Step-by-step explanation:
8.x×8-12=50
8x-12=50
9.1/2x>or=100
10.2 whole number5/9-x=31
Select the correct answer.
What are the x-intercepts of this function?
g(x) = -0.25x2 – 0.25x + 5
O
(-20,0) and (-4,0)
(4,0) and (20,0)
(5,0) and (-4,0)
(-5,0) and (4,0)
Answer:
[tex]\large \boxed{\sf \ \ (-5,0) \ and \ (4,0) \ \ }[/tex]
Step-by-step explanation:
Hello,
We need to find the zeroes of
[tex]-0.25x^2-0.25x+5=0\\\\\text{*** multiply by -4 ***} \\ \\x^2+x-20=0\\\\\text{*** the sum of the zeroes is -1 and the product -20=-5x4 ***}\\\\x^2+5x-4x-20=x(x+5)-4(x+5)=(x+5)(x-4)=0\\\\x=4 \ or \ x=-5[/tex]
and then g(4)=0 and g(-5)=0
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer:(-5,0) (4,0)
I took the test hope it helps you (:
What is the sum of a 54-term arithmetic sequence where the first term is 6 and the last term is 377? (1 point) 10,341 10,388 10,759 11,130
Answer:
10,341
Step-by-step explanation:
[tex]S_{n}=\frac{n}{2} (a_1}+a_{n})\\S_{54}=\frac{54}{2} (6+377)=27 \times 383=10,341[/tex]
Y is directly proportional to x. Create an equation using k as the constant of proportionality.
Answer:
[tex]y = kx[/tex]
Step-by-step explanation:
y is directly proportional to x.
[tex]y \propto x[/tex]
[tex]y = kx[/tex]
Where k is as the constant of proportionality.
Answer:
y = kx
Step-by-step explanation:
Y is directly proportional to x which means that
=> y ∝ x
=> y = kx
Where k is the constant of proportionality.
Solve polynomials 7/5 + 3/4 × 2 / 5-3 / 2
Answer:
Step-by-step explanation:
7/5 + 3/4 x 2/5 - 3/2
7/5 + 3/10 - 3/2
17/10 - 3/2
1/5
Step-by-step explanation:
Here, the given polynomial are,
=7/5+3/4×2/5-3/2
multiplying 3/4 and 2/5
= 7/5+6/20-3/2
taking LCM and adding them.
=(7×4+6×1-3×10)/20
by simplifying it we get, the answer is 1/5.
Hope it helps..
what are the coordinates of the vertex of the function f(x) = x2 -12x +5?
Answer:
[tex]\huge\boxed{(6;\ -31)}[/tex]
Step-by-step explanation:
METHOD 1:Let: [tex]f(x)=ax^2+bx+c[/tex].
The coordinates of the vertex:
[tex](h;\ k)\to h=\dfrac{-b}{2a};\ k=f(h)=\dfrac{-(b^2-4ac)}{4a}[/tex]
We have
[tex]f(x)=x^2-12x+5\to a=1;\ b=-12;\ c=5[/tex]
Substitute:
[tex]h=\dfrac{-(-12)}{2(1)}=\dfrac{12}{2}=6\\\\k=f(6)=6^2-12(6)+5=36-72+5=-31[/tex]
METHOD 2:The vertex form of an equation of a quadratic function:
[tex]f(x)=a(x-h)^2+k[/tex]
We have:
[tex]f(x)=x^2-12x+5\to a=1[/tex]
Complete to the square [tex](a\pm b)^2=a^2\pm2ab+b^2[/tex]
[tex]x^2-12x+5=x^2-\underbrace{2(x)(6)}_{12x}+5=\underbrace{x^2-2(x)(6)+6^2}_{a^2-2ab+b^2}-6^2+5\\\\=\underbrace{(x-6)^2}_{(a-b)^2}-36+5=(x-6)^2-31\\\\h=6;\ k=-31\to(6;\ -31)[/tex]
Train passes the first 110 miles in 3 hours, and the next 240 miles at the rate of 60 mph. What was the average speed of the train for the entire trip?
Answer:
50 mph
Step-by-step explanation:
The total distance is 350 miles.
The total time is 3 hr + (240 mi / 60 mph) = 7 hr.
The average speed is 350 mi / 7 hr = 50 mph.
Plz help this is an evil question
Answer:
18.9 units of fencing
Step-by-step explanation:
First find the perimeter
P = 2(l+w)
P = 2( 2.5+1.28)
P = 2( 3.78)
P =7.56m
We need 2.5 units of fencing for each meter
Multiply by 2.5
7.56*2.5
18.9 units of fencing
Answer:
Julio needs to purchase 18.9 units of fencing.
