Answer:
Step-by-step explanation:
An inequality can be represented graphically as a region on one side of a line. Inequalities that use < or > symbols are plotted with a dashed line to show that the line is not included in the region. Inequalities that use ≤ or ≥ symbols are plotted with a solid line to show that the line is included in the region.
A right triangle with coordinates A (2,1), B (6,1), and C (6,4) is reflected across the Y axis, then rotated 180 degrees counter clockwise and then translated down 2 units to form triangle A'B'C'.
What is the measure of angle A'B'C', in degrees, in the resulting figure?
The measure of angle A'B'C' in the resulting figure is approximately 142.6 degrees.
How to calculate the angleThe reflection of a point (x, y) across the y-axis is (-x, y). Applying this transformation to the coordinates of A, B, and C, we get:
A' (-2, 1)
B' (-6, 1)
C' (-6, 4)
The rotation of a point (x, y) by 180 degrees counter clockwise is (-x, -y). Applying this transformation to the coordinates of A', B', and C', we get:
A'' (2, -1)
B'' (6, -1)
C'' (6, -4)
Next, we can use the law of cosines to find the measure of angle B:
A'B'C' = 180 - arccos(-7/24)
≈ 142.6 degrees
Learn more about triangles on
https://brainly.com/question/17335144
#SPJ1
In a survey, 54.5% of respondents have portable earbuds and 30% of the respondents who have portable earbuds also have a smart speaker. What is the probability that a respondent has both portable earbuds and a smart speaker? If necessary, round to the nearest hundredth of a percent.
The probability that a respondent has both portable earbuds and a smart speaker is 0.16
What is the probability that a respondent has both portable earbuds and a smart speaker?From the question, we have the following parameters that can be used in our computation:
54.5% of respondents have portable earbuds 30% of the respondents who have smart speaker.This means that
P(earbuds) = 54.5%
P(smart speaker) = 30%
Using the above as a guide, we have the following:
P = P(earbuds) * P(smart speaker)
Substitute the known values in the above equation, so, we have the following representation
P = 54.5% * 30%
Evaluate
P = 0.16
Hence, the probability is 0.16
Read mroe about probability at
https://brainly.com/question/24756209
#SPJ1
Answer please!!! Will be very thankful
The estimate of the cost for a 20-ft cord is given as follows:
$74.66.
How to find the equation of linear regression?To find the regression equation, which is also called called line of best fit or least squares regression equation, we need to insert the points (x,y) in the calculator.
The points in the context of the problem are given as follows:
(3, 12.75), (5, 16), (6, 25.99), (50, 185).
Inserting these points into a calculator, the regression equation is given as follows:
y = 3.6794x + 1.06462.
Hence the estimate of the cost for a 20-ft cord is given as follows:
y = 3.6794(20) + 1.06462
y = $74.66.
More can be learned about linear regression at https://brainly.com/question/29613968
#SPJ1
Can the sides of a right triangle have lengths 7,9 and the square Root of 155
Answer:
No
Step-by-step explanation:
In order for a triangle to be a right angle, the sum of the squares of the two legs (a and b) must be equal the square of the longest side, known as the hypotenuse (c):
[tex]a^2+b^2=c^2[/tex]
The square root of 155 is the longest side as it is approximately 12.45. Thus, if the triangle is a right triangle, the square root of 155 must be the hypotenuse.
We can now check to see whether the sum of the squares of 7 and 9 equal the square of the square root of 155:
[tex]7^2+9^2=(\sqrt{155})^2\\ 49+81=155\\130=155[/tex]
The equation is not true since 130 is less than and not equal to 155. Therefore, a triangle with side lengths 7, 9, and the square root of 155 cannot be a right triangle.
In urgent need of assistance pls and thanks
The addition of the vectors [tex]\vec a + \vec b[/tex] is (3, -5) and it has been represented by using the head to tail method in the graph below.
What is a vector?In Mathematics and Science, a vector can be defined as an element of a vector space, which represents an object that is composed of both magnitude and direction.
How to add vectors by using the head to tail method?In Mathematics and Science, a vector typically comprises two (2) points. First, is the starting point which is commonly referred to as the "tail" and the second (ending) point that is commonly referred to the "head."
Generally speaking, the head to tail method of adding two (2) vectors involve drawing the first vector ([tex]\vec a[/tex]) on a cartesian coordinate and then placing the tail of the second vector ([tex]\vec b[/tex]) at the head of the first vector. Lastly, the resultant vector is then drawn from the tail of the first vector ([tex]\vec a[/tex]) to the head of the second vector ([tex]\vec b[/tex]).
