Which could be the area of one lateral face of the triangular prism?
6.5 ft
6 ft
8 ft
2.5 ft
[Not drawn to scale]
7.5 ft2
15 ft?
20 ft
39 ft

Answers

Answer 1

Answer:

[tex](A)7.5 ft^2\\(C)20 ft^2[/tex]

Step-by-step explanation:

The diagram is attached below.

Area of the Rectangular Faces

[tex]8 X 6.5 =52$ ft^2\\8 X 2.5 =20$ ft^2\\8 X 6= 48$ ft^2[/tex]

Area of the Triangular face

[tex]=\dfrac12 X 2.5 X 6 =7.5$ ft^2[/tex]

Therefore, Options A and C could be the area of one lateral face of the triangular prism.

Which Could Be The Area Of One Lateral Face Of The Triangular Prism?6.5 Ft6 Ft8 Ft2.5 Ft[Not Drawn To
Answer 2

Answer:

C

Step-by-step explanation:


Related Questions

Draw a picture of the standard normal curve and shade the area that corresponds to the requested probabilities. Then use the standard normal table to find the following probabilities. Enter the probabilities as decimals. Enter the final answer only. 1.P(z>1.38)= 2.P(1.233 −2.43)= 7.P(z>−2.43)=

Answers

Answer:

a)P [ z > 1,38 ] = 0,08379

b) P [ 1,233 < z < 2,43 ]  = 0,1012

c)  P [ z > -2,43 ]  = 0,99245

Step-by-step explanation:

a) P [ z > 1,38 ] = 1 -  P [ z < 1,38 ]

From z-table  P [ z < 1,38 ] = 0,91621

P [ z > 1,38 ] = 1 - 0,91621

P [ z > 1,38 ] = 0,08379

b)  P [ 1,233 - 2,43 ]  must be  P [ 1,233 < z < 2,43 ]

P [ 1,233 < z < 2,43 ]  = P [ z < 2,43 ] - P [ z > 1,233 ]

P [ z < 2,43 ]  = 0,99245

P [ z > 1,233 ] = 0,89125    ( approximated value  without interpolation)

Then

P [ 1,233 < z < 2,43 ]  = 0,99245 - 0,89125

P [ 1,233 < z < 2,43 ]  = 0,1012

c) P [ z > -2,43 ]

Fom z-table

P [ z > -2,43 ] = 1 - P [ z < -2,43 ]

P [ z > -2,43 ] = 1 - 0,00755

P [ z > -2,43 ]  = 0,99245

Use Newton's method to approximate the indicated root of the equation correct to six decimal places. The negative root of ex = 4 − x2

Answers

Answer:

x = -1.964636

Step-by-step explanation:

Given equation;

eˣ = 4 - x²

This can be re-written as;

eˣ - 4 + x² = 0

Let

f(x) = eˣ - 4 + x²    -----------(i)

To use Newton's method, we need to get the first derivative of the above equation as follows;

f¹(x) = eˣ - 0 + 2x

f¹(x) = eˣ + 2x         -----------(ii)

The graph of f(x) has been attached to this response.

As shown in the graph, the curve intersects the x-axis twice - around x = -2 and x = 1. These are the approximate roots of the equation.

Since the question requires that we use the negative root, then we start using the Newton's law with a guess of x₀ = -2 at n=0

From Newton's method,

[tex]x_{n+1} = x_n + \frac{f(x_{n})}{f^1(x_{n})}[/tex]

=> When n=0, the equation becomes;

[tex]x_{1} = x_0 - \frac{f(x_{0})}{f^1(x_{0})}[/tex]

[tex]x_{1} = -2 - \frac{f(-2)}{f^1(-2)}[/tex]

Where f(-2) and f¹(-2) are found by plugging x = -2 into equations (i) and (ii) as follows;

f(-2) = e⁻² - 4 + (-2)²

f(-2) = e⁻² = 0.13533528323

And;

f¹(2) = e⁻² + 2(-2)

f¹(2) = e⁻² - 4 = -3.8646647167

Therefore

[tex]x_{1} = -2 - \frac{0.13533528323}{-3.8646647167}[/tex]