Step-by-step explanation:
I meter of the perimeter accounts for 2.5 units of fencing. Respectively 2 meters account for 2 times as much, and 3 meters account for 3 times as much of 2.5 units. Therefore, if we determine the perimeter of this rectangular garden, then we can determine the units of fencing by multiplying by 2.5.
As you can see this is a 2.5 by 1.28 garden. The perimeter would be two times the supposed length, added to two times the width.
2.5 x 2 + 1.28 x 2 = 5 + 2.56 = 7.56 - this is the perimeter. The units of fencing should thus be 7.56 x 2.5 = 18.9 units, or option d.
Find x and y, please solve with steps and leave answers in fraction form, THANK YOU
Answer:
Below
Step-by-step explanation:
Using the proprtionality relation:
● 8/10 =5/x
● (4*2)/(5*2) = 5/x
Simplify using 2
● 4/5 = 5/x
Multiply both sides by 5
● (4/5)*5 = (5/x)*5
● 4 = 25/x
Switch x and 4
● x= 25/4
■■■■■■■■■■■■■■■■■■■■■■■■■
Again use the proportionality relation but this time with y.
● 8/10 =7/y
8/10 = 4/5
● 4/5 = 7/y
Multiply both sides by 5
● (4/5)*5 =(7/y)*5
● 4 = 35/y
Switch 4 and y
● y = 35/4
Chuck has 6$ and he spends 1/5 of his money on candy
Answer:
He spends $1.20 Which means he has $4.80 remaining.
Step-by-step explanation:
1/5 of 6 is 6/1 multiplied by 1/5 and that is 6/5 or 1 1/5
1/5 of a dollar is 20 cents. he has $1.20
6-1.20=4.80.
Answer:
[tex]4.80 => Answer[/tex]
Step-by-step explanation:
Use the information given.
1/5 of 6 is equal to 6/5
6/5 = 1.2
Now subtract.
[tex]6-1.2= 4.8[/tex]
So the answer is 4.80 or 4.8
Hope this helps! :)
By: ❤️BrainlyMagic❤️
Brainliest would be appreciated!
Solve the formula for the perimeter of a rectangle, with width w and length I,
for the length.
P= 2W + 2/
Answer:
( P -2w) /2 = l
Step-by-step explanation:
P= 2W + 2l
Subtract 2W from each side
P= 2W -2W + 2l
P -2W = 2l
Divide by 2
( P -2w) /2 = l
Answer:
A. [tex]\frac{P - 2w}{2} = l[/tex]
Step-by-step explanation:
Well in,
P = 2w + 2l
to solve for l we need to single it out.
P = 2w + 2l
-2w
P - 2w = 2l
divide everything by 2
[tex]\frac{P - 2w}{2} = l[/tex]
Thus,
the answer is A.
Hope this helps :)
Which is the solution to this question 4X equals 32
Answer:
8
Step-by-step explanation:
you would just divide 32 by 4
4x = 32
x = 32/4
x=8
Answer:
[tex]\large\boxed{\sf \ \ \ x=8 \ \ \ }[/tex]
Step-by-step explanation:
Hello
4x=32 we can divide both parts by 4 so
[tex]\dfrac{4x}{4}=\dfrac{32}{4}\\\\<=> x = 8[/tex]
Hope this helps
Find the linear correlation coefficient using only the four points in the lower left corner (for women). Will the four points in the upper right corner (for men) have the same linear correlation coefficient? The correlation coefficient for the points in the lower left corner is requals nothing.
Answer:
Yes, because the four points in the upper right corner from the same pattern as the four points in the lower left corner.
Step-by-step explanation:
The correlation coefficient for the points in the lower left corner equals zero.
The four points in the upper right corner have the same correlation coefficient because the four points in the upper right corner from the same pattern as the four points in the lower left corner.
helppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
Answer:
upper box is 0
middle box is 3 and
the downer box is 6
Step-by-step explanation:
Have a nice day
A wire that is 76 feet long needs to be divided into lengths using the ratio 1 to 13. What is the longer length? Round your answer to two decimal places if necessary.
Answer:
70.59 feet
Step-by-step explanation:
There are a total of 14 parts when the wire is divided into a ratio of 1 to 13.
1. Divide 76 by 14
76 ÷ 14 = 5.43
2. Multiply the longer length of 13 parts
5.43 · 13 = 70.59
The longer length of the wire 70.59 feet
There are a total of 14 parts when the wire is divided into a ratio of 1 to 13.