By solving the given vectors algebraically, we have the following:
[tex]\vec a + \vec b[/tex] = (4, -3) + (-1, -2)
[tex]\vec a + \vec b[/tex] = [(4 + (-1)), (-3 + (-2))
[tex]\vec a + \vec b[/tex] = [(4 - 1), (-3 - 2)]
[tex]\vec a + \vec b[/tex] = (3, -5).
Read more on head to tail method and vector here: https://brainly.com/question/30135145
#SPJ1
Emergency, please answer me! Are you 18+ because you will get 18 Points? Employees at a construction company are building a fence around the perimeter of a work site! The Perimeter of the work site is 1/4 Mile! The cost of the fence is $20.00 per yard!
What is the total cost of the fence needed for the Perimeter of the work site?
The total cost of the fence needed for the Perimeter of the work site is $8,800. So the answer is option B.
Because the question involves many units of measurement, we must convert them all to the same unit in order to determine the answer.
1/4 mile is equivalent to 1320 feet (1 mile = 5280 feet).
The length of the fence required to surround the work site equals the perimeter of the work site. To calculate the length of the fence in yards, divide 1320 feet by 3 (since a yard is 3 feet long).
1320 feet ÷ 3 = 440 yards
So the length of the fence needed is 440 yards.
The fence costs $20.00 per yard, thus to get the total cost, multiply the length of the fence by the cost per yard:
440 yards x $20.00/yard = $8,800.00
Therefore, the total cost of the fence needed for the perimeter of the work site is $8,800.00.
Learn more about Perimeter:
https://brainly.com/question/29233338
#SPJ1
Marc conducted a gravity experiment for a school science project. He found the experimental value of gravity to be 10.14 m/s2. The accepted value of gravity is 9.81 m/s2. What is Marc’s approximate percent error?
Answer:
3.36%
Step-by-step explanation:
(10.14-9.81)/(9.81)(100)=3.36% error
[tex]-2-\frac{5}{4} x=13\\[/tex]
Therefore, the solution to the equation -2 - 5/4x = 13 is x = -12.
What is equation?A mathematical statement proving the equality of two expressions is known as an equation. Variables, numbers, and mathematical operations like addition, subtraction, multiplication, and division are frequently included. In addition to representing a connection between variables, an equation may also be used to find an unknown number. As they enable us to define and evaluate connections between things and make predictions about how they will behave under various circumstances, equations are a crucial tool in many domains, including mathematics, physics, engineering, and many more.
To solve for x in the equation -2 - 5/4x = 13, you can follow these steps:
Add 2 to both sides of the equation to isolate the fraction on the left side:
-2 - 5/4x + 2 = 13 + 2
-5/4x = 15
Multiply both sides of the equation by -4/5 to get x by itself:
(-4/5) * (-5/4x) = (-4/5) * 15
x = -12
Therefore, the solution to the equation -2 - 5/4x = 13 is x = -12.
to know more about equation:
https://brainly.com/question/29657992
#SPJ1
Which equation accurately represents this statement? Select three options. Negative 3 less than 4.9 times a number, x, is the same as 12.8. Negative 3 minus 4.9 x = 12.8 4.9 x minus (negative 3) = 12.8 3 + 4.9 x = 12.8 (4.9 minus 3) x = 12.8 12.8 = 4.9 x + 3
The equation accurately represents this statement is "Negative 3 less than 4.9 times a number, x, is the same as 12.8"
how to determine the equation that accurately represents the statementThe statement is "Negative 3 less than 4.9 times a number, x, is the same as 12.8." We can break it down into two parts:
"4.9 times a number, x": This means we need to multiply a number, x, by 4.9. So the first part of the equation is 4.9x.
"Negative 3 less than 4.9 times a number, x, is the same as 12.8":
This means we need to subtract 3 from the result of multiplying x by 4.9. So the second part of the equation is -3.
Putting it all together, we get:
4.9x - 3 = 12.8
This equation accurately represents the given statement.
Learn more about equation at https://brainly.com/question/22688504
#SPJ1
A waitress sold 11 ribeye steak dinners and 14 grilled salmon dinners, totaling $551.11 on a particular day. Another day she sold 15 ribeye steak dinners and 7 grilled salmon dinners, totaling $581.47. How much did each type of dinner cost?
