Answer:
0.078
Step-by-step explanation:
The probability P(A) of an event A happening is given by;
P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]
From the question;
There are two events;
(i) Drawing a first card which is a king: Let the event be X. The probability is given by;
P(X) = [tex]\frac{number-of-possible-outcomes-of-event-X}{total-number-of-sample-space}[/tex]
Since there are 4 king cards in the pack, the number of possible outcomes of event X = 4.
Also, the total number of sample space = 52, since there are 52 cards in total.
P(X) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]
(ii) Drawing a second card which is a queen: Let the event be Y. The probability is given by;
P(Y) = [tex]\frac{number-of-possible-outcomes-of-event-Y}{total-number-of-sample-space}[/tex]
Since there are 4 queen cards in the pack, the number of possible outcomes of event Y = 4
But then, the total number of sample = 51, since there 52 cards in total and a king card has been removed without replacement.
P(Y) = [tex]\frac{4}{51}[/tex]
Therefore, the probability of selecting a first card as king and a second card as queen is;
P(X and Y) = P(X) x P(Y)
= [tex]\frac{1}{13} * \frac{4}{51}[/tex] = 0.078
Therefore the probability is 0.078
Pecans sell for 7.95 per round. How much will 3.2 pounds cost? NEED STEP BY STEP EXPLANATION.
Answer:
$25.44
Step-by-step explanation:
if they sell for 7.95 and you get 3.2 you do 7.95 times 3.2
Which description is true about the transformation shown? It is a dilation because the transformation is isometric. It is a dilation because the transformation is not isometric. It is a stretch because the transformation is isometric. It is a stretch because the transformation is not isometric.
The true statement about the given transformation is; B: It is a dilation because the transformation is not isometric.
What is the Transformation?An isometric transformation is a shape-preserving transformation in the plane or in space. They include reflection, rotation and translation.
Now, from the given attachment showing the two figures, we can see that there is a dilation which means that it can't be isometric as the definition of Isometric transformation does not include Dilation.
Read more about Transformation at; https://brainly.com/question/4289712
#SPJ5
Answer:
b
Step-by-step explanation:
just took the test
Carle is cutting pieces of string that are exactly inches long. How many pieces can she cut from a ball of string that has 100 feet? 1 foot = 12 inches
Answer:
120 inches long in total becuase 12x10 is 120.
A record store owner assesses customers entering the store as high school age, college age,
or older, and finds that among all customers 30%, 50%, and 20% respectively, fall into these
categories. The owner also found that purchases were made by 20% of high school age
customers, by 60% of college age customers, and by 80% of older customers.
(a) Find the probability that a randomly chosen customer will make a purchase?
(b) If a customer makes a purchase, what is the probability that this customer is of college
age?
Step-by-step explanation:
(a) P = (0.3)(0.2) + (0.5)(0.6) + (0.2)(0.8)
P = 0.52
(b) (0.5)(0.6) = 0.3
P = 0.3 / 0.52
P = 0.58
If a customer makes a purchase, then the probability that this customer is of college will be 0.58
What is the probability?Probability refers to a possibility that deals with the occurrence of random events. The probability of all the events occurring need to be 1.
The formula of probability is defined as the ratio of a number of favorable outcomes to the total number of outcomes.
P(E) = Number of favorable outcomes / total number of outcomes
Given that purchases were made by 20% of high school age customers, by 60% of college age customers, and by 80% of older customers.
(a) the probability that a randomly chosen customer make a purchase will be;
P = (0.3)(0.2) + (0.5)(0.6) + (0.2)(0.8)
P = 0.52
(b) if a customer makes a purchase, then the probability that this customer is of college will be;
(0.5)(0.6) = 0.3
P = 0.3 / 0.52
P = 0.58
Learn more about probability here;
https://brainly.com/question/11234923
#SPJ2
There are 3 times as many novels as comic books in a bookstore.If there are 2480 books altogether, how many comic books are there in the bookstore.
