Thus, beginning with a 1 = 5, the formula a n = a n-1 + 7 can be used to recursively find the nth term of the sequence.
what is sequence ?A sequence in mathematics is an ordered collection of numbers that is typically defined by a formula or rule. Every number in the series is referred to as a term, and its location within the sequence is referred to as its index. Depending on whether the list of terms stops or continues indefinitely, sequences can either be finite or infinite. By their patterns or uniformity, sequences can be categorised, and the study of sequences is crucial to many areas of mathematics, such as calculus, number theory, and combinatorics. Mathematical, geometrical, and Fibonacci sequences are a few examples of popular sequence types.
given
The sequence's terms are all different by 7 (i.e., 12 - 5 = 19 - 12 = 26 - 19 =... = 7).
The following is a definition of a recursive formula for the nth element of the sequence:
a 1 = 5 (the first term of the series is 5) (the first term of the sequence is 5)
For n > 1, each term is derived by adding 7 to the preceding term, so a n = a n-1 + 7.
Thus, beginning with a 1 = 5, the formula a n = a n-1 + 7 can be used to recursively find the nth term of the sequence. For instance, we have
a_2 = a_1 + 7 = 5 + 7 = 12
a_3 = a_2 + 7 = 12 + 7 = 19
a_4 = a_3 + 7 = 19 + 7 = 26
To know more about sequence visit:
https://brainly.com/question/21961097
#SPJ1
PLEASE HELP THIS IS DUE AT 7 Name the coordinates of two points so that the line segment drawn from one to the other will intersect the y-axis.
The coordinates of the two points that intersect with the y-axis are (2, 3) and (-2, 4)
How to determine the coordinates of the two pointsRepresent the points with P and Q
When a line is drawn from a point to another would intersect with the y-axis, as long as the line is not a vertical lineAlso, the line would intersect with the y-axis if the points are in different quadrants other than vertical quadrantsA vertical line is a line whose endpoints have the same x-coordinate
i.e. (x, y1) and (x, y2)
Using the above as a guide, we have the following:
We can make use of the coordinates (x1, y1) and (x2, y2), where the values of x's and y's are not the same
An instance of these points is (2, 3) and (-2, 4)
Read more about coordinates at
https://brainly.com/question/28462165
#SPJ1
i need assistance i am slow in the head
Answer:
Step-by-step explanation:
31 degreese
add 59 with 90 you get 149 then you subtract 149 with 180 a
nd then get 31
The following chart represents a population of beetles in New Guinea. The first section represents the
population in 1920. After 100 years, scientists came back to analyze the population again. After a hurricane
took place in the area, the following data was collected. Complete the empty boxes in the chart
below, and then answer the following questions.
moltosis2 evinquieic to quisilidate datotoon
1920 Beetle Population
Beetle Type #Beetles
BB
bb
Bb
22
% Frequency
LEWO 14 ZRAZDE
50
15 16
What in the CENE ROOL for the Beetles population?
Beetle Type
BB
bb
Bb
2020 Beetle Population-
#Beetles
apdo"
0
14
0
% Frequency
1. 1920 Beetle Population
Beetle Type #Beetles #Beetle % Frequency
BB 22 22/86 ≈ 0.26
bb 14 14/86 ≈ 0.16
Bb 50 50/86 ≈ 0.58
2. 2020 Beetle Population
Beetle Type #Beetle % Frequency
BB 0 0/14 = 0
bb 14 14/14 = 1
Bb 0 0/14 = 0
3. Gene pool for the beetle population: The gene pool for the beetle population consists of the two alleles for the coloration gene, which are represented by "B" (dominant allele) and "b" (recessive allele).
4. Allele frequency for the 1920 Homozygote dominant Beetle population:
Frequency of B = 0.555. The allele frequency for the heterozygote population in 2020 is B = 0 and b = 1.
6. Yes, the beetle population experienced evolution because the allele frequencies changed from 1920 to 2020.
How do you calculate the frequency of the beetle population?For question 1 and 2 above, The % frequency for each beetle type was calculated by dividing the number of beetles of that type by the total number of beetles in the population, and then multiplying the result by 100 to get a percentage.