Answer:
A ribeye steak dinner costs $32.23 and a grilled salmon dinner costs $14.04.
Step-by-step explanation:
Let's use variables to represent the cost of each dinner. Let's say that the cost of a ribeye steak dinner is "r" and the cost of a grilled salmon dinner is "s".
From the first day's sales, we know:
11r + 14s = 551.11From the second day's sales, we know:
15r + 7s = 581.47We now have two equations with two variables, which we can solve using elimination or substitution.
Let's use elimination. If we multiply the first equation by 15 and the second equation by 11, we can eliminate the "r" variable:
165r + 210s = 8266.65165r + 77s = 6396.17Subtracting the second equation from the first, we get:
133s = 1870.48Dividing both sides by 133, we get:
s = 14.04So a grilled salmon dinner costs $14.04.
We can substitute this value back into one of the original equations to solve for "r". Let's use the first equation:
11r + 14(14.04) = 551.1111r + 196.56 = 551.1111r = 354.55r = 32.23So a ribeye steak dinner costs $32.23.
Therefore, a ribeye steak dinner costs $32.23 and a grilled salmon dinner costs $14.04.
Question 1 of 10
The function f(x) is shown in this graph.
The function g(x) = -2x - 5.
Compare the slopes and y-intercepts.
A. The slopes are the same but the y - intercepts are different.
What is a slope in a graph?In a graph, the slope is the steepness of a line, which is a measure of how quickly the y-coordinate changes with respect to the x-coordinate. It is represented by the ratio of the vertical change (rise) to the horizontal change (run) between any two points on the line.
The slope is often denoted by the letter m, and is calculated as:
m = (y₂ - y₁) / (x₂ - x₁)
where (x₁, y₁) and (x₂, y₂) are any two points on the line.
What is Y-intercept in a graph?In a graph, the y-intercept is the point where a line or curve intersects the y-axis. It is the value of the dependent variable (usually denoted by y) when the independent variable (usually denoted by x) is equal to zero.
The y-intercept is often denoted by the letter b, and is expressed as a coordinate point (0, b), where 0 represents the x-coordinate and b represents the y-coordinate. For example, in the equation of a line y = mx + b, the y-intercept is the value of b.
Learn more about linear pair on:
https://brainly.com/question/17525542
#SPJ1
Please help me guys, I'm so confused with this question :'(
2a. To calculate the average number of violations committed, we add up all the violations and divide by the number of offenders:
Average number of violations = (15+20+10+25+5+22+8+12+18+7+23+6+24+19+11) / 15
Average number of violations = 187 / 15
Average number of violations ≈ 12.47
Therefore, the average number of violations committed by the offenders in the sample is approximately 12.47.
2b. To calculate the sample mean for the given data, we add up the five samples and divide by the number of samples:
Sample mean = (22 + 8 + 19 + 7 + 24) / 5
Sample mean = 80 / 5
Sample mean = 16
Therefore, the sample mean for the five samples is 16.
2c. To estimate the mean interval with 95% confidence level, we can use the t-distribution and the formula:
Sample mean ± t-value (α/2, n-1) x (standard deviation / square root of n)
We are not given the standard deviation of the population, so we need to estimate it using the sample standard deviation:
s = sqrt [ Σ(xi - x)^2 / (n - 1) ]
where xi is the i-th sample, x is the sample mean, and n is the number of samples.
Using the five samples given in part (b), we can calculate the sample standard deviation:
s = sqrt [ ((22-16)^2 + (8-16)^2 + (19-16)^2 + (7-16)^2 + (24-16)^2) / (5-1) ]
s = sqrt [ (36 + 64 + 9 + 81 + 64) / 4 ]
s ≈ 9.17
Using a t-distribution table with α/2 = 0.025 and degrees of freedom = n-1 = 4, we find that the t-value is 2.776.
Plugging in the values, we get:
Sample mean ± t-value (α/2, n-1) x (standard deviation / square root of n)
16 ± 2.776 x (9.17 / sqrt(5))
16 ± 9.55
Therefore, with 95% confidence, we estimate that the mean number of violations committed by the population of lawbreakers is between 6.45 and 25.55.
To estimate the number of violations when the road area is 6 meters, we need to use the regression equation Y = a + bX. However, we are not given the values of a and b.