Answer:
there are 620 comic books
Step-by-step explanation:
let number of comic books be x
total books=3x+x
2480=4x
2480/4=x
620=x
Answer:
620Step-by-step explanation:
Let comic books be ' X '
Let Novels be ' 3x '
Now, finding the value of X
According to Question,
[tex]3x + x = 2480[/tex]
Collect like terms
[tex]4x = 2480[/tex]
Divide both sides of the equation by 4
[tex] \frac{4x}{4} = \frac{2480}{4} [/tex]
Calculate
[tex]x = 620[/tex]
Thus, There are 620 comic books in the book store.
Hope this helps...
Best regards!!
Ernie deposits $5,500 into a pension fund. The fund pays a simple interest rate of 6% per year. What will the balance be after one year?
Answer:
Balance after one year will be $5830.
A hotel rents 210 rooms at a rate of $ 60 per day. For each $ 2 increase in the rate, three fewer rooms are rented. Find the room rate that maximizes daily revenue.
Answer:
r=$14,400
The hotel should charge $120
Step-by-step explanation:
Revenue (r)= p * n
where,
p = price per item
n = number of items sold
A change in price leads to a change in number sold
A variable to measure the change in p and n needs to be introduced
Let the variable=x
Such that
p + x means a one dollar price increase
p - x means a one dollar price decrease
n + x means a one item number-sold increase
n - x means a one item number-sold decrease
for each $2 price increase (p + 2x) there are 3 fewer rooms are rented (n-3x)
know that at $60 per room, the hotel rents 210 rooms
r = (60 + 2x) * (210 - 3x)
=12,600-180x+420x-6x^2
=12,600+240x-6x^2
r=2100+40x-x^2
= -x^2 +40x+2100=0
Solve the quadratic equation
x= -b +or- √b^2-4ac / 2a
a= -1
b=40
c=2100
x= -b +or- √b^2-4ac / 2a
= -40 +or- √(40)^2 - (4)(-1)(2100) / (2)(-1)
= -40 +or- √1600-(-8400) / -2
= -40 +or- √ 1600+8400 / -2
= -40 +or- √10,000 / -2
= -40 +or- 100 / -2
x= -40+100/-2 OR -40-100/-2
=60/-2 OR -140/-2
= -30 OR 70
x=70
The quadratic equation has a maximum at x=70
p+2x
=60+2(30)
=60+60
=$120
r= (60 + 2x) * (210 - 3x)
={60+2(30)}*{(210-3(30)}
r=(60+60)*(210-90)
=120*120
=$14,400
Cassie has test grades of 71, 78 and 83 on the first three tests in her
pre-algebra class. What are the possible scores she can make on the
fourth test in order to make at least a letter grade of B after the fourth
test? A letter grade B means an average of at least 80. Let x represent
the score on the fourth test.
Answer:
x ≥ 88
Step-by-step explanation:
In order to have at least an average of 80 after 4 tests, the sum of her scores must be at least 80 * 4 = 320 so we can write the following inequality:
71 + 78 + 83 + x ≥ 320
232 + x ≥ 320
x ≥ 88
Answer:
Your correct answer to this problem is x ≥ 88
Step-by-step explanation:
71 + 78 + 83 + x ≥ 320
232 + x ≥ 320
= x ≥ 88
of the 1248 students enrolled 24% did not like the new mascot design. what is the mean of this binomial distribution
A. 299.5
B. 948.5
C. 17.3
D. 300.3
Answer: A. 299.5
Step-by-step explanation:
1248 · 24%
1248 · 0.24=299.50
when a stone falls freely, the time taken to hit the ground varies as the square root of the distance fallen. If it takes four seconds th fall 78.4m, find how long would it takefor a stone to fall 500m
Answer:
The stone would take approximately 10.107 seconds to fall 500 meters.
Step-by-step explanation:
According to the statement of the problem, the following relationship of direct proportionality is built:
[tex]t \propto y^{1/2}[/tex]
[tex]t = k\cdot t^{1/2}[/tex]
Where:
[tex]t[/tex] - Time spent by the stone, measured in seconds.
[tex]y[/tex] - Height change experimented by the stone, measured in meters.
[tex]k[/tex] - Proportionality constant, measured in [tex]\frac{s}{m^{1/2}}[/tex].
