Triangle DBG is isosceles and BD = BG.
What is Triangle?A triangle is a closed two-dimensional geometric shape with three straight sides and three angles. It is one of the basic shapes in geometry and has a wide range of applications in mathematics, science, and engineering.
To prove that triangle DBG is isosceles, we need to show that BD = BG.
First, we can use the given similarity to find the length of DF in terms of EB and EC. Since triangle ABC is similar to triangle EDF, we have:
AB:BC = ED:DF
Substituting the given values, we get:
2:3 = ED:DF
Multiplying both sides by DF, we get:
DF = (3÷2)ED
Next, we can use the fact that triangles EDF and EBG are similar (since they share angle E) to find the length of BG in terms of EB and DF:
ED/EB = BG/DF
Substituting the value we found for DF, we get:
ED/EB = BG/(3/2)ED
Multiplying both sides by (3/2)ED, we get:
BG = (3/2)ED²/ EB
Now we can use the Pythagorean theorem to find the lengths of BD and BG in terms of EB and EC:
BD² = BE² + ED²
BG² = BE² + EG²
Since EG = EC - BD, we can substitute BD = EC - EG in the first equation to get:
BD² = BE² + ED² = BE² + (3/2)ED²
Substituting the expression we found for BG in terms of ED and EB in the second equation, we get:
BG² = BE² + (3/2)ED²/EB² * BE²
Simplifying this expression, we get:
BG² = BE²(1 + 3ED²/2EB²)
Since we know that ED/EB = 2/3, we can substitute this value to get:
BG² = BE²(1 + (3/2)(4/9)) = BE²(25/18)
Therefore, we have:
BD² = BE² + (3/2)ED² = BE² + (3/2)(9/4)BE² = (15/8)BE²
BG² = BE²(25/18)
To show that BD = BG, we can compare the squares of these lengths:
BD² = (15/8)BE²
BG² = BE²(25/18)
Multiplying both sides of the first equation by 18/25, we get:
(18/25)BD² = (27/40)BE²
Substituting the expression for BG² in the second equation, we get:
(18/25)BD² = (27/40)BG²
Therefore, we have:
BD² = (27/40)BG²
Taking the square root of both sides, we get:
BD = (3/4)√(10) * BG
Substituting the expression we found for BG in terms of ED and EB, we get:
BD = (3/4)√(10) * (3/2)ED²/EB
Substituting the value of ED/EB = 2/3, we get:
BD = (3/4)√(10) * (3/2)(4/9)ED²
Simplifying this expression, we get:
BD = (2/3)√(10)ED²
Next, we can substitute the value we found for DF in terms of ED to get:
DF = (3/2)
Therefore, triangle DBG is isosceles and BD = BG.
To learn more about triangle from given link.
brainly.com/question/30599944
#SPJ1
22
A statistical question is one where you expect to get a variety of answers. Determine whether each question can be classified as a statistical question. Select Yes or No for each question. Yes
No
How many hours a week do people exercise?
How many hours are there in a day?
How many rainbows have students seen this month?
To answer this question, determine the quantity asked for:
Answers are:
Yes - How many hours a week do people exercise?
No - How many hours are there in a day?
Yes - How many rainbows have students seen this month?
To know more about statistical questions:
https://brainly.com/question/30915447
#SPJ11
Unit 8: right triangles & trigonometry homework 4 trigonometry finding sides and angles
To find the length of the opposite side and the adjacent side, we can use the ratios of the sides in a 30-60-90 degree triangle.
In a right triangle with a hypotenuse and acute angle given what is the length of the opposite side and the adjacent side?The ratio of the opposite side to the hypotenuse is 1:2, and the ratio of the adjacent side to the hypotenuse is √3:2.
Using these ratios, we can find the length of the opposite side and the adjacent side as follows:
Opposite side = 1/2 x hypotenuse = 1/2 x 10 = 5 units
Adjacent side = √3/2 x hypotenuse = √3/2 x 10 = 5√3 units
Given a right triangle with an acute angle of 60 degrees and an adjacent side of 5 units, find the length of the hypotenuse and the opposite side.
To find the length of the hypotenuse and the opposite side, we can use the ratios of the sides in a 30-60-90 degree triangle.
The ratio of the hypotenuse to the adjacent side is 2:1, and the ratio of the opposite side to the adjacent side is √3:1.
