Write 3 expressions containing exponents so that each expression equals 81

Answers

Answer 1

Answer:

9x9= 81

3x3x3x3=81

81 to the first power.

Step-by-step explanation:

I hope this helps in any way:)


Related Questions

An aquarium is to be built to hold 60 m3of volume. The base is to be made of slate and the sides aremade of glass, and it has no top. If stone costs $120/m2and glass costs $30/m2, find the dimensions which willminimize the cost of building the aquarium, and find the minimum cost.

Answers

Answer:

Aquarium dimensions:

x = 3,106 m

h = 6,22 m

C(min) = 1277,62 $

Step-by-step explanation: (INCOMPLETE QUESTION)

We have to assume:

The shape of the aquarium  (square base)

Let´s call "x" the side of the base, then h ( the heigh)

V(a) = x²*h          h = V(a)/x²      

Cost of Aquarium   C(a) = cost of the base (in stones) + 4* cost of one side (in glass)

C(a) = Area of the base *120 + 4*Area of one side*30

Area of the base is x²

Area of one side  is   x*h   or  x*V(a)/x²  

Area of one side is V(a)/x

C(x) = 120*x² + 4*30*60/x

C(x) = 120*x² +  7200/x

Taking derivatives on both sides of the equation we get

C´(x) = 2*120*x  - 7200/x²

C´(x) = 0 means    240 *x  - 7200/x² = 0

240*x³ - 7200 = 0

x³ = 7200/240

x = 3,106 m   and  h = 60 /x²     h =   6,22 m

and C (min) = 120*(3,106)³ - 7200 / 3,106

C(min) =  3595,72 - 2318,1

C(min) = 1277,62

The sum of three consecutive natural numbers is 555, find the numbers.

Answers

Answer:

184, 185, 186

Step-by-step explanation:

If the first number is x, the other numbers are x + 1 and x + 2, therefore we can write:

x + x + 1 + x + 2 = 555

3x + 3 = 555

3x = 552

x = 184 so the other numbers are 185 and 186.

please help all i need is the slope in case the points are hard to see here they are problem 1. (-2,2) (3,-3) problem 2. (-5,1) (4,-2) problem 3. (-1,5) (2,-4)

Answers

Answer: 1. [tex]-\dfrac{5}{6}[/tex]  2. [tex]-\dfrac{1}{3}[/tex] . 3. [tex]-3[/tex]

Step-by-step explanation:

Formula: Slope[tex]=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

1. (-2,2) (3,-3)

Slope [tex]=\dfrac{-3-2}{3-(-2)}[/tex]

[tex]=\dfrac{-5}{3+2}\\\\=\dfrac{-5}{6}[/tex]

Hence, slope of line passing through  (-2,2) (3,-3) is [tex]-\dfrac{5}{6}[/tex] .

2. (-5,1) (4,-2)

Slope [tex]=\dfrac{-2-1}{4-(-5)}[/tex]

[tex]=\dfrac{-3}{4+5}\\\\=\dfrac{-3}{9}\\\\=-\dfrac{1}{3}[/tex]

Hence, slope of line passing through  (-2,2) and (3,-3) is [tex]-\dfrac{1}{3}[/tex] .

3. (-1,5) (2,-4)

Slope [tex]=\dfrac{-4-5}{2-(-1)}[/tex]

[tex]=\dfrac{-9}{2+1}\\\\=\dfrac{-9}{3}\\\\=-3[/tex]

Hence, slope of line passing through (-1,5) and (2,-4) is -3.

Savita was given a set of 250 cherries and Gail was given a set
of 350 cherries. Both were also given a set of small plastic bags.
Savita had to pack 8 cherries in a bag and Gail had to pack 12
cherries in a bag. Explain how you know who will have more
bags of cherries at the end.​

Answers

Answer:

Savita will have more bags

Step-by-step explanation:

Savita: 250 cherries, 8 cherries per bag

Gail: 350 cherries, 12 cherries per bag

Savita: 250/8 = 31.25 bags

Gail: 350/12 = 29.17 bags

Savita will have more bags since 31.25 > 29.17

Answer:

Savita will have more bags

Step-by-step explanation:

Savita has 250 cherries and 8 cherries per bag

Gail has 350 cherries and 12 cherries per bag

Savita

=250/8 = 31.25 bags

Gail

=350/12 = 29.17 bags

therefore Savita will have more bags since 31.25 is more than Gail with 29.17 bags

The sum of a number and 9 is subtracted from 60. The result is 10. Find the number.