First, the proportionality constant is determined by clearing the respective variable and replacing all known variables:
[tex]k = \frac{t}{y^{1/2}}[/tex]
If [tex]t = 4\,s[/tex] and [tex]y=78.4\,m[/tex], then:
[tex]k = \frac{4\,s}{(78.4\,m)^{1/2}}[/tex]
[tex]k \approx 0.452\,\frac{s}{m^{1/2}}[/tex]
Then, the expression is [tex]t = 0.452\cdot y^{1/2}[/tex]. Finally, if [tex]y = 500\,m[/tex], then the time is:
[tex]t = 0.452\cdot (500\,m)^{1/2}[/tex]
[tex]t \approx 10.107\,s[/tex]
The stone would take approximately 10.107 seconds to fall 500 meters.
please help me with this problem
Answer:
A
Step-by-step explanation:
In standard form, an ellipse's major axis is indicated by the [tex]a^{2}, b^{2}[/tex] terms like this:
[tex]\frac{{(y-k)}^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}, a>b[/tex]
[tex]\frac{{(x-h)}^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}, a>b[/tex]
In the top equation, the vertical axis is primary and in the second the horizontal axis is primary. That's a bit more info than the question asked, but I thought it may be helpful to understand the answer.
Now, a co-vertex is the intersection point between an ellipse and its minor axis. On the graph of the ellipse, the [tex]b[/tex] is the distance from the center to where the ellipse intersects its minor axis, so our answer is A.
If a graphical representation would be helpful, I would take a look at the Math Warehouse article on the Equation of an Ellipse in Standard Form.
Velocity of a Car The velocity of a car (in feet per second) t sec after starting from rest is given by the function f(t) = 11 t (0 ≤ t ≤ 30). Find the car's position, s(t), at any time t. Assume that s(0) = 0. s(t) =
Answer:
s(t) = 11t²/2Step-by-step explanation:
Velocity is defined as the rate of change in displacement of a body. It is expressed mathematically as v = change in displacement/time
v(t) = ds(t)/dt
ds(t) = v(t)dt
integrating both sides;
s(t) = [tex]\int\limits v(t)dt[/tex]
Given the velocity function f(t) = 11t, the car's position (displacement) is expressed as s(t) = [tex]\int\limits 11t\ dt[/tex]
s(t) = 11t²/2 + C
at the initial point, s(0) = 0 i.e when t = 0, s(t) = 0. The resulting equation becomes;
0 = 11(0)²/2+ C
0 = 0+C
C = 0
To find the car's position, s(t), we will substitute C = 0 into the equayion above;
s(t) = 11t²/2 + 0
s(t) = 11t²/2
Hence s(t) = 11t²/2 is the required position of the car in terms of t.
Using an integral, it is found that the car's position, at any time t, is given by:
[tex]s(t) = \frac{11t^2}{2}[/tex]
The velocity of the car is modeled by the following function:
[tex]f(t) = 11t, 0 \leq t \leq 30[/tex]
The position is the integrative of the velocity, hence:
[tex]s(t) = \int f(t) dt[/tex]
[tex]s(t) = \int 11t dt[/tex]
[tex]s(t) = \frac{11t^2}{2} + K[/tex]
In which the constant of integration K is the initial position. Since the initial position is [tex]s(0) = 0[/tex], the constant is [tex]K = 0[/tex], and hence, the car's position, at any time t, is given by:
[tex]s(t) = \frac{11t^2}{2}[/tex]
A similar problem is given at https://brainly.com/question/14096165
2 + 2 = 4 - 1 =3 quick maths..... NOT A QUESTION BUT WHOEVER ANSWERS FIRST GETS BRAINLIEST
Answer:
That is correct
Step-by-step explanation:
yes sir you are corret
What is the AWP used to do
Answer:
The Arctic Warfare Police (AWP) is the law enforcement variant of the series, commonly chambered for 7.62×51mm NATO. The Magnum Sniper Rifle depicted in Counter-Strike is based on the Arctic Warfare Magnum, chambered for . 338 Lapua Magnum.
Find m<1. Triangle Angle-sum theorem
Answer:
m<1 = 50
Step-by-step explanation:
We can first find the angle next to 140, by doing 180 - 40 = 40.