Without knowing the values of a and b, we cannot estimate the number of violations when the road area is 6 meters or use the regression equation to make any predictions.Answer:
Step-by-step explanation:
For a population of 300 lawbreakers:
2. a. average number of violations is 12.b. sample mean is 16.c. confidence interval is 6.09, 25.913. traffic violations using regression equation is n = 4, ΣX = 18, ΣY = 15.How to solve random samples?2. a. To calculate the average number of violations committed, find the mean of the given data set.
Mean = (15 + 20 + 10 + 25 + 5 + 22 + 8 + 12 + 18 + 7 + 23 + 6 + 24 + 19 + 11) / 15
Mean = 180 / 15
Mean = 12
Therefore, the average number of violations committed is 12.
b. To calculate the sample mean, we need to find the mean of the given sample data set.
Sample mean = (22 + 8 + 19 + 7 + 24) / 5
Sample mean = 80 / 5
Sample mean = 16
Therefore, the sample mean is 16.
c. To estimate the mean interval with 95% confidence level, we can use the t-distribution with n-1 degrees of freedom, where n is the sample size. The formula for the confidence interval is:
Confidence interval = sample mean ± (t-value x standard error)
where t-value is the value obtained from the t-distribution table for a 95% confidence level and n-1 degrees of freedom, and standard error is the standard deviation of the sample data divided by the square root of the sample size.
First, find the standard deviation of the sample data set.
Standard deviation = √[(Σ(x - μ)²) / (n - 1)]
where Σ is the sum of the values, x is each value in the sample data set, μ is the sample mean, and n is the sample size.
μ = 16 (from part b)
n = 5
x values = 22, 8, 19, 7, 24
Standard deviation = √[((22-16)² + (8-16)² + (19-16)² + (7-16)² + (24-16)²) / (5 - 1)]
Standard deviation = √[(36 + 64 + 9 + 81 + 64) / 4]
Standard deviation = √(254 / 4)
Standard deviation = √63.5
Standard deviation ≈ 7.97
Next, find the t-value for a 95% confidence level and 4 degrees of freedom. From the t-distribution table, the t-value is 2.776.
Confidence interval = 16 ± (2.776 x (7.97 / √5))
Confidence interval = 16 ± (2.776 x 3.57)
Confidence interval = 16 ± 9.91
Therefore, the mean interval with 95% confidence level is (16 - 9.91, 16 + 9.91), or approximately (6.09, 25.91).
3. To estimate the number of violations for a road area of 6 meters, we need to use the regression equation Y = a + bX, where Y is the number of violations and X is the road area in meters.
First find the values of a and b from the given data.
Using the formula:
b = [(nΣXY) - (ΣX)(ΣY)] / [(nΣX²) - (ΣX)²]
a = (ΣY - bΣX) / n
where n is the number of data points, Σ is the sum of the values, and X and Y are the variables.
n = 4
ΣX = 18
ΣY = 15
Find out more on random samples here: https://brainly.com/question/29444380
#SPJ1
Image transcribed:
QUESTIONS
2. There are 300 lawbreaker as a population
X = the number of law violations by the 1st lawbreaker in 1 year. Researched as many as 15 offenders as a random sample. It turns out that the number of violations committed by them is :
15 20 10 25 5
22 8 12 18 7
23 6 24 19 11
Questions:
a. Calculate the average number of violations committed
b. If 5 samples are taken, namely: 22 8 19 7 24
Calculate the sample mean
c. Estimate the mean interval with 95% confidence level
3. The number of traffic violations in city A every day (several times) is:
Road area (X) in meter | 4 3.5 5 5.5
Violation (Y) | 3 3 2 7
Approximately how many violations if the road area is 6 meters? If the regression equation is:
Y = a+bX
Find the missing side of each triangle. Round your answers to the nearest tenth if necessary.
Answer:
x=9km
Step-by-step explanation:
Pythagorean Theorem: [tex]a^{2}[/tex] + [tex]b^{2}[/tex] = [tex]c^{2}[/tex]
The hypotenuse is [tex]c^{2}[/tex], so the equation will be
[tex]12^{2}[/tex] + [tex]b^{2}[/tex] = [tex]15^{2}[/tex]
Evaluating the equation gives us
144 + [tex]b^\\{2}[/tex] = 225
Subtract 144 from each side to have [tex]b^{2}[/tex] alone
[tex]b^{2}[/tex] = 81
square root on each side to get rid of the exponent
[tex]\sqrt{b^2[/tex] = [tex]\sqrt{81}\\[/tex]
[tex]\sqrt{b^2[/tex]'s square root is b and [tex]\sqrt{81[/tex]'s is 9,-9, giving us b=±9
As distance cannot be negative, x = 9km
The average height of young adult males has a normal distribution with standard deviation of 2.7 inches. You want to estimate the mean height of students at your college or university to within one inch with 93% confidence. How many male students must you measure?