[tex]x_{1} = -2 - \frac{0.13533528323}{-3.8646647167}[/tex]

[tex]x_{1} = -2 - -0.03501863503[/tex]

[tex]x_{1} = -2 + 0.03501863503[/tex]

[tex]x_{1} = -1.9649813649[/tex]

[tex]x_{1} = -1.96498136[/tex]         [to 8 decimal places]

=> When n=1, the equation becomes;

[tex]x_{2} = x_1 - \frac{f(x_{1})}{f^1(x_{1})}[/tex]

[tex]x_{2} = -1.96498136 - \frac{f(-1.9649813)}{f^1(-1.9649813)}[/tex]

Following the same procedure as above we have

[tex]x_{2} = -1.96463563[/tex]

=> When n=2, the equation becomes;

[tex]x_{3} = x_2 - \frac{f(x_{2})}{f^1(x_{2})}[/tex]

[tex]x_{3} = -1.96463563- \frac{f( -1.96463563)}{f^1( -1.96463563)}[/tex]

Following the same procedure as above we have

[tex]x_{3} = -1.96463560[/tex]

From the values of [tex]x_2[/tex] and [tex]x_3[/tex], it can be seen that there is no change in the first 6 decimal places, therefore, it is safe to say that the value of the negative root of the equation is approximately  -1.964636 to 6 decimal places.

Newton's method of approximation is one of the several ways of estimating values.

The approximated value of [tex]\mathbf{e^x = 4 - x^2}[/tex] to 6 decimal places is [tex]\mathbf{ -1.964636}[/tex]

The equation is given as:

[tex]\mathbf{e^x = 4 - x^2}[/tex]

Equate to 0

[tex]\mathbf{4 - x^2 = 0}[/tex]

So, we have:

[tex]\mathbf{x^2 = 4}[/tex]

Take square roots of both sides

[tex]\mathbf{ x= \pm 2}[/tex]

So, the negative root is:

[tex]\mathbf{x = -2}[/tex]

[tex]\mathbf{e^x = 4 - x^2}[/tex] becomes [tex]\mathbf{f(x) = e^x - 4 + x^2 }[/tex]

Differentiate

[tex]\mathbf{f'(x) = e^x +2x }[/tex]

Using Newton's method of approximation, we have:

[tex]\mathbf{x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}}[/tex]

When x = -2, we have:

[tex]\mathbf{f'(-2) = e^{(-2)} +2(-2) = -3.86466471676}[/tex]

[tex]\mathbf{f(-2) = e^{-2} - 4 + (-2)^2 = 0.13533528323}[/tex]

So, we have:

[tex]\mathbf{x_{1} = -2 - \frac{0.13533528323}{-3.86466471676}}[/tex]

[tex]\mathbf{x_{1} = -2 + \frac{0.13533528323}{3.86466471676}}[/tex]

[tex]\mathbf{x_{1} = -1.96498136}[/tex]

Repeat the above process for repeated x values.

We have:

[tex]\mathbf{x_{2} = -1.96463563}[/tex]

[tex]\mathbf{x_{3} = -1.96463560}[/tex]

Up till the 6th decimal places,

[tex]\mathbf{x_2 = x_3}[/tex]

Hence, the approximated value of [tex]\mathbf{e^x = 4 - x^2}[/tex] to 6 decimal places is [tex]\mathbf{ -1.964636}[/tex]