1. Divide 76 by 14
76 ÷ 14 = 5.43
2. Multiply the longer length of 13 parts
5.43 · 13 = 70.59
What is a decimal in numbers?In algebra, a decimal number can be defined as a range whose entire number part and the fractional element are separated by means of a decimal point. The dot in a decimal range is referred to as a decimal point. The digits following the decimal factor show a price smaller than one.
Learn more about Algebra here https://brainly.com/question/723406
#SPJ2
Find the missing side of a triangle when one side is 3.16 and the other is 3
Answer:
0.992774 ≅ .993
Step-by-step explanation:
a²+b²=c²
a=x
b=3
c=3.16
x²+3²=3.16²
x²+9=9.9856
x²=.9856
x=0.992774
x≅0.993
The lowest temperature ever
recorded on earth was -89°C
in Antarctica. The average
temperature on Mars is about
-55°C. Which is warmer?
Write an inequality to support
your answer
Answer:
Mars
Step-by-step explanation:
America
The radius of a conical tent is 5.6 m and the slant height is 12 m. Then the length of canvas required
to make the tent, if the width of canvas is 4 m.
a) 106.6 m
b) 100 m
c) 52.8 m
d) 105.6m
who will answer it first I mark them as the brainlist
Answer:
c) 52.8 m
Step-by-step explanation:
The radius of a conical tent, r = 5.6 m
The slant height = 12 m.
The area of the canvas required to make the tent is equal to the lateral area of the cone.
[tex]\text{Lateral Area of a Cone}= \pi r l\\=\pi \times 5.6 \times 12\\=67.2\pi$ m^2[/tex]
Since the width of the canvas = 4 m
Let the length = l
Area of the canvas = 4l
[tex]4l=67.2\pi$ m^2\\l=67.2\pi \div 4\\l=52.8 m$ (correct to 1 decimal place)[/tex]
The length of the canvas required to make the tent is 52.8m.
1. Find the Product of 8.02 and 6.1 and correct your answer to the highest whole number. 2. How many pieces of ribbon each 6cm long can be cut from a roll of ribbon 24m long?
A total of 32/3 strips can be derived from the ribbon.
What is quotients?In arithmetic, a quotient is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a division, or as a fraction or a ratio.
Here, we have,
to determine the number of strips:
From the question, we have the following parameters
Length of a roll of ribbon = 4 meters
Also, from the question;
We have
Length of a piece of ribbon = 5/12 meter
The number of strips of ribbon is the quotient of the Length of a roll of ribbon and the Length of a piece of ribbon
This is represented as
Number of strips = Length of a roll of ribbon/Length of a piece of ribbon
So, we have
Number of strips = (4 )/(5/12)
Evaluate the quotient
Number of strips = 32/3
Hence, the number of strips is 32/3
Read more about quotients at
brainly.com/question/629998
#SPJ2
complete question:
How many strips of a ribbon can be cut from a roll of ribbon that is 4 4/9 meters long if each piece is 5/12 meters long
What are the solutions to the system of equations graphed attached pic
Answer: C
Step-by-step explanation:
For system of equations, the solution is the point or points where the equations intersect. The point they meet signifies that they are the same at the x and y point.
Looking at the graph, we see 2 intersection points. They are (0,-8) and (4,8). Therefore, C is the correct answer.
11. A certain brand of margarine was analyzed to determine the level of polyunsaturated fatty acid (in percent). A sample of 6 packages had an average of 16.98 and sample standard deviation of 0.31. Assuming normality, a 99% confidence interval for the true mean of fatty acid level is:
Answer: (16.47, 17.49)
Step-by-step explanation:
Formula for confidence interval for the true mean if population stanmdard deviation is unknown:
[tex]\overline{x}\pm t_{\alpha/2}\dfrac{s}{\sqrt{n}}[/tex]
, where [tex]\overline{x}[/tex] = sample mean
n= sample size
s= sample standard deviation
[tex]t_{\alpha/2}[/tex] = Two tailed critical value.
We assume that the level of polyunsaturated fatty acid is normally distributed.