Using these ratios, we can find the length of the hypotenuse and the opposite side as follows:
Hypotenuse = 2 x adjacent side = 2 x 5 = 10 units
Opposite side = √3 x adjacent side = √3 x 5 = 5√3 units
Given a right triangle with an acute angle of 45 degrees and an opposite side of 7 units, find the length of the hypotenuse and the adjacent side.
To find the length of the hypotenuse and the adjacent side, we can use the ratios of the sides in a 45-45-90 degree triangle.
In this type of triangle, the opposite side and the adjacent side are equal, and the hypotenuse is √2 times the length of the legs.
Using these ratios, we can find the length of the hypotenuse and the adjacent side as follows:
Opposite side = Adjacent side = 7 units
Hypotenuse = √2 x opposite side = √2 x 7 = 7√2 units
Learn more about right triangle
brainly.com/question/6322314
#SPJ11
12
Find the first and second derivatives. S = 15 + 344 - 1 15 S' = S'' =
The first derivative of S is S' = 1/15.
The second derivative of S is S'' = 0.
To find the first derivative (S'):
Starting with the given equation S = 15 + 344 - 1 15, we can simplify it to S = 344 + 15.
We can take the derivative of each term separately since they are added together.
The derivative of a constant (15 and 344) is always 0, so we only need to take the derivative of 1/15.
S' = d/dx (344 + 15)
= d/dx (359)
= 0 + 0 + (d/dx (1/15))
= 1/15
Therefore, the first derivative of S is S' = 1/15.
To find the second derivative (S''):
We need to take the derivative of the first derivative (S').
Since the derivative of a constant is always 0,
we only need to take the derivative of 1/15.
S'' = d/dx (S')
= d/dx (1/15)
= 0
Therefore, the second derivative of S is S'' = 0.
To know more about Derivatives:
https://brainly.com/question/25324584
#SPJ11
need help figuring this out please
The step which include the mistake is step 5.
The correct answer choice is option D.
How to simplify?[tex] \frac{1 + {3}^{2} }{5} + | - 10| \div 2[/tex]
Step 1:
[tex] = \frac{1 + {3}^{2} }{5} + 10 \div 2[/tex]
Step 2:
[tex] = \frac{1 + 9 }{5} + 10 \div 2[/tex]
Step 3:
[tex] = \frac{10}{5} + 10 \div 2[/tex]
Step 4:
[tex] = 2 + 10 \div 2[/tex]
Step 5:
[tex] = 12 \div 2[/tex]
Step 6:
[tex] = 6[/tex]
The step which include the mistake is step 5; because it didn't follow the rule of PEMDAS
P = parenthesis
E = exponents
M = Multiplication
D = Division
A = addition
S = subtraction
Therefore,
It should be;
[tex] = 2 + 5[/tex]
[tex] = 7[/tex]
Read more on simplification:
https://brainly.com/question/723406
#SPJ1
1. Numbers arranged in a specific order factorial 2. An array of numbers 0! 3. A symbol for a sum Sigma 4. A series whose terms are formed by addition series 5. 1 combinations 6. A series whose terms are formed by multiplication geometric series 7. Symbol is ! permutation 8. A set of elements that does not consider order sequence 9. A study of likelihoods Pascal's triangle 10. A sum of numbers in a specific order probability 11. A set of elements in a specific order arithmetic series
1) Factorial - Numbers arranged in a specific order.
2) 0! - An array of numbers.
3) Sigma - A symbol for a sum.
4) Addition series - A series whose terms are formed by addition.
5) Combinations - 1.
6) Geometric series - A series whose terms are formed by multiplication.
7) ! - Permutation.
8) Sequence - A set of elements that does not consider order.
9) Pascal's triangle - A study of likelihoods.
10) Probability - A sum of numbers in a specific order.
11) Arithmetic series - A set of elements in a specific ord
1. Factorial: A product of all positive integers up to a given number (n!). For example, 5! = 5 x 4 x 3 x 2 x 1 = 120.
2. Array of numbers 0!: 0! is defined to be 1. This is a convention to simplify mathematical expressions and formulas.
3. Sigma (Σ): A symbol used to represent the sum of a series of numbers, typically written as Σ(expression) with specified lower and upper limits.
4. Series: A sequence of terms formed by adding the terms of a sequence. An example of an addition series is 1 + 2 + 3 + 4 + 5.