Read more about Newton approximation at:

https://brainly.com/question/14279052

Data on the weights (lb) of the contents of cans of diet soda versus the contents of cans of the regular version of the soda is summarized to the right. Assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. Complete parts (a) and (b) below. Use a 0.01 significance level for both parts.
Diet Regular
μ μ1 μ2
n 20 20
x 0.78062lb 0.81645 lb
s 0.00444 lb 0.00745 lb
A. Test the claim that the contents of cans of diet soda have weights with a mean that is less than the mean for the regular soda.
What are the null and alternative and hypotheses?
B. What is the test statistic? (Round to two decimal places as needed.)
C. What is the P-value? (Round to three decimal places as needed.)
State the conclusion for the test.
A. Reject the null hypothesis. There is sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.
B. Fail to reject the null hypothesis. There is sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.
C. Fail to reject the null hypothesis. There is not sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.
D. Reject the null hypothesis. There is not sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.
b. Construct a confidence interval appropriate for the hypothesis test in part (a).
___lb < u1 - u2 < ___lb (Round to three decimal places as needed.)
Does the confidence interval support the conclusion found with the hypothesis test?
(No/Yes) because the confidence interval contains (zero/only positives values/ only negative values)

Answers

Answer:

(A) Null Hypothesis, [tex]H_0[/tex] : [tex]\mu_1 \geq \mu_2[/tex]    

     Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu_1<\mu_2[/tex]  

(B) The value of t-test statistics is -18.48.

(C) The P-value is Less than 0.005%.

(D) Reject the null hypothesis. There is sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.

Step-by-step explanation:

We are given that the Data on the weights (lb) of the contents of cans of diet soda versus the contents of cans of the regular version of the soda is summarized to the right;

Diet Regular

μ μ1 μ2

n 20 20

x 0.78062lb 0.81645 lb

s 0.00444 lb 0.00745 lb

Let [tex]\mu_1[/tex] = mean weight of contents of cans of diet soda.

[tex]\mu_2[/tex] = mean weight of contents of cans of regular soda.

So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu_1 \geq \mu_2[/tex]      {means that the contents of cans of diet soda have weights with a mean that is more than or equal to the mean for the regular soda}

Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu_1<\mu_2[/tex]     {means that the contents of cans of diet soda have weights with a mean that is less than the mean for the regular soda}

The test statistics that will be used here is Two-sample t-test statistics because we don't know about population standard deviations;

                    T.S.  =  [tex]\frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex]  ~  [tex]t__n_1_+_n_2_-_2[/tex]

where, [tex]\bar X_1[/tex] = sample mean weight of cans of diet soda = 0.78062 lb

[tex]\bar X_2[/tex] = sample mean weight of cans of regular soda = 0.81645 lb

[tex]s_1[/tex] = sample standard deviation of cans of diet soda = 0.00444 lb

[tex]s_2[/tex] = sample standard deviation of cans of regular soda = 0.00745 lb

[tex]n_1[/tex] = sample of cans of diet soda = 20

[tex]n_2[/tex] = sample of cans of diet soda = 20

Also,  [tex]s_p =\sqrt{\frac{(n_1-1)s_1^{2}+ (n_2-1)s_2^{2}}{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(20-1)\times 0.00444^{2}+ (20-1)\times 0.00745^{2}}{20+20-2} }[/tex] = 0.00613

So, the test statistics =  [tex]\frac{(0.78062-0.81645)-(0)}{0.00613 \times \sqrt{\frac{1}{20}+\frac{1}{20} } }[/tex]  ~  [tex]t_3_8[/tex]

                                    =  -18.48

The value of t-test statistics is -18.48.

Also, the P-value of the test statistics is given by;

              P-value = P( [tex]t_3_8[/tex] < -18.48) = Less than 0.005%

Now, at a 0.01 level of significance, the t table gives a critical value of -2.429 at 38 degrees of freedom for the left-tailed test.

Since the value of our test statistics is less than the critical value of t as -18.48 < -2.429, so we have sufficient evidence to reject our null hypothesis as it will not fall in the rejection region.

Therefore, we conclude that the contents of cans of diet soda have weights with a mean that is less than the mean for the regular soda.

In a study of cell phone usage and brain hemispheric​ dominance, an Internet survey was​ e-mailed to 6970 subjects randomly selected from an online group involved with ears. There were 1334 surveys returned. Use a 0.01 significance level to test the claim that the return rate is less than​ 20%. Use the​ P-value method and use the normal distribution as an approximation to the binomial distribution.