Now that we know that one of the triangles angle is 40, we also know that there's a 90 degree angle, so we can do:
180 - 90 - 40 = 50
So m<1 = 50
Solve for x 90°, 45°, and x°
Answer:
x= 45
Step-by-step explanation:
In this diagram, there is an angle that is split into 2 angles.
The angle is a 90 degree angle. We know this because of the little square in the corner that denotes a right angle.
Therefore, the 2 angles inside of the right angle must add to 90 degrees. The 2 angles that make up the right angle are x and 45.
x+45=90
We want to find x. We need to get x by itself. 45 is being added on to x. The inverse of addition is subtraction. Subtract 45 from both sides.
x+45-45=90-45
x= 90-45
x=45
The measure of angle x is 45 degrees.
Andre makes a three-digit number.
All the digits are odd.
The sum of the digits is 7.
What could Andre's number be?
Answer: 115,151,115,133,313,331
Step-by-step explanation:
The Andre's number can consist from 1+1+5 or 3+3+1. There are no any other sets of 3 odd digit to get 7.
Lets prove this statement.
Lets 1 of the digit is bigger than 5. However the digit is odd so it can be 7 only. However in this case the residual 2 digits are 0 . This is not possible so the gigits are odd however 0 is even.
Lets check the case when the biggest digit in the set is smaller than 3.
So it can be 1 only.
So the residual 2 digits can be 1 only. The sum of 1+1+1<7 .
SO we've prooven that the only sets of the digits are 1;1;5 or 3;3;1
The set 1;1;5 can give 3 numbers:
115,151,115
The set 1;3;3 can give 3 numbers as well:
133,313,331
The slope of the line below is 5/7 Write a point-slope equation of the line
using the coordinates of the labeled point.
O A. y+2 --$(x+6)
O B. y-6--(x-2)
O C. y+6 -- (x + 2)
O D, y-2 - (x - 6)
Answer:
The option are incorrect because as its slope is only 5/7 the answer will never come like that.
Step-by-step explanation:
Here,
Given,
The dlope of a line is 5/7 and (6,2) is a point.
By one point formulae,
(y-y1)= m (x-x1).
or, (y-2)=5/7(x-1)
or, y = 5/7x -5/7+2
taking lcm of -5/7 and 2. we get,
or, y= 5/7 x -5+7/7
Therefore, the equation is y = 5/7 x -2/7.
Hope it helps..
Question 1
A 16-ounce bag of sugar is supposed to weigh 16 ounces, but it is acceptable for the weight of the bag to vary as much as 0.4 ounce. Which absolute value inequality can be used to find X, the acceptable
weight of a bag of sugar?
Answer: I x - 16ozI ≤ 0.4oz
Step-by-step explanation:
The weight is supposed to be exactly 16 oz.
But we can accept a maximum error of 0.4oz.
Now, if x is the weight of the sugar bag, the error can be calculated as:
E = x - 16oz
if x is larger than 16oz, we have E positive, which means that we have more sugar than 16oz
if x is smaller than 16 oz, we have E negative, which means that we are a little bit short of sugar in the bag.
Now, we know that the maximum error acceptable is 0.4 oz (negative or positive)
So we can write:
-0.4oz ≤ E ≤ 0.4oz
-0.4 ≤ x - 16oz ≤ 0.4oz
Now, if we apply absolute value to the error, we get:
I x - 16ozI ≤ 0.4oz
So the correct option is the fourth one (or the bottom one)
Answer:
D.) |x−16|≤0.4
Step-by-step explanation:
A drawer contains 3 white shirts, 2 blue shirts, and 5 gray shirts. A shirt is randomly
selected from the drawer and set aside. Then another shirt is randomly selected from the
drawer.
What is the probability that the first shirt is white and the second shirt is gray?
Answer:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]
Step-by-step explanation:
Given that
3 white, 2 blue and 5 gray shirts are there.
To find:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = ?
Solution:
Here, total number of shirts = 3+2+5 = 10
First of all, let us learn about the formula of an event E:
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]
[tex]P(First\ White) = \dfrac{\text{Number of white shirts}}{\text {Total number of shirts left}}[/tex]
[tex]P(First\ White) = \dfrac{3}{10}[/tex]
Now, this shirt is set aside.