Answers

Answer:

Number : 41

Step-by-step explanation:

Say that this number is x. The sum of this number ( x ) and 9 subtracted from 60 will be 10. Therefore we can create the following equation to solve for x,

60 - (x + 9) = 10,

60 - x - 9 = 10,

51 - x = 10,

- x = 10 - 51 = - 41,

x = 41

This number will be 41

Compute the values of dy and Δy for the function y=e^(2x)+6x given x=0 and Δx=dx=0.03.

Answers

Answer:

dy = 8·dxΔy = 0.24

Step-by-step explanation:

The derivative of your function is ...

  y' = dy/dx = 2e^(2x) +6

At x=0, the value is ...

  y'(0) = 2e^0 +6 = 8

  dy = 8·dx

__

  Δy = y'(0)·Δx

  Δy = 8(.03)

  Δy = 0.24

F(n)=6.5n+4.5 find the 5th term of the sequence defined by the given rule

Answers

Answer:

37

Step-by-step explanation:

To find the fifth term , we have to take the value of n as 5

So, F(5)= 6.5 (5) +4.5

= 32.5 + 4.5

= 37

The function A(b) relates the area of a trapezoid with a given height of 10 and
one base length of 7 with the length of its other base.
It takes as input the other base value, and returns as output the area of the
trapezoid.
A(b) = 10.57?
Which equation below represents the inverse function B(a), which takes the
trapezoid's area as input and returns as output the length of the other base?
O A. B(a) = -7
B. B(a) = 9, -5

Answers

Answer:

[tex]B(a)=\frac{a}{5} -7[/tex]

Step-by-step explanation:

The input it taken as the unknown base value, while the output here is the area of the trapezoid. b is therefore the base value, and A( b ) is the area of the trapezoid. Let's formulate the equation for the area of the trapezoid, and isolate the area of the trapezoid. To find the inverse of this function, switch y ( this is A( b ) ) and b, solving for y once more, y ➡ y ⁻ ¹.

y = height [tex]*[/tex] ( ( unknown base value ( b ) + 7 ) / 2 ),

y = 10 [tex]*[/tex] ( ( b + 7 ) / 2 )

Now switch the positions of y and b -

b = 10 [tex]*[/tex] ( ( y + 7 ) / 2 ) or [tex]b=\frac{\left(y+7\right)\cdot \:10}{2}[/tex] - now that we are going to take the inverse ( y ⁻ ¹ ) or B( a ), b will now be changed to a,

[tex]y+7=\frac{a}{5}[/tex],

[tex]y^{-1}=\frac{a}{5}-7 = B(a)[/tex]

Therefore the equation that represents the inverse function will be the following : B(a) = a / 5 - 7

A fisherman uses a spring scale to weigh a tilapia fish. He records the fish weight as a kilograms and notices that the spring stretches b centimeters. Which expression represents the spring constant (1 =9.8 )? A). 980ab B). 9.8ab C). 9.8ab D). 980ab

Answers

Answer:

k = [tex]\frac{980a}{b}[/tex]

Step-by-step explanation:

Fisherman noticed a stretch in the spring = 'b' centimetres

Weight of the fish = a kilograms

If force applied on a spring scale makes a stretch in the spring then Hook's law for the force applied is,

F = kΔx

Where k = spring constant

Δx = stretch in the spring

F = weight applied

F = mg

Here 'm' = mass of the fish

g = gravitational constant

F = a(9.8)

  = 9.8a

Δx = b centimetres = 0.01b meters

Therefore, 9.8a = k(0.01b)

k = [tex]\frac{9.8a}{0.01b}[/tex]

k = [tex]\frac{980a}{b}[/tex]