For example, in the 1920 beetle population, the frequency of BB beetles was calculated as follows:
% Frequency of BB = (# of BB beetles / Total # of beetles) x 100
% Frequency of BB = (22 / 86) x 100
% Frequency of BB ≈ 25.58 or 26% (rounded to the nearest whole number)
Similarly, the % frequency for bb and Bb beetles in the 1920 population were calculated as:
% Frequency of bb = (14 / 86) x 100 ≈ 16%
% Frequency of Bb = (50 / 86) x 100 ≈ 58%
The same process was used to calculate the % frequency for the 2020 beetle population.
4. The frequency of the dominant allele (B) in the 1920 population is the sum of the number of copies of B (from BB and Bb beetles) divided by the total number of alleles (2x the total number of beetles).
Frequency of B = (22 + 50/2) / (86x2) ≈ 0.55
5. Allele frequency for the 2020 heterozygote beetle population:
Since only the frequency of the heterozygote (Bb) is given, the frequency of both alleles (B and b) can be calculated as follows:
Frequency of b = 1 - Frequency of B = 1 - 0 = 1
Frequency of B = frequency of Bb / 2 = 0 / 2 = 0
Find more exercises on Allele frequency;
https://brainly.com/question/29563534
#SPJ1
The figure below shows the size and shape
of a dessert plate. What is the area of the
plate?
15 cm
15 cm
123
Step-by-step explanation:
Kadoka, Rapid City, Sioux Falls, Alexandria, South Dakota are all connected by Interstate 90.
Sioux Falls is 256 miles from Kadoka and 352 miles from Rapid City Rapid City is 96 miles from Kadoka and 292 miles from Alexandria
a. Draw a diagram to represent the locations of the cities in relation to each other and the distances between each city. Assume that Interstate 90 is straight.
b. Write a paragraph proof to support your conclusion.
We can conclude that Kadoka, Rapid City, Sioux Falls, and Alexandria are all connected by Interstate 90, as shown in the diagram.
What are the attributes of a good conclusion?
The key argument raised throughout the argument's discussion must be summarized in the good conclusion.
a. In below diagram, each city is represented by a point, and the distances between the cities are shown as line segments with the distance in miles labeled above the segment. The distances are labeled in the order in which they appear in the diagram, so for example, the distance between Kadoka and Rapid City is labeled as 96 because that is the distance between the two cities as you move from Kadoka to Rapid City.
b. To support the conclusion that Kadoka, Rapid City, Sioux Falls, and Alexandria are all connected by Interstate 90, we can use the distances given in the problem to show that it is possible to travel from any one city to any other city using only Interstate 90.
First, we note that Kadoka is connected to Rapid City by Interstate 90, because the distance between them is given as 96 miles and no other route is mentioned. Similarly, Rapid City is connected to Alexandria by Interstate 90, because the distance between them is given as 292 miles and no other route is mentioned.
Finally, to show that Alexandria is connected to all the other cities by Interstate 90, we note that the distance between Alexandria and Rapid City is given as 292 miles, and the only way to travel between the two cities is on Interstate 90. Also, since Kadoka is connected to Rapid City by Interstate 90 and Rapid City is connected to Alexandria by Interstate 90, it follows that Kadoka is connected to Alexandria by Interstate 90.
Therefore, we can conclude that Kadoka, Rapid City, Sioux Falls, and Alexandria are all connected by Interstate 90, as shown in the diagram.
To know more about good conclusion visit,
https://brainly.com/question/24542637
#SPJ1
#4 Write each in terms of secx
a) tan² x
b) tan x
The secx equivalent of the two expressions are
tan²x = sec²x - 1
tan x =sec x * sin x
What is trigonometric identity?Generally, Equalities that utilize trigonometry functions and are true no matter what the values of the variables that are specified in the equation are what are referred to as trigonometric identities. There are many different trigonometric identities that may be found using the length of a triangle's side as well as the angle of the triangle.
a) Using the identity:
tan²x + 1 = sec²x
We can rearrange it to get:
tan²x = sec²x - 1
Therefore, in terms of secx:
tan²x = sec²x - 1
b) Using the identity:
tan x = sin x / cos x
We can rewrite it in terms of sec x as follows:
tan x = sin x / cos x
= (1/cos x) * sin x
= sec x * sin x
Read more about trigonometric identity
https://brainly.com/question/24377281
#SPJ1
Giving 50 POINTS. Im really struggling please no guesses or wrong answers. thank you! appreciate it
Look at the picture.