So, total number of shirts left are 9 now.
[tex]P(First\ White\ and\ second\ gray) = P(First White) \times P(Second\ Gray)\\\Rightarrow P(First\ White\ and\ second\ gray) = P(First White) \times \dfrac{\text{Number of gray shirts}}{\text{Total number of shirts left}}\\\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{3}{10} \times \dfrac{5}{9}\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{1}{2} \times \dfrac{1}{2}\\\Rightarrow P(First\ White\ and\ second\ gray) = \bold{\dfrac{1}{4} }[/tex]
So, the answer is:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]
h(x)=-4+16 find x when h(x)=48 Plz don't say it is incomplete
Answer:
x = -8
Step-by-step explanation:
When h(x) = 48, you can simply just plug it back into the first equation. Don't let the h(x) confuse you!
Think of it like saying y = -4x + 16, y = 48.
48 = - 4x + 16
32 = - 4x
8 = -x
Divide by -1 both sides.
-8 = x
You have $50,000 in savings for retirement in an investment earning 5% annually. You aspire to have $1,000,000 in savings when you retire. Assuming you add no more to your savings, how many years will it take to reach your goal?
Answer: It will take you about 61 years for you to reach your goal.
Step-by-step explanation:
We will represent this situation by an exponential function. So if you earn 5% yearly then we could represent it by 1.05.So in exponential function we need to find the initial value and the common difference and in this case the common difference is 1.05 and the initial value or amount is 50,000 dollars.
We could represent the whole situation by the equation.
y= [tex]50,000(1.05)^{x}[/tex] where x is the number of years. so if you aspire to have 1,000,000 in some years then we will put in 1 million dollars for y and solve for x.
1,000,000 = 50,000(1.05)^x divide both sides by 50,000
20 = (1.05)^x
x= 61.40
A type of probability distribution that shows the probability of x successes in n trials, where the probability of success remains the same from trial to trial, is referred to as a(n) ______.
Answer: Binomial distribution
Step-by-step explanation:
The binomial appropriation is a likelihood circulation that sums up the probability that a worth will take one of two free qualities under a given arrangement of boundaries or suspicions. The hidden suspicions of the binomial dispersion are that there is just a single result for every preliminary, that every preliminary has a similar likelihood of achievement, and that every preliminary is totally unrelated, or autonomous of one another.
Planes A and B intersect.
Which describes the intersection of line m and line n?
P
point W
point X
m
2
n
2
point y
X
w
Y
point Z
V
Answer:
Point W
Step-by-step explanation:
Planes A and B intersect at an angle. Intersection of lines is when two lines meets at a particular point and cuts each other at the same point. Its a measure of perpendicularity for right angles and greater or lesser for others.
At any point W, line m and line n cuts each other at point W to form an angle as shown from the diagram.
Adult men have heights that a normally distributed with a mean of 69.5 inches and a standard deviation of 2.4 inches. Adult women have heights that a normally distributed with a mean of 63.8 inches and a standard deviation of 2.6 inches. Between a man with a height of 74 inches and a women with a height of 70 inches, who is more unusually tall within his or her respective sex ?
Answer:
Step-by-step explanation:
From the information given:
For Adult Men
Mean [tex]\mu[/tex] = 69.5
Standard deviation [tex]\sigma[/tex] = 2.4
observed value X = 74
For Adult Women
Mean [tex]\mu[/tex] = 63.8
Standard deviation [tex]\sigma[/tex] = 2.6
observed value X = 70
Therefore ; the values for their z scores can be obtained in order to determine who is more unusually tall within his or her respective sex
For Adult Men :
[tex]z = \dfrac{X- \mu}{\sigma}[/tex]
[tex]z = \dfrac{74- 69.5}{2.4}[/tex]
[tex]z = \dfrac{4.5}{2.4}[/tex]
z = 1.875
For Adult Women :
[tex]z = \dfrac{X- \mu}{\sigma}[/tex]
[tex]z = \dfrac{70- 63.8}{2.6}[/tex]
[tex]z = \dfrac{6.2}{2.6}[/tex]
z = 2.3846
Thus; we can conclude that , the women is more unusually tall within his or her respective sex
Bill shops in a candy store where chocolate bars are $1 and lollipops are $0.50 He can spend at most $5 and he wants to buy at least 3 more lollipops than chocolate bars. Which of the following graphs represent the possible candy combinations?