Given,
n= 6
degree of freedom = n-1 =5
[tex]\overline{x}[/tex] = 16.98
s= 0.31
significance level[tex](\alpha)[/tex] =1-0.99=0.01
Two tailed t- value for degree of freedom of 5 and significance level of 0.01 = [tex]t_{\alpha/2}=4.0317[/tex] [by student's t-table]
Now , the 99% confidence interval for the true mean of fatty acid level is:
[tex]16.98\pm 4.0317(\dfrac{0.31}{\sqrt{6}})\\\\=16.98\pm 4.0317(0.126557)\\\\=16.98\pm 0.51024\\\\=(16.98-0.51023,\ 16.98+0.51023)\\\\=(16.46977,\ 17.49023)\approx (16.47,\ 17.49)[/tex]
Hence, a 99% confidence interval for the true mean of fatty acid level is: (16.47, 17.49)
Find the sum of the following infinite geometric series
Answer:
[tex]\large \boxed{\ \ \dfrac{63}{5} \ \ }[/tex]
Step-by-step explanation:
Hello,
"Find the sum of the following infinite geometric series"
infinite
We will have to find the limit of something when n tends to [tex]+\infty[/tex]
geometric series
This is a good clue, meaning that each term of the series follows a geometric sequence. Let's check that.
The sum is something like
[tex]\displaystyle \sum_{k=0}^{+\infty} a_k[/tex]
First of all, we need to find an expression for [tex]a_k[/tex]
First term is
[tex]a_0=7[/tex]
Second term is
[tex]a_1=\dfrac{4}{9}\cdot a_0=7*\boxed{\dfrac{4}{9}}=\dfrac{7*4}{9}=\dfrac{28}{9}[/tex]
Then
[tex]a_2=\dfrac{4}{9}\cdot a_1=\dfrac{28}{9}*\boxed{\dfrac{4}{9}}=\dfrac{28*4}{9*9}=\dfrac{112}{81}[/tex]
and...
[tex]a_3=\dfrac{4}{9}\cdot a_2=\dfrac{112}{81}*\boxed{\dfrac{4}{9}}=\dfrac{112*4}{9*81}=\dfrac{448}{729}[/tex]
Ok we are good, we can express any term for k integer
[tex]a_k=a_0\cdot (\dfrac{4}{9})^k[/tex]
So, for n positive integer
[tex]\displaystyle \sum_{k=0}^{n} a_k=\displaystyle \sum_{k=0}^{n} 7\cdot (\dfrac{4}{9})^k=7\cdot \dfrac{1-(\dfrac{4}{9})^{n+1}}{1-\dfrac{4}{9}}=\dfrac{7*9*[1-(\dfrac{4}{9})^{n+1}]}{9-4}=\dfrac{63}{5}\cdot [1-(\dfrac{4}{9})^{n+1}}][/tex]
And the limit of that expression when n tends to [tex]+\infty[/tex] is
[tex]\large \boxed{\ \ \dfrac{63}{5} \ \ }[/tex]
as
[tex]\dfrac{4}{9}<1[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
which equation can be used to solve for x in the following diagram? x° and (6x - 15)°
Answer:
= A
explanation :
the angle are right angle triangle which means it is always 90°Find the surface area of a cylinder with radius 15.8 ft and height 4.4 ft. Use a
calculator. Round to the nearest tenth.
A. 1786.9 ft2
B. 1221.1 ft2
C. 3450.8 ft2
D. 2005.3 ft2
Hey there! I'm happy to help!
First, let's find the area of the two circles that make up the top and bottom of the cylinder. To find the area of a circle, you square the radius multiply it by pi (we will use 3.14)
15.8²=249.64
249.64×3.14=783.8696
Since there are two of these circles we multiply this by 2.
783.8696×2=1567.7392
Now, for the rectangle. To make a cylinder, you take a rectangle and wrap it around the top and bottom circles. One side of this rectangle is the height of the cylinder, and the other is the circumference of the circle (one side wraps all the way around the circle, which is the circumference).
The circumference is the diameter multiplied by 3.14 (pi). The diameter is twice the radius.
15.8×2=31.6
31.6×3.14=99.224
We multiply this by the height.
99.224×4.4=436.5856
Now, we add the areas of the circles and the rectangle.
1567.7392+436.5856=2004.3 (rounded to nearest tenth)
This is closest to D. 2005.3 ft². It is probably a bit off because I used 3.14 instead of actual pi.
Have a wonderful day! :D
The value of y varies inversely as the square of x, and y = 9, when x = 4.
Find the value of x when y = 1. Do not include "=" in your answer.
Answer:
The answer is
12Step-by-step explanation:
The above variation is written as
[tex]y = \frac{k}{ {x}^{2} } [/tex]
where k is the constant of variation
when y = 9
x = 4
We have
k = yx²
k = 9(4)²
k = 9 × 16
k = 144
So the formula for the variation is
[tex]y = \frac{144}{ {x}^{2} } [/tex]
when y = 1
[tex]1 = \frac{144}{ {x}^{2} } [/tex]
Cross multiply
x² = 144
Find the square root of both sides
x = √144
x = 12
Hope this helps you.