<, > - dotted line
≤, ≥ - solid line
x > a, x ≥ a - to the right of a
x < a, x ≤ a - to the left of a
y > a, y ≥ a - up from a
y < a, y ≤ a - down from a
3) a) Prove that the following functions are harmonic and find for each function its harmonic conjugate i 2e* cosy i) x² + 2x - 4² b) Prove: Ifuis harmonic conjugate of vin a domain v and is harmoni
a)
i) The function is not harmonic.
ii). The function is harmonic.
b) v is also harmonic in D
a) A function is harmonic if it satisfies the Laplace equation:
∂²u/∂x² + ∂²u/∂y² = 0
i) For the function u = x² + 2x - 4², we can take the partial derivatives with respect to x and y:
∂u/∂x = 2x + 2
∂u/∂y = 0
∂²u/∂x² = 2
∂²u/∂y² = 0
Plugging these into the Laplace equation, we get:
2 + 0 = 0
This is not true, so the function is not harmonic.
ii) For the function u = 2e* cos(y), we can take the partial derivatives with respect to x and y:
∂u/∂x = 0
∂u/∂y = -2e* sin(y)
∂²u/∂x² = 0
∂²u/∂y² = -2e* cos(y)
Plugging these into the Laplace equation, we get:
0 + (-2e* cos(y)) = 0
-2e* cos(y) = 0
This is true for all values of y, so the function is harmonic.
The harmonic conjugate of a function u(x,y) is a function v(x,y) such that f(z) = u(x,y) + i*v(x,y) is analytic. To find the harmonic conjugate of u = 2e* cos(y), we can use the Cauchy-Riemann equations:
∂u/∂x = ∂v/∂y
∂u/∂y = -∂v/∂x
Plugging in the partial derivatives of u, we get:
0 = ∂v/∂y
-2e* sin(y) = -∂v/∂x
Integrating both equations with respect to x and y, we get:
v = C₁
v = 2e* cos(y) + C₂
Setting these equal to each other and solving for v, we get:
v = 2e* cos(y) + C
So the harmonic conjugate of u = 2e* cos(y) is v = 2e* cos(y) + C, where C is a constant.
b) If u is the harmonic conjugate of v in a domain D, then f(z) = u(x,y) + i*v(x,y) is analytic in D. This means that f(z) satisfies the Cauchy-Riemann equations:
∂u/∂x = ∂v/∂y
∂u/∂y = -∂v/∂x
If we take the partial derivatives of these equations with respect to x and y, we get:
∂²u/∂x² = ∂²v/∂x∂y
∂²u/∂x∂y = -∂²v/∂x²
∂²u/∂y∂x = -∂²v/∂y²
∂²u/∂y² = ∂²v/∂y∂x
Adding the first and last equations, we get:
∂²u/∂x² + ∂²u/∂y² = ∂²v/∂x∂y + ∂²v/∂y∂x
Since the mixed partial derivatives are equal, this simplifies to:
∂²u/∂x² + ∂²u/∂y² = 0
So u is harmonic in D. Similarly, we can add the second and third equations to get:
∂²v/∂x² + ∂²v/∂y² = 0
So v is also harmonic in D. Therefore, if u is the harmonic conjugate of v in a domain D, then both u and v are harmonic in D.
Learn more about harmonic
brainly.com/question/9253932
#SPJ11
find the probability of being dealt 5 cards from a standard 52-card
deck and getting a four if a kind(and not a superior poker hand, if
possible)
The probability of being dealt 5 cards from a standard 52-card deck and getting a four of a kind is 0.00024.
To find the probability of being dealt 5 cards from a standard 52-card deck and getting a four of a kind, first find the total number of ways to get a four of a kind and then dividing that by the total number of possible 5-card hands.
Total number of 5-card hands:
52C5 = 52! / (5!)(47!) = 2,598,960
Total number of ways to get a four of a kind:
There are 13 different ranks in a standard deck, so there are 13 ways to choose the rank of the four of a kind. There are also 48 remaining cards in the deck after the four of a kind has been chosen, so there are 48 ways to choose the fifth card.
13(48) = 624
So the probability of getting a four of a kind is 624 / 2,598,960 = 0.00024.
Learn more about probability here: https://brainly.com/question/25870256.
#SPJ11
A book sold 42800 copies in its first month of release. Suppose this represents 7.3 of the number of copies sold to date. How many copies have been sold to date?
The number of copies sold in total is 586,301
What is percentage?A percentage is a portion of a whole expressed as a number between 0 and 100 rather than as a fraction.