Answer:
Step-by-step explanation
Write an equation for the amount of money, m, that will be collected if C- chocolate bars are sold and L- lollipops. Which is the independent variable and which is the dependent variable?
PLEASEEEEE HELPPOO
For Individual or Group Explorations
Maximizing the Total Profit
Payles at The Christmas Store very periodically with a high ef 550.000 in December
the Christmas Stove also comes the Powe, where profits reach a high of $80,000
in Aurust and a few of $20,000 in February Assume that the profit function for
Crm Store
Save
40
20
10
1 2 3 4 5 6 7 8 9 10 11 12
Month
a) Write the profit function for The Christmas Store as a function of the month
and sketch its graph
b)
Write the profit function for The Pool Store as a function of the month and
sketch its graph.
are are length
Write the total profit as a function of the month and sketch its graph. What is
the period?
are inside the
est enth of a
Use the maximum feature of a graphing calculator to find the owner's maxi-
mum total profit and the month in which it occurs.
Find the owner's minimum total profit and the month in which it occurs.
We know that y -a sin x + bcos x is a sine function. However, the sum of
two arbitrary sine or cosine functions is not necessarily a sine function. Find an
example in which the graph of the sum of two sine functions does not look like
a sine curve.
Explain.
is tangent to one
Answer:
what
Step-by-step explanation:
What is the answer for x? (3x-3)° [6(x-10)]
Answer:
x = 19
Step-by-step explanation:
The angles are vertical angles which means they are equal
3x-3 = 6(x-10)
Distribute
3x-3 = 6x-60
Subtract 3x from each side
3x-3 -3x = 6x-60-3x
-3 =3x-60
Add 60 to each side
-3+60 =3x-60+60
57 = 3x
Divide by 3
57/3 = 3x/3
19 =x
An after-school care facility tries to maintain a 2-to-1 ratio of children to adults. If the facility hired five adults, what is the maximum number of children that can enroll?
Answer:
10 children
Step-by-step explanation:
If we have a ratio of 2:1 children:adults, then we can find out how many children max can enroll if there are 5 adults.
Our original ratio was 2:1 and now it's x:5, assuming x is the number of children enrolled. We multiply 1 by 5 to get to 5, so we need to multiply 2 by 5 to get the total number of chlidren.
2 × 5 = 10
Hope this helped!
A firm has 18 senior and 22 junior partners. A committee of three partners is selected at random to represent the firm at a conference. In how many ways can at least one of the junior partners be chosen to be on the committee?
Answer:
Answer is 24288.
Step-by-step explanation:
Given that there are 18 senior and 22 junior partners.
To find:
Number of ways of selecting at least one junior partner to form a committee of 3 partners.
Solution:
At least junior 1 member means 3 case:
1. Exactly 1 junior member
2. Exactly 2 junior member
3. Exactly 3 junior member
Let us find number of ways for each case and then add them.
Case 1:
Exactly 1 junior member:
Number of ways to select 1 junior member out of 22: 22
Number of ways to select 2 senior members out of 18: 18 [tex]\times[/tex] 17
Total number of ways to select exactly 1 junior member in 3 member committee: 22 [tex]\times[/tex] 18 [tex]\times[/tex] 17 = 6732
Case 2:
Exactly 2 junior member:
Number of ways to select 2 junior members out of 22: 22 [tex]\times[/tex] 21
Number of ways to select 1 senior member out of 18: 18
Total number of ways to select exactly 2 junior members in 3 member committee: 22 [tex]\times[/tex] 21 [tex]\times[/tex] 18 = 8316
Case 3:
Exactly 3 junior member:
Number of ways to select 3 junior members out of 22: 22 [tex]\times[/tex] 21 [tex]\times[/tex] 20 = 9240
So, Total number of ways = 24288