5. Combinations: The number of ways to choose a specific subset of items from a larger set without regard to the order in which they are chosen.
6. Geometric Series: A series whose terms are formed by multiplying each term by a constant factor. For example, 1, 2, 4, 8, 16 is a geometric series with a constant factor of 2.
7. Permutation: An arrangement of elements from a set where the order of the elements matters.
8. Sequence: A set of elements that does not consider order. It is a list of numbers or objects arranged according to a specific rule.
9. Pascal's Triangle: A triangular array of numbers in which the first and last number in each row is 1, and each of the other numbers is the sum of the two numbers above it. Pascal's Triangle is used to study the likelihoods and combinatorics.
10. Probability: A measure of the likelihood that a particular event will occur. It is the sum of the probabilities of all possible outcomes in a specific order, expressed as a number between 0 and 1.
11. Arithmetic Series: A set of elements in a specific order where each term is formed by adding a constant difference to the preceding term. For example, 2, 5, 8, 11, 14 is an arithmetic series with a constant difference of 3.
learn more about " Permutations and Combinations":- https://brainly.com/question/28065038
#SPJ11
Christian is rewriting an expression of the form y = ax2 bx c in the form y = a(x – h)2 k. which of the following must be true? h and k cannot both equal zero k and c have the same value the value of a remains the same h is equal to one half –b
The value of 'a' remains the same, 'h' is equal to -b/(2a), and 'h' and 'k' cannot both equal zero.
When rewriting a quadratic expression of the form y = ax^2 + bx + c into the vertex form y = a(x - h)^2 + k, the following must be true:
1. The value of 'a' remains the same in both expressions, as it represents the parabola's vertical stretch or compression.
2. 'h' is equal to -b/(2a), which is derived from completing the square to transform the standard form into the vertex form.
3. 'k' and 'c' do not necessarily have the same value. 'k' is the value of the quadratic function when 'x' equals 'h', which can be found by substituting 'h' back into the original equation and solving for 'y'.
4. 'h' and 'k' cannot both equal zero, unless the vertex of the parabola is at the origin (0,0).
Learn more about quadratic equation at
https://brainly.com/question/2333233
#SPJ11
The sum of five consecutive odd integers is 235. What is the greatest of
these integers?
Answer:
x + x + 2 + x + 4 + x + 6 + x + 8 = 235
5x + 20 = 235
5x = 215, so x = 43
The integers are 43, 45, 47, 49, and 51.
The greatest of these integers is 51.
Prepare a mixture of 100g of 8% cream into 200g of 3% cream. What is the resulting concentration?
(Pharmacy technician math)
The resulting concentration from the mixture will be: 4.67%
How to obtain the concentration of the mixtureTo obtain the concentration of the mixture, we will multiply the volumes of the substances by their percentages and then equate the result that we get to the sum of the mixture. This gives us:
100 g * 0.08 + 200 g * 0.03 = (100 + 200) C
8 + 6 = 300C
= 14 = 300 C
C = 14/300
= 0.046
This could be rewritten in the form of a percentage as 4.67%.
So, the resulting concentration of the solution will be 4.67%.
Learn more about mixture here:
https://brainly.com/question/24647756
#SPJ1
Х
translate one-step equations and solve
write an equation to represent the following statement.
15 is 9 more than j.
solve for j.
j%3d
co
stuck? review related articles/videos or use a hint.
To translate one-step equations, you need to understand the language of algebra.
Algebraic expressions involve variables, numbers, and operations such as addition, subtraction, multiplication, and division. One-step equations require only one operation to isolate the variable, making them easy to solve.
To write an equation to represent the statement "15 is 9 more than j," you can use the equation 15 = j + 9. This equation says that 15 is equal to j plus 9. To solve for j, you need to isolate j on one side of the equation by subtracting 9 from both sides. This gives you the equation j = 6.
To solve the equation j % 3 = c, you need to understand the modulus operator, which gives you the remainder when two numbers are divided. In this case, j % 3 means the remainder when j is divided by 3. To solve for j, you need to multiply both sides of the equation by 3, which gives you the equation j = 3c.
In summary, to translate one-step equations, you need to understand the language of algebra and the operations involved. To solve for variables, you need to isolate them on one side of the equation. And to solve equations involving the modulus operator, you need to understand how it works and how to apply it to solve for variables.