Given that, a book sold 42800 copies in its first month of release, this represents 7.3 of the number of copies sold to date, we need to find the number of the copies have been sold to date,
Let the number of copies sold in total be x,
Using the concept of percentage,
7.3 % of x = 42800
7.3 / 100 of x = 42800
x = 100/7.3 (42800)
x = 586,301
Hence, the number of copies sold in total is 586,301
Learn more about percentage, click;
https://brainly.com/question/29306119
#SPJ9
On Martin's first stroke, his golf ball traveled
4
5
5
4
start fraction, 4, divided by, 5, end fraction of the distance to the hole. On his second stroke, the ball traveled
79
7979 meters and went into the hole. How many kilometers from the hole was Martin when he started?
As per the given distance, Martin was 79 kilometers from the hole when he started.
Let's call the initial distance between Martin and the hole "x". According to the problem statement, on Martin's first stroke, the golf ball traveled 4/5 of this distance. This means that the distance the ball traveled on the first stroke was:
distance traveled on first stroke = (4/5)x
After the first stroke, Martin was left with a distance of:
distance left after first stroke = x - (4/5)x = (1/5)x
On Martin's second stroke, the ball traveled 79 meters and went into the hole. This means that the total distance the ball traveled was:
total distance traveled = distance traveled on first stroke + distance left after first stroke + distance traveled on second stroke
total distance traveled = (4/5)x + (1/5)x + 79
total distance traveled = x + 79
Since the ball went into the hole after the second stroke, the total distance traveled is equal to the initial distance between Martin and the hole:
x + 79 = initial distance between Martin and the hole
Therefore, the initial distance between Martin and the hole was:
x = initial distance between Martin and the hole = (79 km)
To know more about distance here
https://brainly.com/question/4199102
#SPJ4
Knowledge Check Question 13 Write the ratio as a fraction in simplest form, with whole numbers in the numerator and denominator. 3.5cm:1.4cm
The ratio 3.5cm:1.4cm can be written as the fraction 5/2 in simplest form, with whole numbers in the numerator and denominator.
To write the ratio as a fraction in simplest form, we will follow the steps below:
Step 1: Write the ratio as a fraction. In this case, we have 3.5cm:1.4cm, which can be written as 3.5cm/1.4cm.
Step 2: Simplify the fraction by dividing both the numerator and denominator by the greatest common factor (GCF). In this case, the GCF of 3.5 and 1.4 is 0.7. So we will divide both the numerator and denominator by 0.7 to get:
(3.5cm/0.7) / (1.4cm/0.7) = 5/2
Step 3: Convert the fraction to simplest form with whole numbers in the numerator and denominator. In this case, we can multiply both the numerator and denominator by 10 to get:
(5*10)/(2*10) = 50/20
Step 4: Simplify the fraction by dividing both the numerator and denominator by the GCF. In this case, the GCF of 50 and 20 is 10. So we will divide both the numerator and denominator by 10 to get:
(50/10)/(20/10) = 5/2
Therefore, the ratio 3.5cm:1.4cm can be written as the fraction 5/2 in simplest form, with whole numbers in the numerator and denominator.
To know more about fractions, refer here:
https://brainly.com/question/10354322#
#SPJ11
I need help. What is the answer and the steps of how to do this equation x/-9≥3 ?
Answer:
[tex]x \leqslant - 27[/tex]
Step-by-step explanation:
[tex]1. \: - \frac{x}{9} \geqslant 3 \\ 2. \: - x \geqslant 3 \times 9 \\ 3. \: - x \geqslant 27 \\ 4. \: x \leqslant - 27[/tex]
Rectangle
�
�
�
�
ABCDA, B, C, D is graphed in the coordinate plane. The following are the vertices of the rectangle:
�
(
5
,
1
)
,
A(5,1),A, left parenthesis, 5, comma, 1, right parenthesis, comma
�
(
7
,
1
)
B(7,1)B, left parenthesis, 7, comma, 1, right parenthesis,
�
(
7
,
6
)
C(7,6)C, left parenthesis, 7, comma, 6, right parenthesis, and
�
(
5
,
6
)
D(5,6)D, left parenthesis, 5, comma, 6, right parenthesis.
What is the perimeter of rectangle
�
�
�
�
ABCDA, B, C, D?
units
The perimeter of this rectangle is equal to 14 units.