Therefore, spring constant of the spring will be determined by the expression, k = [tex]\frac{980a}{b}[/tex]

A survey of the average amount of cents off that coupons give was done by randomly surveying one coupon per page from the coupon sections of a recent San Jose Mercury News. The following data were collected: 20cents; 70cents; 50cents; 65cents; 30cents; 55cents; 40cents; 40cents; 30cents; 55cents; $1.50; 40cents; 65cents; 40cents. Assume the underlying distribution is approximately normal.
Construct a 95% confidence interval for the population mean worth of coupons .
What is the lower bound? ( Round to 3 decimal places )
What is the upper bound? ( Round to 3 decimal places )
What is the error bound? (Round to 3 decimal places)

Answers

Answer:

The lower bound = 35.443

The upper bound = 71.697

The error bound = 18.127

Step-by-step explanation:

We are given that a survey of the average amount of cents off that coupons gives was done by randomly surveying one coupon per page from the coupon sections of a recent San Jose Mercury News.

The following data were collected (X): 20cents; 70cents; 50cents; 65cents; 30cents; 55cents; 40cents; 40cents; 30cents; 55cents; 150 cents; 40cents; 65cents; 40cents.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                              P.Q.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean worth of coupons = [tex]\frac{\sum X}{n}[/tex] = [tex]\frac{750}{14}[/tex] = 53.57 cents

            s = sample standard deviation = [tex]\sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }[/tex] = 31.40 cents

            n = sample size = 14

            [tex]\mu[/tex] = population mean worth of coupons

Here for constructing a 95% confidence interval we have used a One-sample t-test statistics as we don't know about population standard deviation.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-2.16 < [tex]t_1_3[/tex] < 2.16) = 0.95  {As the critical value of t at 13 degrees of

                                             freedom are -2.16 & 2.16 with P = 2.5%}  

P(-2.16 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.16) = 0.95

P( [tex]-2.16 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}{[/tex] < [tex]2.16 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-2.16 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.16 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.16 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.16 \times {\frac{s}{\sqrt{n} } }[/tex] ]

 = [ [tex]53.57-2.16 \times {\frac{31.40}{\sqrt{14} } }[/tex] , [tex]53.57+2.16 \times {\frac{31.40}{\sqrt{14} } }[/tex] ]

 = [35.443, 71.697]

Therefore, a 95% confidence interval for the population mean worth of coupons is [35.443, 71.697].

what's the solution for 9ײ/81×⁵​

Answers

Answer:

answer 1 /9x^3

Step-by-step explanation:

9ײ/81×⁵​

change the expression to indices form

3^2 x^2 /3^4 x^5

1 /3^2 x^3

1 /9x^3

a.Find the L.C.M of 18, 40, and 75.

Answers

Answer:

1800

Step-by-step explanation:

Hello,

First of all we need to find the prime factorisation of the numbers.

18 = 2 * 3 * 3

40 = 2 * 2 * 2 * 5

75 = 3 * 5 * 5

It means that the LCM should have 5 * 5 , 2 * 2 * 2 and 3 * 3

Then LCM = 3 * 3 * 2 * 2 * 2 * 5 * 5 = 1800

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

Answer:

1800

Step-by-step explanation:

First of all we need to find the prime factorisation of the numbers.

18 = 2 × 3 × 3 or 2 × 3²

40 = 2 × 2 × 2 × 5 or 2³ × 5

75 = 3 × 5 × 5 or 5² × 3

→ Now find the number that appear twice or more and write them down

3 and 3 from 18

2, 2 and 2 from 40

5 and 5 from 75

→ Now multiply all of these numbers together

3 × 3 × 2 × 2 × 2 × 5 × 5 = 3² × 2³ × 5² = 1800

A lottery game has balls numbered 1 through 21. What is the probability of selecting an even numbered ball or an 8? Round to nearest thousandth

Answers

Answer: 0.476

Step-by-step explanation:

Let A = Event of choosing an even number ball.

B = Event of choosing an 8 .

Given, A lottery game has balls numbered 1 through 21.