You must measure 24 male students to estimate the mean height within one inch with 93% confidence.
How to solve for the sample sizeSince we want to estimate the mean height within one inch, the margin of error (E) is 1 inch:
E = Z * (Standard deviation / √Sample size)
Now, we can rearrange the formula to solve for the Sample size (n):
1 = 1.81 * (2.7 / √n)
Solving for n:
n = (1.81 * 2.7 / 1)²
n ≈ (4.887)²
n ≈ 23.88
Since we cannot have a fraction of a person, we round up to the nearest whole number:
n ≈ 24
So, you must measure 24 male students to estimate the mean height within one inch with 93% confidence.
Read more on Sample size here: https://brainly.com/question/30224379
#SPJ1
In a recent test cricket match, Steve made 286 runs in both innings which represented 37% of the team total. How many runs did the team make in the match
The team made approximately 773 runs in the match.
How to find How many runs did the team make in the matchLet's start by setting up an equation to represent the information given in the problem.
Let's call the total runs made by the team "T".
37% of T = 286
To solve for T, we can start by converting the percentage to a decimal:
37% = 0.37
0.37T = 286
Now we can solve for T by dividing both sides of the equation by 0.37:
T = 286 ÷ 0.37
T ≈ 773.0
Therefore, the team made approximately 773 runs in the match.
Learn more about equations at https://brainly.com/question/22688504
#SPJ1
I would love some help please 18-20
18. C
(m / 2) - 6 = (m / 4) + 2
---Multiply everything by the LCM of the denominators
---LCM = 4
2m - 24 = m + 8
m - 24 = 8
m = 32
19. A
k / 12 = 25 / 100
---We can simplify 25/100
---We want to simplify enough to where the denominator of 25/100 is a multiple or factor of 12
k / 12 = 1 / 4
---4 x 3 = 12, 1 x 3 = 3
k = 3
20. A
9 / 5 = 3x / 100
---Cross multiply and solve algebraically
(5 * 3x) = (9 * 100)
15x = 900
x = 60
Hope this helps!
Do you use integration by parts to solve this problem? If so, how? I can't seem to figure out the right answer
The integral of [tex]\int\limits^e_1 {x^{1/2}lnx } \, dx[/tex] is (2/3)[tex]e^{3/2}[/tex] - (4/9).
To find the integral of [tex]\int\limits^e_1 {x^{1/2}lnx } \, dx[/tex] , we can use integration by parts. Let u = ln x and dv = [tex]x^{1/2}[/tex] dx. Then du/dx = 1/x and v = (2/3) [tex]x^{3/2}[/tex] .
Using the formula for integration by parts, we have:
∫[tex]x^{1/2}[/tex]lnx dx = uv - ∫v du/dx dx
= ln x * (2/3) [tex]x^{3/2}[/tex] - ∫(2/3) [tex]x^{3/2}[/tex] * (1/x) dx
= ln x * (2/3) [tex]x^{3/2}[/tex] - (2/3) ∫ [tex]x^{1/2}[/tex] dx
= ln x * (2/3) [tex]x^{3/2}[/tex] - (4/9) [tex]x^{3/2}[/tex] + C
where C is the constant of integration.
To evaluate the definite integral from 1 to e, we substitute e for x in the expression above and subtract the result when x = 1:
[tex]\int\limits^e_1 {x^{1/2}lnx } \, dx[/tex] = [(2/3) [tex]e^{3/2}[/tex] ln e - (4/9) [tex]e^{3/2}[/tex] ] - [(2/3)[tex]1^{3/2}[/tex]ln 1 - (4/9)[tex]1^{3/2}[/tex]]
= (2/3) [tex]e^{3/2}[/tex] - (4/9)
To learn more about integral here:
https://brainly.com/question/18125359
#SPJ1
NEED HELP ASAP PLS AND THX PIX IS ATTACHED
Sin A Cos A, and Tan A can be found respectively as follows:
1. 41.81°.