How to calculate the perimeter of a rectangle?Mathematically, the perimeter of a rectangle can be calculated by using this mathematical expression;
P = 2(L + W)
Where:
P represents the perimeter of a rectangle.L represents the length of a rectangle.W represents the width of a rectangle.For the width, we would determine the distance between the vertices (5, 6) and (5, 1)
Distance = √[(x₂ - x₁)² + (y₂ - y₁)²]
Distance = √[(5 - 5)² + (1 - 6)²]
Distance = √[(0² + (-5)²]
Distance = √25
Distance = 5 units.
For the length, we have:
Distance = √[(7 - 5)² + (6 - 6)²]
Distance = √[(2² + 0²]
Distance = √4
Length = 2 units.
Perimeter of this rectangle, P = 2(5 + 2)
Perimeter of this rectangle, P = 14 units.
Read more on perimeter of a rectangle here: brainly.com/question/17360327
#SPJ1
Complete Question:
Rectangle ABCD is graphed in the coordinate plane. The following are the vertices of the rectangle: A(5,1). B(7,1), C(7,6), and D(5,6). What is the perimeter of rectangle ABCD?
What is f(x)=3x^2+9/x+1 What is f(3)?
When we evaluate f(3) in the function f(x)=3x^2+9/x+1, we get the result 31.
The function f(x) = 3x^2 + 9/x + 1 is a quadratic function with a variable x. To find the value of f(3), we need to plug in the value of x = 3 into the function and simplify.
f(3) = 3(3)^2 + 9/3 + 1
f(3) = 3(9) + 3 + 1
f(3) = 27 + 3 + 1
f(3) = 31
Therefore, the value of f(3) is 31.
Quadratic numberA quadratic term is any expression that has in its unknowns (in which letters are used) one that is squared (or two), these terms are part of a quadratic function.
For a term to be quadratic it must be multiplied by itself (twice), for example:
a² + a + 1
We can see that it is a quadratic function and that its literal term is a while the quadratic term is a², i.e. a*a.
For more information about composite function, visit:
https://brainly.com/question/10687170
#SPJ11
Using the slope formula, find the slope of the line through the given points.
(2,9) and (4,5)
What is the slope of the line? Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
OA. The slope of the line is
OB. The slope of the line is undefined.
(Type an integer or a simplified fraction.)
use the slope formula
5 - 9/4-2 = -4/2 = -2
slope = -2
NEED HELP DUR TOMORROW!!!!!!!!!!!!!!!!!!!!
If Q has a y-coordinate of -4, what is the x-coordinate?
Answer:
x-coordinate is 3
Step-by-step explanation:
Q has y-coordinate of -4 => the distance from origin to y-coordinate is 4 units, which is one leg of the right triangle
Pythagorean theorem states that the sum of the squares on the legs of a right triangle is equal to the square on the hypotenuse.
c^2 = a^2 + b^2
with c = 5, a = 4
5^2 = 4^2 + b^2
b^2 = 25 - 16 = 9
b = √9 = 3
so Q has coordinates (3,-4)
Using remainder theorem, find the value of k if on dividing 2x3+3x2−kx+5 by x−2, leaves a remainder 7
The value of k is 13.
Using the remainder theorem, we can find the value of k by substituting the value of x in the given polynomial equation with the value that makes the divisor equal to zero. In this case, the divisor is x-2, so the value of x that makes it equal to zero is x=2.
Substituting x=2 into the polynomial equation, we get:
2(2)^3 + 3(2)^2 - k(2) + 5 = 7
Simplifying the equation, we get:
16 + 12 - 2k + 5 = 7
33 - 2k = 7
-2k = -26
k = 13
Therefore, the value of k is 13.
Learn more about polynomial
brainly.com/question/20121808
#SPJ11
An animal reserve is home to 8 meerkats. It costs the reserve $1.50 per day to feed each meerkat. Write an equation with two variables that can be used to determine the total cost of feeding the reserve's meerkats for any number of days.
Answer: Okay, so it's $8 per day to feed all of them. So one way you could answer it could be to say; "It costs $8 per day to feed all of the meerkats,..." then pick a number of days to multiply $8 by.
I hope this helps some!
Data was collected on the weight, in ounces, of kittens for the first three months after birth. A line of fit was drawn through the scatter plot and had the equation w = 2.75 + 0.2d, where w is the weight of the kitten in ounces and d is the age of the kitten in days.
What is the w-intercept of the line of fit and its meaning in terms of the scenario?