Sample space: S= {1,2,3,4,5,6,7,8,...., 21}

n(S) = 21

Then, A= {2,4,6,8, 10,...(20)}

i.e. n(A)= 10

B= {8}

n(B) = 1

A∪B = {2,4,6,8, 10,...(20)} = A

n(A∪B)=10

Now, the probability of selecting an even numbered ball or an 8 is

[tex]P(A\cup B)=\dfrac{n(A\cup B)}{n(S)}[/tex]

[tex]=\dfrac{10}{21}\approx0.476[/tex]

Hence, the required probability =0.476

A person standing close to the edge on top of a 96-foot building throws a ball vertically upward. The quadratic function (t) - - 161+ 804 + 96 models the ball's height about the ground, A(t), in feet, e
seconds after it was thrown.
a) What is the maximum height of the ball?
Preview
feet
b) How many seconds does it take until the ball hits the ground?
Preview
seconds

Answers

Answer:

196 ft

6 seconds

Step-by-step explanation:

Solution:-

We have a quadratic time dependent model of the ball trajectory which is thrown from the top of a 96-foot building as follows:

                     [tex]y(t) = -16t^2 + 80t + 96[/tex]

The height of the ball is modeled by the distance y ( t ) which changes with time ( t ) following a parabolic trajectory. To determine the maximum height of the ball we will utilize the concepts from " parabolas ".

The vertex of a parabola of the form ( given below ) is defined as:

                     [tex]f ( t ) = at^2 + bt + c[/tex]

                    Vertex: [tex]t = \frac{-b}{2a}[/tex]

- The modelling constants are: a = -16 , b = 80.

                   [tex]t = \frac{-80}{-32} = 2.5 s[/tex]

- Now evaluate the given function " y ( t ) " for the vertex coordinate t = 2.5 s. As follows:

                    [tex]y ( 2.5 ) = -16 ( 2.5 )^2 + 80*(2.5) + 96\\\\y ( 2.5 ) = 196 ft\\[/tex]

Answer: The maximum height of the ball is 196 ft at t = 2.5 seconds.

- The amount of time taken by the ball to hit the ground can be determined by solving the given quadratic function of ball's height ( y ( t ) ) for the reference ground value "0". We can express the quadratic equation as follows:

                    [tex]y ( t ) = -16t^2 + 80t + 96 = 0\\\\-16t^2 + 80t + 96 = 0[/tex]

Use the quadratic formula and solve for time ( t ) as follows:

                    [tex]t = \frac{-b +/- \sqrt{b^2 - 4 ac} }{2a} \\\\t = \frac{-80 +/- \sqrt{80^2 - 4 (-16)(96)} }{-32} \\\\t = \frac{-80 +/- 112 }{-32} = 2.5 +/- (-3.5 )\\\\t = -1, 6[/tex]

Answer: The value of t = -1 is ignored because it lies outside the domain. The ball hits the ground at time t = 6 seconds.

The test statistic of zequalsnegative 3.43 is obtained when testing the claim that pless than0.39. a. Using a significance level of alphaequals0.05​, find the critical​ value(s). b. Should we reject Upper H 0 or should we fail to reject Upper H 0​?

Answers

Answer:

a

  [tex]z_t = -1.645[/tex]

b

 We should reject the Upper  [tex]H_o[/tex]

Step-by-step explanation:

From the question we are told that

   The test statistics is     [tex]t_s = -3.43[/tex]

     The probability is   [tex]p < 0.39[/tex]

      The level of significance is [tex]\alpha = 0.05[/tex]

Now looking at the probability we can deduce that this is a left tailed test

The  second step to take is to obtain the critical value of [tex]\alpha[/tex] from the critical value table  

    The value  is  

               [tex]t_ {\alpha } = 1.645[/tex]

Now  since this  test is  a  left tailed test  the critical value will be

               [tex]z_t = -1.645[/tex]

This because we are considering the left tail of the normal distribution curve

 Now  since the test statistics falls within the  critical values the Null hypothesis is been rejected

Need help with trig questions

Answers

Answer:

-8 i + 19 j , 105.07°

Step-by-step explanation:

Solution:

- Define two unit vectors ( i and j ) along x-axis and y-axis respectively.