2. 44.19 degrees
2. 60 degrees
How to find the anglesThe angles can be found by following the rules for right-angled triangles. This can be achieved in the following ways:
1. sin A= opposite/hypotenuse
sin A = 6/9
Now we take the sine inverse:
sin^-1(6/9)
= 41.81°.
2. Cos 45° = Adjacent/hypotenuse
= cos 45° = x/4
x = cos 45° × 4
= 0.707 × 4
= 2.82
cos A = b2 + c2 – a2 ÷ 2bc
2.8² + 4² - a² ÷ 2×2.8×4
23.84 - 2.8² ÷ 22.4
23.84 - 7.84 ÷ 22.4
Cos A = 0.7142
= 44.19 degrees
3. tan A = Opposite/Adjacent
tan 60° = 4/x
x = 4/tan 60°
x = 4/1.732
= 2.309
Tan A = 4/2.309
= 1.732
= 60 degrees
Learn more about right-angled triangles here:
https://brainly.com/question/64787
#SPJ1
Can someone help me I dont understand this :(
Check the picture below.
Consider the line 6x-7y = 4. What is the slope of a line parallel to this line? What is the slope of a line perpendicular to this line?
The slope of a line parallel to this line is 6/7.
The slope of a line perpendicular to this line is -7/6.
What are parallel lines?In Mathematics and Geometry, parallel lines can be defined as two (2) lines that are always the same (equal) distance apart and never meet.
In Mathematics and Geometry, two (2) lines are parallel under the following conditions:
Slope, m₁ = Slope, m₂
Based on the information provided about this line, we have the following equation in standard form;
6x - 7y = 4
By making y the subject of formula, we have:
7y = 6x - 4
y = 6x/7 - 4
In Mathematics and Geometry, a condition that is true for two lines to be perpendicular is given by:
m₁ × m₂ = -1
6/7 × m₂ = -1
6m₂ = -7
Slope, m₂ = -7/6
Read more on perpendicular line here: brainly.com/question/27257668
#SPJ1
In the coordinate plane, the point X (-1, 0) is translated to the point X' (3, 1). Under the same translation, the points Y (2, 3) and Z (1, -2) are translated to Y' and Z', respectively. What are the coordinates of Y' and Z'?
The coordinates of Y' are (6, 4) and the coordinates of Z' are (5, -1).
To find the coordinates of Y' and Z', we need to apply the same translation that maps X to X'.
We know that the vector that connects X to X' is (3 - (-1), 1 - 0) = (4, 1).
So, to translate Y to Y', we add the vector (4, 1) to the coordinates of Y:
Y' = Y + (4, 1)
= (2, 3) + (4, 1)
= (6, 4)
Similarly, to translate Z to Z', we add the vector (4, 1) to the coordinates of Z:
Z' = Z + (4, 1)
= (1, -2) + (4, 1)
= (5, -1)
Therefore, the coordinates of Y' are (6, 4) and the coordinates of Z' are (5, -1).
Learn more about translation here
https://brainly.com/question/29080541
#SPJ1
College Level Trig Question!
The value of theta in the given trigonometry function is 45⁰.
What is the value of theta?The value of theta in the given trigonometry function is calculated as follows;
9 sin²θ tanθ - 9 sin²θ = 0
Solve the equation as follows;
9 sin²θ tanθ = 9 sin²θ
divide both sides by 9 sin²θ;
(9 sin²θ tanθ)/9 sin²θ = 9 sin²θ /9 sin²θ
tanθ = 1
Now, solve for θ as follows;
θ = tan⁻¹ (1)
θ = 45⁰
Learn more about trig identities here: https://brainly.com/question/7331447
#SPJ1
17. The Amethyst Woodstar species of
hummingbird beats its wings about
80 times per second. If there are
60 seconds in a minute, about how
many times does the Amethyst
Woodstar beat its wings in
9 minutes?
A 12,600
B 37,800
C50,400
D 43,200
Answer: D
Step-by-step explanation: 60x9=540 and 540x80=43,200
Ali had 3469 bags of maize each weighing 90 kg.Hesold 2654 of them. How many kg of maize was he left with?
The number of kg of maize was left with Ali is 73350 Kg.
Given that, Ali had 3469 bags of maize each weighing 90 kg.
Ali sold 2654 of them.
Number of bags left = 3469-2654
= 815
Number of Kg's of maize left = 815×90
= 73350 Kg
Therefore, the number of kg of maize was left with Ali is 73350 Kg.
To learn more about the unitary method visit:
brainly.com/question/22056199.