Know more about algebra here:
https://brainly.com/question/19447945
#SPJ11
An object moves in simple harmonic motion with period 8 minutes and amplitude 12m. At time =t0 minutes, its displacement d from rest is −12m, and initially it moves in a positive direction.
Give the equation modeling the displacement d as a function of time t
An object moves in simple harmonic motion with a period of 8 minutes and an amplitude of 12 m. At time =t0 minutes, its displacement d from rest is −12m, and initially, it moves in a positive direction. We can write the final equation for the displacement d as a function of time t: d(t) = 12 * cos((π/4)t + π)
To model the displacement d as a function of time t for an object in simple harmonic motion with a period of 8 minutes and an amplitude of 12m, we'll use the following equation:
d(t) = A * cos(ωt + φ)
where:
- d(t) is the displacement at time t
- A is the amplitude (12m in this case)
- ω is the angular frequency, calculated as (2π / period)
- t is the time in minutes
- φ is the phase angle, which we'll determine based on the initial conditions
Since the period is 8 minutes, we can calculate the angular frequency as follows:
ω = (2π / 8) = (π / 4)
At t = 0 minutes, the displacement is -12m, and the object moves in a positive direction. So we have:
-12 = 12 * cos(φ)
Dividing both sides by 12:
-1 = cos(φ)
Therefore, φ = π (or 180°) since the cosine of π is -1.
Learn more about simple harmonic motion: https://brainly.com/question/26114128
#SPJ11
Look at the intersection of madison street and peachtree street. describe the angles on the north side of the intersection as either supplementary or complementary explain your reasoning.
The angles on the north side of the intersection are complementary angles because complementary angles are two angles whose measures add up to 90 degrees. At the intersection of Madison Street and Peachtree Street, the north side of the intersection forms a right angle (90 degrees).
Any angle on the north side of the intersection must be complementary to the right angle, meaning its measure must be less than 90 degrees.
For example, if we consider the angle formed by Madison Street and the north side of the intersection, it is less than 90 degrees and therefore complementary to the right angle formed by the intersection. Similarly, if we consider the angle formed by Peachtree Street and the north side of the intersection, it is also less than 90 degrees and complementary to the right angle formed by the intersection.
Therefore, all angles on the north side of the intersection are complementary to the right angle formed by the intersection.
To learn more about complementary angles here
https://brainly.com/question/15592900
#SPJ4
Do the data in each table represent a direct variation or an inverse variation? Write an equation to model the data in the table.
Do the data in each table represent a direct variation or an inverse variation?
Direct variation
Inverse variation
Write an equation to model the data in the table.
(Simplify your answer. Type an equation. Use integers or fractions for any numbers in the equation)
x
2
6
10
y
0.4
1.2
2
The equation that models the data in the table is y = 0.2x.
What is meant by equation?
An equation is a mathematical statement that uses symbols to show that two expressions are equal. It typically contains variables, coefficients, and mathematical operations such as addition, subtraction, multiplication, and division.
What is meant by table?
A table is a set of data arranged in rows and columns, typically used to organize and present information in a structured and easy-to-read format. Tables can be used to store and display various types of data.
According to the given information
To write an equation to model the data, we can use the formula for direct variation:
y = kx
where k is the constant of variation.
To find k, we can use any of the pairs of values in the table. Let's use the first pair:
y = 0.4, x = 2
0.4 = k * 2
k = 0.2
Now that we have k, we can write the equation:
y = 0.2x
Therefore, the equation that models the data in the table is y = 0.2x.
To know more about equation visit
brainly.com/question/10413253
#SPJ1
The radius of a circle is 11 kilometers.what is the circle area
Answer:
380.1 square kilometers
Step-by-step explanation:
12 kilometers and the distance between the courthouse and the city pool is 15 kilometers, how far is the library from the community pool?
The library is approximately 19.2 kilometers from the community pool. The distance between the library and the community pool can be calculated using the Pythagorean theorem since the problem describes a right-angled triangle (due south and due west directions).
It is given that the distance between library and courthouse is 12 kilometers (south) and the distance between courthouse and community pool is 15 kilometers (west). Let's call the distance between the library and the community pool "x" kilometers.