- To draw vectors ( v and w ). We will move along x and y axes corresponding to the magnitudes of unit vectors ( i and j ) relative to the origin.

  Vector: v = 2i + 5j

Mark a dot or cross at the originMove along x-axis by 2 units to the right ( 2i )Move along y-axis by 5 units up ( 5j )Mark the point.Connect the origin with the marked point determined aboveMake an arrow-head at the determined pointLies in first quadrant

     

Vector: w = 4i - 3j

Mark a dot or cross at the originMove along x-axis by 4 units to the right ( 4i )Move along y-axis by 3 units down ( -3j )Mark the point.Connect the origin with the marked point determined aboveMake an arrow-head at the determined pointLies in 4th quadrant

- The algebraic manipulation of complex numbers is done by performing operations on the like unit vectors.

                      [tex]2*v - 3*w = 2* ( 2i + 5j ) - 3*(4i - 3j )\\\\2*v - 3*w = ( 4i + 10j ) + ( -12i + 9j )\\\\2*v - 3*w = ( 4 - 12 ) i + ( 10 + 9 ) j\\\\2*v - 3*w = ( -8 ) i + ( 19 ) j\\[/tex]

- To determine the angle ( θ ) between two vectors ( v and w ). We will use the " dot product" formulation as follows:

                     v . w = | v | * | w | * cos ( θ )

                     v . w = < 2 , 5 > . < 4 , -3 > = 8 - 15 = -7

                     [tex]| v | = \sqrt{2^2 + 5^2} = \sqrt{29} \\\\| w | = \sqrt{4^2 + 3^2} = 5\\\\[/tex]

- Plug the respective values into the dot-product formulation:

                     cos ( θ ) = [tex]\frac{-7}{5\sqrt{29} }[/tex]

                      θ = 105.07°

What is the measure of o?

Answers

Answer:

2π radians

Step-by-step explanation:

Shawn has 25 coins, all nickels and dimes. The total value is $2.00. How many of each coin does he have ?

Answers

Answer:

[tex]\boxed{15 \ dime \ and \ 10 \ nickel \ coins}[/tex]

Step-by-step explanation:

1 dime = 10 cents

1 nickel = 5 cents

So,

If there are 15 dimes

=> 15 dimes = 15*10 cents

=> 15 dimes = 150 cents

=> 15 dimes = $1.5

Rest is $0.5

So, for $0.5 we have 10 nickels coins

=> 10 nickels = 10*5

=> 10 nickels = 50 cents

=> 10 nickel coins = $0.5

Together it makes $2.00

Please help! Find the perimeter and total area of the composite shape below!

Answers

Answer:

Perimeter = 19.42 in and area = 26.13 in^2.

Step-by-step explanation:

The perimeter = 2 * 5 + length of the semicircle

= 10 * 3.14 * 3

= 19.42 in.

Total area = area of the semicircle + area of the triangle

= 1/2 * 3.14 * 3^2 + 3 * 4

= 26.13 in^2.

Let x and y be real numbers satisfying 2/x=y/3=x/y Determine the value of x^3

Answers

Answer:

64/27

Step-by-step explanation:

If  x and y be real numbers satisfying 2/x=y/3=x/y, then any two of the equation are equated as shown;

2/x = y/3 ... 1 and;

y/3 = x/y... 2

From equation 1, 2y = 3x ... 3

and from equation 2; y² = 3x ... 4

Equating the left hand side of equation 3 and 4 since their right hand sides are equal, we will have;

2y = y²

2 = y

y = 2

Substituting y = 2 into equation 3 to get the value of x;

2y = 3x

2(2) = 3x

4 = 3x

x = 4/3

The value of x³ will be expressed as (4/3)³ = 4*4*4/3*3*3 = 64/27

Which equations represent the asymptotes of the hyperbola?

Answers

Answer:

  see below

Step-by-step explanation:

The equation of the hyperbola can be written as ...

  ((x -h)/a)² -((y -k)/b)² = 1

This has asymptotes ...