0.2; a kitten who is just born is predicted to weigh 0.2 ounces
0.2; for each additional day after the kitten is born, its weight is predicted to increase by 0.2 ounces
2.75; a kitten who is just born is predicted to weigh 2.75 ounces
2.75; for each additional day after the kitten is born, its weight is predicted to increase by 2.75 ounces
2.75; a kitten who is just born is predicted to weigh 2.75 ounces.
What is Statistics?
Statistics is a branch of mathematics that involves collecting, analyzing, interpreting, presenting, and organizing data. It enables the identification of trends, patterns, and relationships within the data. The goal of statistics is to make meaningful inferences and predictions based on the data.
It is used in a wide range of fields, including business, economics, social sciences, healthcare, and engineering. The main tools of statistics include probability theory, statistical inference, and statistical modeling.
2.75; a kitten who is just born is predicted to weigh 2.75 ounces.
The w-intercept of the line of fit represents the weight of a kitten at birth, which is the value of w when d equals zero. In this case, the intercept is 2.75, which means that a kitten who is just born is predicted to weigh 2.75 ounces.
To learn more about Statistics from the given link
https://brainly.com/question/15525560
#SPJ1
answer quick please!!
Match the following reasons with the statements given.
Prove:
The median from the vertex angle of an isosceles triangle divides the triangle into two congruent triangles.
Given:
RAS is isosceles
AM is median
Prove:
RAM SAM
1. Triangle RAS is isosceles, AM is a median
Reflexive
2. AR = AS
Definition of median
3. AM = AM
Given
4. MR = MS
Definition of isosceles triangle.
5. Triangle RAM congruent to Triangle SAM
SSS
The median from the vertex angle of an isosceles triangle divides the triangle into two congruent triangles.
What is median ?The median of a triangle is a line segment joining a vertex to the midpoint of the opposite side. Each triangle has three medians, one from each vertex, and they are concurrent at a point called the centroid. The median from the vertex angle of an isosceles triangle divides the triangle into two congruent triangles.
According to given information :Triangle RAS is isosceles, AM is a median --> Definition of isosceles triangleAR = AS --> Definition of medianAM = AM --> ReflexiveMR = MS --> Median divides the base into two congruent segmentsTriangle RAM congruent to Triangle SAM --> SASTherefore, the median from the vertex angle of an isosceles triangle divides the triangle into two congruent triangles.
To know more about median visit :
https://brainly.com/question/2288141
#SPJ1
Find the exact value by using a sum or difference identity.
sin (185° -65°) please please help me :/
I'm not 100%
sure
:))))))))))))))))))))))))
Order from greatest to least
Answer:
15, 3, -1, -12
Step-by-step explanation:
15, 3, -1, -12
Answer:
First answer (15, 3, -1, -12)
Step-by-step explanation:
ez
i need help with this problem
Answer:
4
Step-by-step explanation:
compare the coordinates of each point:
G: (1,2) x4→ G': (4,8)
H: (3,0) x4→ H': (12,0)
I: (2,-2) x4→ I': (8,-8)
As you can see the scale factor is 4
Each x and each y coordinate of the small triangle GHI is multiplied by 4 to get the image triangle G'H'I'
If X ~ Exp^) with 1 2.0. Then Markov's inequality says that P(X > 1) < a where a is (choose the closest): (A) 1.0 (B) 0.25 (C) 0.5 (D) Can't tell. Not enough info. (E) 0.75
The probability that X is greater than 1 is less than or equal to 0.5, making the correct answer (C) 0.5.
Markov's inequality states that for a non-negative random variable X and a positive number a, the probability that X is greater than a is less than or equal to the expected value of X divided by a. In mathematical terms, this can be written as:
P(X > a) ≤ E(X) / a
In this case, X follows an exponential distribution with a mean of 1/2.0, or 0.5. Therefore, the expected value of X is 0.5. If we plug in the values for X and an into Markov's inequality, we get:
P(X > 1) ≤ 0.5 / 1
P(X > 1) ≤ 0.5
To learn more about Probability :
https://brainly.com/question/24756209
#SPJ11
Let a, b, c, and d be constants. Describe the possible solution sets of the inequality ax + b < cx + d.
The requried, possible solution sets of the inequality ax + b < cx + d is x < (d - b)/(a-c).
What is inequality?Inequality can be defined as the relation of the equation containing the symbol of ( ≤, ≥, <, >) instead of the equal sign in an equation.