Answers

Answer:

we will fail to reject the null hypothesis and conclude that the return rate is less than​ 20%.

Step-by-step explanation:

We are given;

Sample size;n = 6970

Success rate;X = 1334/6970 = 0.1914

Now, we want to test the claim that the return rate is less than p = 0.2, hence the null and alternative hypothesis are respectively;

H0: μ < 0.2

Ha: μ ≥ 0.2

The standard deviation formula is;

σ = √(x(1 - x)/n)

σ = √(0.1914(1 - 0.1914)/6970)

σ = 0.004712

Now for the test statistic, formula is;

z = (x - μ)/σ

z = (0.1914 - 0.2)/0.004712

z = -1.825

From the a-distribution table attached, we have a value of 0.03362.

This p-value gotten from the z-table is more than the significance value of 0.01. Thus, we will fail to reject the null hypothesis and conclude that the return rate is less than​ 20%.

Noah tried to prove that cos(θ)=sin(θ) using the following diagram. His proof is not correct.

Answers

Answer:

The first statement is incorrect. They have to be complementary.

Step-by-step explanation:

You can't say the measure of angle B is congruent to theta because it is possible for angles in a right triangle to be different.

You can only say that what he said is true if the angle was 45 degrees, but based on the information provided it is not possible to figure that out.

The other two angles other than the right angle in a right triangle have to add up to 90 degrees, which is the definition of what it means for two angles to be complementary. A is the correct answer.

Answer:

[tex]\boxed{\sf A}[/tex]

Step-by-step explanation:

The first statement is incorrect. The angle B is not equal to theta θ. The two acute angles in the right triangle can be different, if the triangle was an isosceles right triangle then angle B would be equal to theta θ.

if you vertically stretch the expontial function f(x) = 2^2 by a factor of 5, what is the equation of the new function?

Answers

Answer:

g(x) = [tex]5(2^{2x} )[/tex]

Step-by-step explanation:

If a function f(x) is vertically stretched by a factor of k, the new function we get in the form of k.f(x).

Rule to be followed,

y = k.f(x)

Where k > 1

If the function is vertically compressed then 0 < k < 1

Following the same rule,

A function, f(x) = [tex]2^{2x}[/tex] when vertically stretched by a factor of 5,

Transformed function will be,

g(x) = [tex]5(2^{2x} )[/tex]

CAN ANYONE HELP ME THANKS FOR BRAINLIEST ANSWER? Find slope ( simplest form) parallel to the line 4x+2y=3

Answers

Answer:

Slope = -2

Step-by-step explanation:

You want to get it to the slope intercept form first.

2y = -4x + 3

Divide by 2

y = -2x + 3/2

Parallel means in the new slope intercept form there will still be -2x.

y = -2x + b (enter in points ( 0, 1.5 ) )

1.5 = 0 + b

b = 1.5

y = -2x + 1.5 ( just an example of a line parallel to 4x + 2y = 3 )

In the periodic compound interest formula Upper A equals Upper P (1 plus StartFraction r Over n EndFraction )Superscript nt ​, what does the variable n​ represent?

Answers

Answer:

The variable n represents the number of times in a year in which we compound the interest rate

Step-by-step explanation:

The periodic compound interest formula is given as;

A = P( 1 + r/n)^nt

The variable n represents the number of times in a year in which the interest rate is compounded

Please help!! Over several years, Stephon gathered data about his age and the time it took him to run two laps on the school track. The scatter plot shows the data he gathered and the line of best fit. The equation of the line of best fit is y = -2.1x + 565.6. Based on the line of best fit, approximately how long will it take Stephon to run two laps on the track when he is 192 months old?

Answers

Answer:

Time taken by Stephen = 162 seconds

Step-by-step explanation:

Stephan gathered data which fits in the line of best fit,

y = -2.1x + 565.6

Where x represents the age (in months)

And y represents the time (in seconds) taken by Stephen to run two laps on the track.