  (x -h)/a ± (y -k)/b = 0

Solving for y, we have ...

  y = ±(b/a)(x -h) +k

Filling in the given values a=6, b=8, h=1, k=2, we have ...

  y = ±8/6(x -1) +2

  [tex]y=\dfrac{\pm4x\mp4+6}{3}\\\\\boxed{y=\dfrac{4x+2}{3}\ \text{and }y=\dfrac{10-4x}{3}}[/tex]

Answer:

A. y = 4x+2/3 and y = 10-4x/3

Step-by-step explanation:

this is the correct answer for the question on edmentum and Plato

At a factory that produces pistons for cars, Machine 1 produced 459 satisfactory pistons and 51 unsatisfactory pistons today. Machine 2 produced 360
satisfactory pistons and 40 unsatisfactory pistons today. Suppose that one piston from Machine 1 and one piston from Machine 2 are chosen at random from
today's batch. What is the probability that the piston chosen from Machine 1 is unsatisfactory and the piston chosen from Machine 2 is satisfactory?​

Answers

Hey there! I'm happy to help!

If we add Machine 1's 459 satisfactory pistons and 51 unsatisfactory pistons, we get 510 total pistons.

If we add Machine 2's 360 satisfactory pistons and 40 unsatisfactory pistons, we get 400 total pistons.

First, we want to find the probability of choosing an unsatisfactory piston from Machine 1.

We see that 51/510 (unsatisfactory pistons out of total pistons) simplifies to equal 1/10, so there is a 1/10 chance of getting an unsatisfactory piston from Machine 1.

For Machine 2, there are 360 satisfactory and 400 total. This gives us 360/400, which simplifies to 9/10.

Now, we multiply our two probabilities together to find the probability that they both happen.

1/10×9/10=9/100

Therefore, the probability that a piston chosen from Machine 1 is unsatisfactory and the piston chosen from Machine 2 is satisfactory is 9/100 or 9%.

Have a wonderful day! :D

a rectangle is three times as long as it is widen. if it perimeter is 56cm, find the width of the rectangle

Answers

Hi there! :)

Answer:

w = 7 cm.

Step-by-step explanation:

Given:

P = 56

Use the formula P = 2l + 2w to solve for the perimeter of the rectangle.

Let w = width, and

   

3w = length

Plug these into the equation:

56 = 2(3w) + 2(w)

56 = 6w + 2w

Combine like terms:

56 = 8w

Divide both sides by 8:

w = 7 cm.

The width of rectangle is 7 cm.

A local Internet provider wants to test the claim that the average time a family spends online on a Saturday is at least 7 hours. To test this claim, the Internet provider randomly samples 30 households and finds that these families' mean number of hours spent on the Internet on a Saturday was 6 hours with a standard deviation of 1.5 hours. At a level of significance of 0.05, can the Internet provider's claim be supported?
A) Fail to Reject the Null Hypothesis
B) Reject the Null Hypothesis
C) Reject The Alternative Hypothesis
D) Fail to Reject the Alternative Hypothesis
E) Accept the Null Hypothesis
F) Accept the Alternative Hypothesis

Answers

Answer:

A) Fail to Reject the Null Hypothesis

Step-by-step explanation:

Given that:

A local Internet provider wants to test the claim that the average time a family spends online on a Saturday is at least 7 hours.

sample size = 30

sample mean [tex]\bar x[/tex] = 6

standard deviation [tex]\sigma[/tex] = 1.5

level of significance ∝ = 0.05

The null hypothesis and the alternative hypothesis can be computed as:

[tex]\mathbf{ H_o: \mu \leq 7}[/tex]

[tex]\mathbf{ H_i: \mu \geq 7}[/tex]

The test statistic  can be computed as:

[tex]z = \dfrac{\bar x - \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

[tex]z = \dfrac{6 -7} {\dfrac{1.5}{\sqrt {30}}}[/tex]

[tex]z = \dfrac{-1} {\dfrac{1.5}{5.477}}}[/tex]

[tex]z = \dfrac{-5.477} {1.5}[/tex]

z = -3.65

Given that ;

level of significance of 0.05;

z = -3.65

degree of freedom = 30 -  1 = 29

The p-value = P([tex]t_{29}[/tex] > - 3.65)

= 0.9998

Decision Rule: Reject [tex]H_o[/tex] if p-value is less than the level of significance

But since the p -value is greater than the level of significance, we conclude that There is no enough evidence to support the  Internet provider  claim, Therefore;

Fail to Reject the Null Hypothesis

if ade has 23hand bag and he sells one for 409$ and he sells 22 for toby what will be the amount​

Answers

Step-by-step explanation:

Hello there!