±2
Step-by-step explanation:
Based on historical data, an insurance company estimates that a particular customer has a 2.6% likelihood of having an accident in the next year, with the average insurance payout being $1600.
If the company charges this customer an annual premium of $110, what is the company's expected value of this insurance policy?
Answer: $68.4
Step-by-step explanation:
Given: Annual Premium = $110
Average insurance payout = $1600
Likelihood of having an accident= 2.6% = 0.026 [we divide perecnt by 100 to convert it into decimal]
Then, Expected value = (Annual Premium) - (Likelihood of having an accident) x (Average insurance payout )
= $110 - (0.026) x ($1600)
= $(110-41.6)
= $68.4
Hence, the company's expected value of this insurance policy : $68.4
factorize completely (2x+2y) (x-y)+(2x-2y)(x+y)
Solve of the following equations for x: x – 6 = -2
Answer:
x = 4
Step-by-step explanation:
x - 6 = -2
Add 6 to each side
x-6+6 = -2+6
x = 4
Answer:
[tex]x=4[/tex]
Step-by-step explanation:
[tex]x - 6 = -2[/tex]
Add 6 on both sides of the equation. The [tex]x[/tex] variable should be isolated on one side.
[tex]x - 6 +6= -2+6[/tex]
[tex]x=4[/tex]
The value of [tex]x[/tex] is 4.
Ralph records the time it takes for each of his classmates to run around the track one time. As he analyzes the data on a graph, he notices that his classmates’ times are distributed symmetrically along the x-axis. Which component of data analysis is Ralph observing
Answer:
The overall shape of the data
Step-by-step explanation:
For us to know what shape a data is, it must fulfil 4 conditions
is it symmetrical?the amount of peaks available in the data set.is it uniform? Is it rightly or leftly skewed?From the question, Ralph observed that the classmates time are symmetrical along the x-axis.
Therefore he is observing the shape of the data since one of the conditions have been fulfilled.
Thank you!
Suppose we have 3 cards identical in form except that both sides of the first card are colored red, both sides of the second card are colored black, and one side of the third card is colored red and the other side is colored black. The 3 cards are mixed up in a hat, and 1 card is randomly selected and put down on the ground. If the upper side of the chosen card is colored red, what is the probability that the other side is colored black
Answer:
probability that the other side is colored black if the upper side of the chosen card is colored red = 1/3
Step-by-step explanation:
First of all;
Let B1 be the event that the card with two red sides is selected
Let B2 be the event that the
card with two black sides is selected
Let B3 be the event that the card with one red side and one black side is
selected
Let A be the event that the upper side of the selected card (when put down on the ground)
is red.
Now, from the question;
P(B3) = ⅓
P(A|B3) = ½
P(B1) = ⅓
P(A|B1) = 1
P(B2) = ⅓
P(A|B2)) = 0
(P(B3) = ⅓
P(A|B3) = ½
Now, we want to find the probability that the other side is colored black if the upper side of the chosen card is colored red. This probability is; P(B3|A). Thus, from the Bayes’ formula, it follows that;
P(B3|A) = [P(B3)•P(A|B3)]/[(P(B1)•P(A|B1)) + (P(B2)•P(A|B2)) + (P(B3)•P(A|B3))]
Thus;
P(B3|A) = [⅓×½]/[(⅓×1) + (⅓•0) + (⅓×½)]
P(B3|A) = (1/6)/(⅓ + 0 + 1/6)
P(B3|A) = (1/6)/(1/2)
P(B3|A) = 1/3
Forty percent of all undergraduates at a university are chemistry majors. In a random sample of six students, find the probability that exactly two are chemistry majors. 12. The probability that exactly two are chemistry majors is Type an integer or a decimal. Round to four decimal places as needed.)
Answer:
0.3110
Step-by-step explanation:
This is a binomial distribution with probability of success (being a chemistry major) p = 0.40.
The general formula for a binomial distribution is:
[tex]P(x=k)=\frac{n!}{(n-k)!k!}*p^k*(1-p)^{n-k}[/tex]
Where n is the sample size and k is the desired number of successes.
The probability of k=2 in a sample of n =6 is:
[tex]P(x=2)=\frac{6!}{(6-2)!2!}*0.4^2*(1-0.4)^{6-2} \\P(x=2)=\frac{6!}{(6-2)!2!}*0.4^2*(1-0.4)^{6-2}\\P(x=2)=3*5*0.4^2*0.6^4\\P(x=2)=0.3110[/tex]
The probability is 0.3110