According to the Pythagorean theorem:
a² + b² = c²
12² + 15² = x²
Now, calculate the square of the distances: 144 + 225 = x²
Add the numbers: 369 = x²
Finally, find the square root of the sum to find "x":
x = √369
x ≈ 19.2
The library is approximately 19.2 kilometers from the community pool.
To learn more about distance : https://brainly.com/question/26550516
#SPJ11
3
type the correct answer in the box. use numerals instead of words. if necessary, use / for the fraction bar.
the measurement of an angle is 40°, and the length of a line segment is 8 centimeters.
the number of unique rhombuses that can be constructed using this information is _____
please hurry
The number of unique rhombuses that can be constructed using this information is three.
How many unique rhombuses can be constructed using a 40° angle and an 8 cm line segment?When given a 40° angle and an 8 cm line segment, we can construct three distinct rhombuses. A rhombus is a quadrilateral with all sides of equal length, and opposite angles are congruent.
In this scenario, the given 40° angle determines the orientation of the rhombus, while the 8 cm line segment determines its side length. By connecting the endpoints of the line segment with congruent opposite angles, we can create three different rhombuses.
Each rhombus formed will possess an angle measure of 40° and a side length of 8 cm. However, these rhombuses will vary in terms of their overall shape and orientation. Each one represents a unique configuration that satisfies the given angle and side length criteria.
Therefore, the correct answer is that three distinct rhombuses can be constructed using the given information.
Learn more about Unique rhombuses
brainly.com/question/9571932
#SPJ11
Find the absolute (i.e., global) maximum and absolute minimum values of the function f(x) = 8x/6х + 4 on the interval (1,5) Absolute maximum = Absolute minimum =
The absolute maximum value is 20/17, which occurs at x = 5, and the absolute minimum value is 4/5, which occurs at x = 1.
To find the absolute maximum and minimum values of the function f(x) = 8x/(6x + 4) on the interval (1, 5), we need to find the critical points of the function within the interval and evaluate the function at those points, as well as at the endpoints of the interval.
First, let's find the derivative of the function:
f(x) = 8x/(6x + 4)
f'(x) = [8(6x + 4) - 8x(6)] / (6x + 4)^2
f'(x) = [8(2)] / (6x + 4)^2
f'(x) = 16 / (6x + 4)^2
The critical points occur when f'(x) = 0 or is undefined. However, since f'(x) is always positive on the interval (1, 5), there are no critical points within the interval.
Next, let's evaluate the function at the endpoints of the interval:
f(1) = 8(1)/(6(1) + 4) = 8/10 = 4/5
f(5) = 8(5)/(6(5) + 4) = 40/34 = 20/17
Finally, we need to determine which of these values is the absolute maximum and which is the absolute minimum.
Since f(x) is always positive on the interval (1, 5), the function can never be less than 0. Therefore, the absolute minimum value is the smallest value of f(x) on the interval, which occurs at x = 5, where f(5) = 20/17.
To find the absolute maximum value, we compare the values of f(1), f(5), and the maximum value of f(x) as x approaches the endpoints of the interval. We can use the fact that the function is continuous on the closed interval [1, 5] to find the maximum value.
As x approaches 1, we have:
f(x) = 8x/(6x + 4) → 8/10 = 4/5
As x approaches 5, we have:
f(x) = 8x/(6x + 4) → 40/34 = 20/17
Therefore, the absolute maximum value is 20/17, which occurs at x = 5, and the absolute minimum value is 4/5, which occurs at x = 1.
To learn more about absolute maximum value visit:https://brainly.com/question/29449130
#SPJ11
Find all solutions of the equation in the interval [0, 21).
2sin2 0+1=0
Write your answer in radians in terms of.
If there is more than one solution, separate them with commas.
The solutions of equation 2sin²θ + 1 = 0 in the interval [0, 21) in radians are [tex]\theta \approx \frac{5\pi}{4}, \frac{7\pi}{4}[/tex].
How to find the intervals of equations in radians?Let's solve the equation and find the solutions within the given interval [0, 21) in radians.
The equation is 2sin²θ + 1 = 0.
Subtracting 1 from both sides, we get:
2sin²θ = -1
Dividing both sides by 2, we have:
sin²θ = [tex]-\frac{1}{2}[/tex]
Taking the square root of both sides, considering both the positive and negative square roots, we get:
sinθ = [tex]\± -\sqrt\frac{1}{2}[/tex]
Since the sine function is negative in the third and fourth quadrants, we only need to consider the negative square root.
sinθ = [tex]-\sqrt(\frac{1}{2})[/tex]
To find the solutions within the interval [0, 21), we need to consider the values of θ between 0 and 21 in radians.