Here,
To describe the possible solution sets of the inequality ax + b < cx + d, we need to isolate the variable x on one side of the inequality and simplify.
ax + b < cx + d
ax - cx < d - b
x(a-c) < d - b
x < (d - b)/(a-c)
So the solution set for the inequality is all values of x that are less than the quotient of (d - b) divided by (a-c).
Therefore, the possible solution sets of the inequality ax + b < cx + d is x < (d - b)/(a-c).
Learn more about inequality here:
brainly.com/question/14098842
#SPJ9
Can someone solve this ??
I need help ASAP
Answer:
1. 2430 feet
2. 1.8 m/s^2
Step-by-step explanation:
See the attached worksheet.
A time versus speed graph contains a small treasure of mathematical rewards. The area under the graph is equal to the distance travelled. The slope of the line segments represents acceleration.
For total distance: If we break the graph into three sections (2 triangles and a rectangle) we can calculate the areas for each. Each area is the distance travelled for that segment. As shown on the workseet, the total area is 2430 miles, the distance travelled by the train for this question.
The slope of the line in the first 10 seconds is 1.8 meters/sec^2, the acceleration of the train over that period.
A random sample of 100 soft drink consumers tasted an unmarked cup of pepsi and an unmarked cup of coke. Fifty-nine out of the 100 consumers stated that they prefer pepsi over coke.
A majority of the consumers in the sample prefer pepsi over coke.
Based on the given information, a random sample of 100 soft drink consumers tasted an unmarked cup of pepsi and an unmarked cup of coke. Fifty-nine out of the 100 consumers stated that they prefer pepsi over coke.
This means that the majority of the consumers in the sample, or 59%, preferred pepsi over coke. It is important to note that this is only a sample of consumers and may not necessarily reflect the preferences of the entire population of soft drink consumers. However, it does provide some insight into the preferences of a portion of the population.
In conclusion, the results of the taste test indicate that a majority of the consumers in the sample prefer pepsi over coke.
Learn more about soft drink
brainly.com/question/13315399
#SPj11
The circumference of a circle is 94.2 millimeters. What is the circle's diameter?
Use 3.14 for л.
Answer: 30 millimeters
Step-by-step explanation:
Diameter = Circumference / π
Plug in values:
d = 94.2 / 3.14
d = 30
The diameter is 30 millimeters.
29. ΔCDE ~ ΔCBA with ∟CDE ~= ∟B. If CD = 10, DA = 8, and CE = 6, find EB. 30. ΔCDE ~ ΔCBA with ∟CDE ~= ∟B. If CD = 10, CA = 16, and EB = 12, find CE.
The length of CE is 16 units.
Since ΔCDE ~ ΔCBA, we know that their corresponding sides are proportional. This means that CD/CA = DE/BA = CE/AB. We are given that CD = 10, DA = 8, and CE = 6. We can use the Pythagorean theorem to find CA:
CA^2 = CD^2 + DA^2
CA^2 = 10^2 + 8^2
CA^2 = 100 + 64
CA^2 = 164
CA = √164
Now we can use the proportion CD/CA = DE/BA to find EB:
10/√164 = DE/(8 + EB)
10(8 + EB) = DE√164
80 + 10EB = DE√164
10EB = DE√164 - 80
EB = (DE√164 - 80)/10
We can use the Pythagorean theorem to find DE:
DE^2 = CE^2 + CD^2
DE^2 = 6^2 + 10^2
DE^2 = 36 + 100
DE^2 = 136
DE = √136
Now we can plug DE back into the equation for EB:
EB = (√136√164 - 80)/10
EB = (12√164 - 80)/10
EB = 1.2√164 - 8
EB ≈ 4.26
So the length of EB is approximately 4.26 units.
30. Since ΔCDE ~ ΔCBA, we know that their corresponding sides are proportional. This means that CD/CA = DE/BA = CE/AB. We are given that CD = 10, CA = 16, and EB = 12. We can use the proportion CD/CA = DE/BA to find DE:
10/16 = DE/(8 + 12)
10/16 = DE/20
DE = 20(10/16)
DE = 12.5
Now we can use the Pythagorean theorem to find CE:
CE^2 = CD^2 + DE^2
CE^2 = 10^2 + 12.5^2
CE^2 = 100 + 156.25
CE^2 = 256.25
CE = √256.25
CE = 16
So the length of CE is 16 units.
Learn more about Length
brainly.com/question/30100801
#SPJ11