 2 + 1/2
If you want to learn more about mixed numbers, you can read:
https://brainly.com/question/1746829
Find the measure of each interior angle of a regular polygon with 10 sides.
Answer:
add up c
Step-by-step explanation:
Which of the following lines are parallel to 2Y - 3X = 4?
A. Y = 2/3 X + 4
B. Y = 6/4 X
C. 2Y=8-3X
Answer:
B. Y = 6/4 X
Step-by-step explanation:
Well to find its parallel line we need to put,
2y - 3x = 4 into slope-intercept.
+3x to both sides
2y = 3x + 4
Now we divide everything by 2,
y = 3/2x + 2
So a line that is parallel to the given line will have the same slope but different y intercept, meaning we can cross out choices A and C.
To check look at the image below ↓
Thus,
answer choice B. Y = 6/4 X is correct.
Hope this helps :)
pleassssssssssssssssssssssssseeeeeeeeeeeeeeeeeeeeeeee helpppppppppppppp meeeeeeeee i giveeeee you bralienstttttt
Answer:
487 divide by 14
Step-by-step explanation:
have a nice day
On a coordinate plane, triangle P Q R has points (3, 0), (1, negative 2), (4, negative 2). Triangle PQR is reflected over the line y = x. What is the coordinate of the image point R’? R’(2, 4) R’(–2, –4) R’(2, –4) R’(–2, 4)
Answer:
R'(- 2, 4 )
Step-by-step explanation:
Under a reflection in the line y = x
a point (x, y ) → (y, x ) , thus
R(4, - 2 ) → R'(- 2, 4 )
Answer:
R'(- 2, 4 )
Step-by-step explanation:
I got it right on edg
What is the slope of the line
described by Y = 6X + 2?
A. 6
B. 2
C. 3
D. -6
E. 12
Answer:
A . 6Step-by-step explanation:
[tex]\mathrm{For\:a\:line\:equation\:for\:the\:form\:of\:}\mathbf{y=mx+b}\mathrm{,\:the\:slope\:is\:}\mathbf{m}\\m=6[/tex]
Solving by fractions
Answer:
x = -8, 8
Step-by-step explanation:
Set y = 0 to find the x intercepts
0 = x^2 -64
Add 64 to each side
64 = x^2
Take the square root of each side
±sqrt(64) = sqrt(x^2)
±8 =x
A sample of 250 observations is selected from a normal population with a population standard deviation of 25. The sample mean is 20. Determine the standard error of the mean. (Round your answer to 3 decimal places.)
Answer:
The standard error of the mean is [tex]\sigma _{\= x } = 1.581[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is n = 250
The standard deviation is [tex]\sigma = 25[/tex]
The sample mean is [tex]\= x = 20[/tex]
The standard error of the mean is mathematically represented as
[tex]\sigma _{\= x } = \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]\sigma _{\= x } = \frac{25 }{\sqrt{250} }[/tex]
[tex]\sigma _{\= x } = 1.581[/tex]
I need help! I don’t understand and need helping
Answer:
125
Step-by-step explanation:
30+25+x=180
55+x=180
x=180-55
x=125
Answer:
x = 64.3Step-by-step explanation:
To find x we use tan
tan ∅ = opposite / adjacent
From the question
x is the adjacent
30 is the hypotenuse
So we have
tan 25 = 30/x
x = 30/tan 25
x = 64.33
x = 64.3 to the nearest tenth
Hope this helps you
g Which distribution is used to compute the p-value, if one of the alternative hypotheses of the test is true?Group of answer choices
Answer:
Probability distribution
Step-by-step explanation:
Probability distribution is the function which describes the likelihood of possible values assuming a random variable. Alternative hypothesis is a statement which we accept or reject based on the null hypothesis. The null hypothesis is rejected or accepted on the basis of level of significance. When the p-value is greater than level of significance we fail to reject the null hypothesis and null hypothesis is then accepted. It is not necessary that all null hypothesis will be rejected at 10% level of significance. To determine the criteria for accepting or rejecting a null hypothesis we should also consider p-value.
Write down the first 6 elements of the following sequence (where n ∈ Z+), then give a recursive definition for an. Do not forget the base case. (You do not need to prove it is correct).
a. an - 3n - 10
b. an= (1+(-1)^n)^n
c. an= 2n! (2)
Answer:
a. The first six terms are:
-7, -4, -1, 2, 5, 8
b. The first six terms are:
0, 2, 0, 2, 0, 2.
c. The first six terms are:
4, 8, 24, 96, 480, 2880
Step-by-step explanation:
a. an - 3n - 10
For n = 1
a1 = 3(1) - 10
= -7
For n = 2
a2 = 3(2) - 10
= -4
For n = 3
a3 = 3(3) - 10
= -1
For n = 4
a4 = 3(4) - 10
= 2
For n = 5
a5 = 3(5) - 10
= 5
For n = 6
a6 = 3(6) - 10
= 8
The first six terms are:
-7, -4, -1, 2, 5, 8
b. an= (1+(-1)^n)^n
For n = 1
a1 = (1+(-1)^1)^1
= 0
For n = 2
a2 = (1+(-1)^2)^1
= 2
For n = 3
a3 = (1+(-1)^3)^1
= 0
For n = 4
a4 = (1+(-1)^4)^1
= 2
For n = 5
a5 = (1+(-1)^5)^1
= 0
For n = 6
a6 = (1+(-1)^6)^1
= 2
The first six terms are:
0, 2, 0, 2, 0, 2.
c. an= 2n! (2)
For n = 1
a1 = 2(1!)(2)
= 4
For n = 2
a2 = 2(2!)(2)
= 8
For n = 3
a3 = 2(3!)(2)
= 24
For n = 4
a4 = 2(4!)(2)
= 96
For n = 5
a5 = 2(5!)(2)
= 480
For n = 6
a6 = 2(6!)(2)
= 2880
The first six terms are:
4, 8, 24, 96, 480, 2880
I don’t know if this is right, I’m stuck. Help!
Answer:
C
Step-by-step explanation:
According to SohCahToa, cosine is adjacent over the hypotenuse.
The adjacent when looking from angle b, is 21.
The hypotenuse of this triangle is 29.
So Cos B=21/29