Its simple,

Given that, Ade had 23 hand bags.

selling price of each bag=$409

total sold bags= 22.

now, total amount he got was = no.of sold bag×sp of each bag.

so, total amount = 22×$409

=$8998.

Therefore, he has $ 8998 now.

Hope it helps...

Over the last three evenings, Melissa received a total of 126 phone calls at the call center. The first evening, she received 6 more calls than the third evening. The second evening, she received 4 times as many calls as the third evening. How many phone calls did she receive each evening? Number of phone calls the first evening: Number of phone calls the second evening: Number of phone calls the third evening:

Answers

Answer:

calls first evening = 26

calls second evening  = 80

calls third evening = 20

Step-by-step explanation:

Let x = calls third evening

x+6 = calls first evening

4x = calls second evening

x+6 + 4x + x = total calls = 126

Combine like terms

6x+6 = 126

Subtract 6 from each side

6x =120

Divide by 6

6x/6 =120/6

x = 20

x+6 = calls first evening = 20+6 = 26

4x = calls second evening = 4*20 = 80

Let x = calls third evening = 20

Find the equation of a line parallel to −x+5y=1 that contains the point (−1,2)

Answers

Answer:

y=1/5x+11/5

Step-by-step explanation:

Find the slope of the original line and use the point-slope formula  y-y^1=m(x-x^1) to find line parallel to -x+5y=1

Hope this helps

Answer: y = 1/5x+ 2.2

Step-by-step explanation:

First, change the expression into y-intercept form

-x+5y=1

5y=x+1

y=1/5x+1/5

For a line to be parallel to another line, it must have the same slope.  Thus, the slope must be 1/5x.  Then, to find the y-intercept simply do:

y = 1/5x+b, where x = -1 and y = 2

2=1/5(-1)+b

2 = -1/5+b

b = 2 1/5.

Thus, the equation y = 1/5x+ 2.2

Hope it helps <3

Out of 600 people sampled, 66 preferred Candidate A. Based on this, estimate what proportion of the entire voting population (p) prefers Candidate A.

Required:
Use a 90% confidence level, and give your answers as decimals, to three places.

Answers

Answer:

11% of the Total the entire voting population

Step-by-step explanation:

Let's bear in mind that the total number of sample candidates is equal to 600.

But out of 600 only 66 preffered candidate A.

The proportion of sampled people to that prefer candidate A to the total number of people is 66/600

= 11/100

In percentage

=11/100 *100/1 =1100/100

=11% of the entire voting population

WILL MAKE BRAINLIST. - - - If a golden rectangle has a width of 9 cm, what is its length?

Answers

Step-by-step explanation:

a = 14.56231 cm

b(width) = 9 cm

a+b = 23.56231 cm

A(area) = 343.1215 cm

Sorry if this doesnt help

Answer:

length = [9/2 + (9/2)sqrt(5)] cm

length = 14.56 cm

Step-by-step explanation:

In a golden rectangle, the width is a and the length is a + b.

The proportion of the lengths of the sides is:

(a + b)/a = a/b

Here, the width is 9 cm, so we have a = 9 cm.