Time taken to run 2 laps at the age of 192 months,

By substituting x = 192 months,

y = -2.1(192) + 565.6

  = -403.2 + 565.6

  = 162.4 seconds

  ≈ 162 seconds

Therefore, time taken by Stephen to cover 2 laps was 162 seconds when he was 192 months old.

Please help! I got 14 but it says it's incorrect! Find the maximum number of real zeros of the polynomial. f(x)=2x^(6)-3x^(3)+1-2x^(5)

Answers

Answer:

There are two or zero positive solutions and zero negative roots (zeros).

Step-by-step explanation:

Use Descartes' Rule of Signs to determine the number of real zeros of [tex]f(x)=2x^6-3x^3+1-2x^5[/tex]

[tex]f(x)=2x^6-2x^5-3x^3+1\\[/tex]

A group of patients select from among 38 numbers, with 18 odd numbers (black) and 18 even
numbers (red), as well as 0 and 00 (which are green). If a doctor pays $7 that the outcome is an odd
number, the probability of losing the $7 is 20/38 and the probability of winning $14 (for a net gain of
only $7, given you already paid $7) is 18/38
If a doctor pays $7 that the outcome is an odd number, how would you figure out what is the doctors
expected value is?

Answers

Answer: $2.95

Step-by-step explanation:

Given: Probability of losing the $7 = [tex]\dfrac{20}{38}[/tex]

Probability of winning $14  = [tex]\dfrac{18}{38}[/tex]

Then, the expected value = (- $7)  x ( Probability of losing the $7) + $14 x(Probability of winning $14)

= [tex](-\$ 7)\times\dfrac{20}{38}+(\$14)\times\dfrac{18}{38}[/tex]

= [tex]-\dfrac{70}{19}+\dfrac{126}{19}[/tex]

= [tex]\dfrac{56}{19}\times\approx\$2.95[/tex]

∴ If a doctor pays $7 that the outcome is an odd number, the doctor's

expected value is $2.95.

What is the average rate of change of f(x)=-2/x^2 when the interval is 1 to 2

Answers

Answer:

1.5

Step-by-step explanation:

average rate of change = (f(x2) - f(x1))/(x2 - x1)

f(x) = -2/x^2

f(x2) = f(2) = -2/(-2)^2 = -2/4 = -0.5

f(x1) = f(1) = -2/1^2 = -2

average rate of change = (-0.5 - (-2))/(2 - 1)

average rate of change = (-0.5 + 2)/1

average rate of change = 1.5

A lease provides that the tenant pays $760 minimum rent per month plus 4% of the gross sales in excess of $150,000 per year. If the tenant paid a total rent of $20,520 last year, what was the gross sales volume?

Answers

Answer:

$435,000

Step-by-step explanation:

$760 per month * 12 months = $9,120

The minimum rent requires an annual rental cost of $9,120.

The annual rent was $20,520.

The excess was $20,520 - $9,120 = $11,400.

The amount of $11,400 of the rent was due to the gross sales in excess of $150,000.

$11,400 is 4% of the amount in excess of $150,000.

Let the amount in excess of $150,000 = x.

$11,400 = 4% of x

0.04x = 11,400

x = 285,000

$285,000 is the amount in excess of $150,000.

Total gross sales volume = $285,000 + $150,000 = $435,000

Find the length ofPR

Answers

Answer:

PR=8x+4

Step-by-step explanation:

Given:

PQ=3x-2

QR=5x+6

Required:

PR=?

Formula:

PR=PQ+QR

Solution:

PR=PQ+QR

PR=3x-2+5x+6

PR=3x+5x+6-2

PR=8x+4

Hope this helps ;)❤❤❤

Answer:

4(2x + 1)

Step-by-step explanation:

4(2x + 1)

[tex]3x+5y=7\\9x+11y=13[/tex] Solve for the variables.