Using a calculator or trigonometric tables, we can find the solutions for sinθ = [tex]-\sqrt(\frac{1}{2})[/tex] within the interval [0, 21):
θ ≈ 5π/4, 7π/4
Therefore, the solutions of the equation 2sin²θ + 1 = 0 in the interval [0, 21) in radians are:
[tex]\theta \approx \frac{5\pi}{4}, \frac{7\pi}{4}[/tex]
Learn more about intervals in radians.
brainly.com/question/29016480
#SPJ11
If $8000 is invested at 4. 25%, compounded continuously, how long will it take to double?
Round the nearest tenth of a
year
The formula for continuously compounded interest is:
A = Pe^(rt)
Where A is the ending amount, P is the principal, e is the mathematical constant approximately equal to 2.71828, r is the annual interest rate as a decimal, and t is the time in years.
If we want to find how long it takes for the investment to double, we need to solve for t when A = 2P:
2P = Pe^(rt)
Dividing both sides by P and simplifying, we get:
2 = e^(rt)
Taking the natural logarithm of both sides, we get:
ln(2) = rt ln(e)
ln(2) = rt
t = ln(2) / r
Substituting the given values, we get:
t = ln(2) / 0.0425
t ≈ 16.3 years
So it will take approximately 16.3 years for the investment to double. Rounded to the nearest tenth of a year, the answer is 16.3 years.
To know more about compounded interest , refer here :
https://brainly.com/question/14295570#
#SPJ11
A flare is launched from a boat and travels in a parabolic path until reaching the water. Write a quadratic function that
models the path of the flare with a maximum height of 300 meters, represented by a vertex of (59, 300), landing in the water at the point
(119, 0).
f(x) =
Answer:
We can start by using the vertex form of a quadratic function:
f(x) = a(x - h)^2 + k
where (h, k) is the vertex of the parabola.
We know that the vertex is (59, 300), so we can plug in these values:
f(x) = a(x - 59)^2 + 300
To determine the value of "a", we can use the fact that the parabola passes through the point (119, 0). So we substitute these values for x and y and solve for "a":
0 = a(119 - 59)^2 + 300
-300 = 3600a
a = -1/12
Substituting this value of "a" back into the equation for f(x), we get:
f(x) = (-1/12)(x - 59)^2 + 300
This quadratic function models the path of the flare, with a maximum height of 300 meters at the vertex (59, 300), and landing in the water at the point (119, 0).
PLEASE HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
Answer:true
Step-by-step explanation:
Answer:
true
Step-by-step explanation
I can’t seem to figure out this problem, we were dealing with stretch factors but I don’t see one (correct me if I’m wrong) and we weren’t instructed on how to deal with problems like these so any help would be appreciated!l
The solution to this quadratic function is the ordered pairs (-2.414, 0) and (0.414, 0).
How to graph the solution to this linear equation?In order to to graph the solution to the given linear equation on a coordinate plane, we would use an online graphing calculator to plot the given quadratic function and then take note of the x-intercept, zeros, or roots.
In this scenario and exercise, we would use an online graphing calculator to plot the given quadratic function as shown in the graph attached below;
f(x) = (x + 1)² - 2
Based on the graph (see attachment), we can logically deduce that the possible solutions to the given quadratic function is given by the ordered pair (-2.414, 0) and (0.414, 0).
Read more on solution and equation here: brainly.com/question/25858757
#SPJ1
Complete Question:
Determine the solution to the quadratic function graphically.
homage revenue (in thousands of dollars) from the sale of gadgets is given by the following 2. &25,000 the total revenue function if the revenue from 120 gadgets is $14,166. man gadgets must be sold for revenue atleast $35.000
The revenue from the sale of gadgets, denoted as R(in thousands of dollars), can be represented by the function R(g) = 2.5g, where 'g' is the number of gadgets sold.
Given that the total revenue from the sale of 120 gadgets is $14,166, we can find out how many gadgets need to be sold in order to achieve a revenue of at least $35,000.