#SPJ1
Suppose that 11,000 is invested in a bond fund and the account grows to 14,539.95 in 5 yr.
Answer:
Step-by-step explanation:
11000*14539.95
7.1483737364203627356954981215625 × 10^24
is the answer
2 grams =
milligrams
There are 2000 milligrams in 2 grams of a substance, and it constitutes 40% of a 5-gram sample.
How to solveConvert grams to milligrams:
2 grams = 2 * 1000 milligrams
2 grams = 2000 milligrams
Calculate the percentage in a 5-gram sample:
Percentage = (2000 milligrams / 5000 milligrams) * 100
Percentage = (2 / 5) * 100
Percentage = 0.4 * 100
Percentage = 40%
Thus, there are 2000 milligrams in 2 grams of a substance, and it constitutes 40% of a 5-gram sample.
Read more about milligrams here:
https://brainly.com/question/23654284
#SPJ1
2 grams = milligrams
How many milligrams are there in 2 grams of a substance, and what is the percentage of this amount in a 5-gram sample?
Please Factorise 8x - 6
Answer:
2(4x-3)
Step-by-step explanation:
Find common numbers between 8 and 6, which is 2. 2x4= 8 2x3=6
x is only on 8 so you can't put x on the outside of the bracket. so you put it with the 4 so it comes out correct
The cube root of the product of x and y, less twelve
The expression "the cube root of the product of x and y, less twelve" can be mathematically represented as ³√(xy) - 12.
To understand this expression, let's break it down step by step:
Product of x and y:
We multiply the values of x and y together to find their product, denoted as xy.
Cube root of the product:
We take the cube root of the product obtained in the previous step.
The cube root of a number x is the value that, when raised to the power of 3, equals x. In this case, we take the cube root of xy, represented as ³√(xy).
Subtract twelve:
Finally, we subtract twelve from the result obtained in the previous step, ³√(xy). This gives us the expression ³√(xy) - 12.
The expression ³√(xy) - 12 represents a mathematical operation involving the cube root of the product of x and y, followed by subtracting twelve from the result.
This can be useful in various mathematical contexts, such as solving equations or modeling real-world problems.
It's important to note that the expression is dependent on the values of x and y.
By substituting specific values for x and y, we can evaluate the expression to obtain a numerical result.
For similar question on cube root.
https://brainly.com/question/30395231
#SPJ11
please help me with this problem
The line plots represent data collected on the travel times to school from two groups of 15 students.
A horizontal line starting at 0, with tick marks every two units up to 28. The line is labeled Minutes Traveled. There is one dot above 4, 6, 14, and 28. There are two dots above 10, 12, 18, and 22. There are three dots above 16. The graph is titled Bus 47 Travel Times.
A horizontal line starting at 0, with tick marks every two units up to 28. The line is labeled Minutes Traveled. There is one dot above 8, 9, 18, 20, and 22. There are two dots above 6, 10, 12, 14, and 16. The graph is titled Bus 18 Travel Times.
Compare the data and use the correct measure of center to determine which bus typically has the faster travel time. Round your answer to the nearest whole number, if necessary, and explain your answer.
Bus 18, with a median of 13
Bus 47, with a median of 16
Bus 18, with a mean of 13
Bus 47, with a mean of 16
The correct option regarding which bus has the least spread among the travel times is given as follows:
Bus 14, with an IQR of 6.
How to solveTo obtain measures of spread, we can use the dot plot to visualize the frequency of each observation in the data-set, and then calculate the interquartile range (IQR).
For a group of 15 students, we can find the quartiles as follows:
The first quartile (Q1) is the median of the first half of the data-set, which consists of the first seven students.
Looking at the dot plot, the fourth dot represents the median of the first half. For Bus 14, Q1 = 12. For Bus 18, Q1 = 9.
The third quartile (Q3) is the median of the second half of the data-set, which consists of the last seven students. Looking at the dot plot, the eleventh dot represents the median of the second half. For Bus 14, Q3 = 18.
For Bus 18, Q3 = 16.
We can then calculate the IQR as the difference between Q3 and Q1:
For Bus 14, IQR = Q3 - Q1 = 18 - 12 = 6.
For Bus 18, IQR = Q3 - Q1 = 16 - 9 = 7.
Based on the IQR values, we can conclude that Bus 14 is more consistent than Bus 18, as it has a lower IQR.
Read more about line plots here:
https://brainly.com/question/27246403
#SPJ1