(9 + b)/9 = 9/b

(9 + b)b = 81

b^2 + 9b - 81 = 0

b = (-9 +/- sqrt(9^2 - 4(1)(-81))/(2*1)

b = (-9 +/- sqrt(81 + 324)/2

b = (-9 +/- sqrt(405)/2

b = -9/2 +/- 9sqrt(5)/2

Length = a + b = 9 - 9/2 +/- 9sqrt(5)/2

Length = a + b = 9/2 +/- 9sqrt(5)/2

Since the length of a side of a rectangle cannot be negative, we discard the negative answer.

length = [9/2 + (9/2)sqrt(5)] cm

length = 14.56 cm

Solve for y: 3(2y + 4) = 4(2y – 1/2).
The solution is y =

Answers

Answer:

Answer y=7

Step-by-step explanation:

Other Questions
6th grade math help me, please :))) solve for x, if a solution is extraneous identify in the final answer. thx :) Please answer it now in two minutes Cobe Company has already manufactured 23,000 units of Product A at a cost of $25 per unit. The 23,000 units can be sold at this stage for $420.000. Alternatively, the units can be further processed at a $280.000 total additional cost and be converted into 6.000 units of Product B and 11,900 units of Product C. Per unit selling price for Product B is $106 and for Product C is $52. Required:Prepare an analysis that shows whether the 23,000 units of Product A should be processed further or not. A sonata is a large-scale composition for a solo instrument or a solo instrument with piano accompaniment. True False SOMEONE PLS HELP I WILL GIVE BRAINLIESTfactor x^(n+2)+x^(2)pls explain too :> Solve the equation. \dfrac5{13}=t-\dfrac{6}{13} 13 5 =t 13 6 start fraction, 5, divided by, 13, end fraction, equals, t, minus, start fraction, 6, divided by, 13, end fraction t=t=t, equals The sand used for sanding icy roads in the winter is stored in a conical-shaped structure with a radius of 10 mand a height of 16 m. Calculate the maximum amount of sand which can be stored in this structure. Assets Liabilities and Net WorthReserves $40,000 Checkable Deposits $130,000Loans 25,000 Stock Shares 45,000Securities 110,000Assume the Continental National Bank's balance statement is as shown in the accompanying table. Assuming a legal reserve ratio of 20 percent, how much in excess reserves would this bank have after a check for $10,000 was drawn and cleared against it?a. $16,000.b. $3,000.c. $6,000.d. $24,000. Which electrons are the valence electrons of the atom?O A. The electrons closest to the nucleusO B. The electrons that have lost their chargeO C. The electrons farthest away from the nucleusO D. The electrons that have entered the nucleus Briefly describe each of the characters in the table and the relationships among them. Some of the charactersappear in chapter 6 of the novel, which you ve read, others are described in the video you watched. You canalso do online research to find out more about the characters. The Grey Cat.Each day you take a walk at a different time following the same route. Along your path there is a bus stop with a bench located at the bottom of a hill. Upon this bench sits a grey cat. Each day, as you pass this grey cat, you say hello cat. Youve recognized that each day, as you do this, a bus consistently comes over the hill. The consistency of this events sparks your interest, it seems to go beyond the possibility of coincidence. In order to satiate your curiousity you have decided to design an experiment to investigate the anomoly. Working with just the information provided, create a GOOD Hypothesis about the above scenario. Generate an experiment to test your hypothesis, and write an experimental design. Your experimental design writeup must clearly define all essential aspects of the experiment.Note: Avoid suppositions at all cost! Work with only the information provided. This is science. Solve for x: (-1/2) x = 6 What is the best definition of culture?O A. The religious prayers, songs, and dances characteristic of aspecific group of peopleB. The bqliefs, behaviors, values, and forms shared by a particulargrour peopleC. The different ways in which a group of people obtains food,shelter, and clothingO D. The manner in which a group of people trains and educates itschildren A movie earned $438 million at the box office in2013. That is 24% more than book of the samename earned. Estimate how much the bookearned?Round your answer to the nearest hundredth ofa million dollars. MATH HELP ME ASAP!!!! A scale diagram of a garden shows the length as 14.5cm. If the scale is 1:150, what is the actual length? The garden is _______m in length. What statement discribes the relationship of voltage and current How did the Enlightenment influence the Haitian Revolution? Suppose you deposit $600 into an account that pays 5% annual interest, compounded continuously. How much will you have in the account in 4 years? (t) = aert A) $4,433.43 B)635.62 C)$729.30 D)$732.84