The given revenue function is R(g) = 2.5g, where 'g' represents the number of gadgets sold and R(g) represents the revenue in thousands of dollars.
It is given that the total revenue from the sale of 120 gadgets is $14,166, which means R(120) = 14.166.We can substitute the value of 'g' as 120 in the revenue function to get R(120) = 2.5 * 120 = 300. So, the revenue from the sale of 120 gadgets is $14,166.
Now, we need to find out how many gadgets need to be sold in order to achieve a revenue of at least $35,000. Let's denote this as 'n'.
We can set up an inequality using the revenue function: R(n) >= 35. This can be written as 2.5n >= 35.
To solve for 'n', we divide both sides of the inequality by 2.5: n >= 35/2.5.
Simplifying, we get n >= 14. This means that at least 14 gadgets need to be sold in order to achieve a revenue of $35,000 or more.
Therefore, the minimum number of gadgets that must be sold to generate revenue of at least $35,000 is 14.
For more questions like Function click the link below:
https://brainly.com/question/12431044
#SPJ11
Simplify the expression
The triangles below are similar. Triangle S R P. Angle S is 54 degrees, R is 41 degrees, P is 85 degrees. Triangle X Y Z. Angle X is 54 degrees, Z is 41 degrees, and Y is 85 degrees. Which similarity statements describe the relationship between the two triangles? Check all that apply. Group of answer choices Triangle P R S is similar to triangle X Y Z Triangle R S P is similar to triangle Z X Y Triangle S R P is similar to triangle X Z Y Triangle P S R is similar to Triangle Z Y X Triangle R P S is similar to triangle Z Y X Triangle S P R is similar to triangle X Z Y
Triangle R S P is similar to triangle Z X Y
Triangle S R P is similar to triangle X Z Y
Triangle R P S is similar to triangle Z Y X
What are similar triangles?Similar triangles, as the name suggests, are two or more regular polygons that share a common form, yet vary in scale. Primarily, this is due to the fact that each shape's corresponding angles are congruent and their matching sides are proportionate.
Hence, if one were to expand or reduce one of the given triangles with a particular factor, it could be properly aligned and matched up with the other triangle. Such characteristics of similar triangles render them to be greatly beneficial in numerous mathematical and geometric undertakings.
Read more about triangles here:
https://brainly.com/question/1058720
#SPJ1
Two vans leave a campground at the same time. One is traveling north at a speed that is 10 miles per hour faster than the other, which is traveling south. After 2. 5 hoursthe vans are 255 miles apart. What is the speed in miles per hour of the van traveling south?
The speed of the van traveling south is 46 miles per hour.
Let the speed of the van traveling south be x miles per hour. Then, the speed of the van traveling north is (x + 10) miles per hour.
Since both vans are moving apart, we add their speeds: x + (x + 10) = 2x + 10 miles per hour.
In 2.5 hours, they are 255 miles apart. So, (2x + 10) * 2.5 = 255.
Now, we solve for x:
5x + 25 = 255
5x = 230
x = 46
The speed of the van traveling south is 46 miles per hour.
To learn more about speed, refer below:
https://brainly.com/question/28224010
#SPJ11
A tennis ball is dropped from a certain height. Its height in feet is given by h(t)=−16t^2 +14 where t represents the time in seconds after launch. What is the ball’s initial height?
The initial height of the ball after launch is 14ft.
What is vertical motion?A vertical motion is a motion due to gravity. This means the velocity and height will depend on the acceleration due to gravity.
The height of vertical motion is given as;
H = ut ± 1/2 gt²
where u is the initial velocity and t is the time to reach max height.
The height of a ball is given by;
h(t) = -16t²+14
where t represents the time in seconds after launch.
The initial height after launch is when t = 0
h(t) = -16(0)² +14
h(t) = 14ft
learn more about vertical motion from
https://brainly.com/question/24230984
#SPJ1
A magazine listed the number of calories and sodium content (in milligrams) for 13 brands of hot dogs. Examine the association, assuming that the data satisfy the conditions for inference. Complete parts a and b
Option B is correct. The relationship is: H0 = 0 there is no linear association between calories and sodium content H1 ≠ 0 there is a linear association between colones and sodium content
The test statistic is 3.75
How to get the correct optionThe test statistics can be gotten from the data that we already have available in this question
The coefficient is given as 2.235
The Standard error of the coefficient is given as 0.596
The formula used is given as
Such that t = coefficient / Standard error
where the coefficient = 2.235
The standard error = 0.596
Then when we apply the formula we have
2.235 / 0.596
t statistic = 3.75
Read more on t statistic here:
https://brainly.com/question/6589776
#SPJ1
Answer the following:
Explain how you know that y directly relates to x in the given table. Determine the constant of variation, k.
Write an equation for the direct variation
The equation for the direct variation is y = 2x. This the equation that directly relates y to x. The value of k is 2.
To know that y directly relates to x in a table, we need to check if y increases or decreases proportionally with x. In the given table, we can see that as x increases, y also increases. This indicates a direct relationship between x and y.
The constant of variation, k, can be determined by dividing any y value by its corresponding x value. Let's choose the first row of the table: y=4, x=2. Therefore, k = y/x = 4/2 = 2.
Now, we can write an equation for the direct variation: y = kx. Plugging in the value of k, we get y = 2x. This equation shows that y is directly proportional to x, with a constant of variation, k, equal to 2.
Learn more about "equation": https://brainly.com/question/2972832
#SPJ11
In a study of the relationship between birth order and college success, an investigator found that 126 in a sample of 180 college graduates were firstborn or only children; in a sample of 100 nongraduates of comparable age and socioeconomic background, the number of firstborn or only children was 54. estimate the difference in the proportions of firstborn or only children for the two populations from which these samples were drawn. give a bound for the error of estimation.
The difference in the proportions of firstborn or only children for the two populations from which these samples were drawn is 0.16.The bound for the error of estimation is 95% confidence that the true difference in proportions of firstborn or only children for the two populations is between 0.058 and 0.262.
To estimate the difference in the proportions of firstborn or only children for the two populations, we can use the sample proportions and apply the formula:
p1 - p2 = (x1/n1) - (x2/n2)
where p1 and p2 are the true population proportions, x1 and x2 are the numbers of firstborn or only children in the samples, and n1 and n2 are the sample sizes.
Sample of college graduates: x1 = 126, n1 = 180Sample of non-graduates: x2 = 54, n2 = 100The sample proportions,
p1 = x1/n1 = 0.7
p2 = x2/n2 = 0.54
Substituting these values into the formula,
p1 - p2 = (x1/n1) - (x2/n2) = 0.7 - 0.54 = 0.16
Therefore, we estimate that the difference in the proportions of firstborn or only children for the two populations is 0.16.
To find a bound for the error of estimation, we can use the formula:
E = z sqrt(p1*(1-p1)/n1 + p2*(1-p2)/n2)
where E is the margin of error, z is the critical value for the desired level of confidence (we'll use z = 1.96 for a 95% confidence interval), and p1 and p2 are the sample proportions.
Substituting the given values, we get:
E = 1.96sqrt(0.7(1-0.7)/180 + 0.54*(1-0.54)/100) ≈ 0.102
Therefore, we can say with 95% confidence that the true difference in proportions of firstborn or only children for the two populations is between 0.058 and 0.262
To learn more about proportions : https://brainly.com/question/1496357
#SPJ11
Find the next term in each sequence.
Question 1:
35, 29, 23, 17, ?.
Question 2:
1, 2, 5, 10, ?.
Please Include an Explanation of how to solve problems like this!
Thanks a ton!
1. For the sequence : 35, 29, 23, 17, ?; the next term is 11
2. For the sequence : 1, 2, 5, 10, ?; the next term is 17
Calculating the term in a sequenceFrom the question, we are to calculate the next term in each of the given sequence
From the given sequence,
35, 29, 23, 17, ?.
To determine the next term, we will determine the common difference
Common difference = Second term - First term
Common difference = 29 - 35
Common difference = -6
Thus,
To determine the next term, we will add the common difference to the last term
That is,
17 + - 6 = 17 - 6
= 11
The next term is 11
For the sequence 1, 2, 5, 10, ?.
Common difference = successive odd numbers
To get the second term, we will add to the first term the first natural odd number
To get the third term, we will add to the second term the second natural odd number
And so on.
In the given sequence, we are to determine the 5th term
Thus,
We will add to the fourth term, the fourth natural odd number
That is,
10 + 7 = 17
Hence, the next term is 17
Learn more on Calculating the term in a sequence here: https://brainly.com/question/28583635
#SPJ1