Answers

Answer:

x = -1

y =2

Step-by-step explanation:

3x+ 5y = 7

9x+ 11y = 13

Multiply the first equation by -3 so we can eliminate x

-3 (3x+ 5y = 7)

-9x -15y = -21

Add this to the second equation

-9x -15y = -21

9x+ 11y = 13

-------------------

   - 4y = -8

Divide by -4

-4y/-4 = -8/-4

y=2

Now solve for x

3x+5y = 7

3x+5(2) = 7

3x+10 = 7

Subtract 10

3x = 7-10

3x = -3

Divide by 3

3x/3 = -3/3

x = -1

Answer:

-1, 2

Step-by-step explanation:

Although you already have the answer, here's another method of doing it that may or may not help you someday. First, we solve the top equation for x. We get:

[tex]x = \frac{7}{3} - \frac{5}{3}y\\9x + 11y = 13[/tex]

Now that we know what x is, we can plug it into the bottom equation to solve for y.

[tex]9(\frac{7}{3} - \frac{5}{3}y) + 11y = 13[/tex]

Simplify everything out, and you'll see that y = 2. We can now plug it into our equation to solve for x.

x = 7/3 - 5/3 x 2; x = -1

Which expression is equivalent to the expression below? StartFraction 6 c squared + 3 c Over negative 4 c + 2 EndFraction divided by StartFraction 2 c + 1 Over 4 c minus 2 EndFraction StartFraction 3 c (2 c minus 1) Over 2 c + 1 EndFraction StartFraction negative 3 c (2 c + 1) squared Over 4 (2 c minus 1) squared EndFraction 3c –3c

Answers

Answer:

its D. -3c

Step-by-step explanation:

just took the test

The expression that is equivalent to the expression [(6c² + 3c)/(-4c + 2)] ÷ [(2c + 1)/(4c - 2)] is; -3c

The fraction we are given to work with is;

[(6c² + 3c)/(-4c + 2)] ÷ [(2c + 1)/(4c - 2)]

Simplifying the fraction equation by factorization gives:

[3c(2c + 1)/(-2(2c - 1))] ÷ [(2c + 1)/(2(2c - 1)]

Now, in division of fractions, we know that;

3/2 ÷ 1/5 is the same as; 3/2 × 5/1

Applying this same method to our question gives;

[3c(2c + 1)/(-2(2c - 1))] × [(2(2c - 1)/(2c + 1)]

2(2c - 1) is common and will cancel out to get; 3c(2c + 1)/(-1/(2c + 1))

2c + 1 is common and will cancel out to get;  -3c

Read more about simplification of fractions at;https://brainly.com/question/6109670

Syrus is buying a tent with the dimensions shown below. The volume inside the tent is 4.5 m34.5\text{ m}^34.5 m34, point, 5, start text, space, m, end text, cubed. Syrus isn't sure if the tent will be tall enough for him to stand inside. What is the height of the tent?

Answers

Answer:

2 meters

Step-by-step explanation:

The volume is 4.5

⋅1.5⋅h⋅3

=2.25h

=h

The height of the tent is 2 meters.

Hope this helps :)

Answer:

2 meters

Step-by-step explanation:

Question 15
1 pts
The cost of three avatars and three bats is $29.85. The cost of
three avatars and two bats is $23.90. How much will you pay
altogether if you purchase one of each.
O $5.95
O $8.92
$9.95
O $10.99
O $11.00
1 pts
Question 16
9​

Answers

Answer:

$9.95.

Step-by-step explanation:

Let's say that you are buying a avatars and b bats.

3a + 3b = 29.85

Divide all terms by 3.

a + b = 9.95

You will pay $9.95 if you buy one of each.

Hope this helps!

A gift package contains 6 wedges of cheese . If each wedges is 2/3 onuce what is the totel weight in pounds of cheese?

Answers

Answer:

4 ounces

Step-by-step explanation:

6x2/3= 4

Need help with solving for x!

Answers

Answer:

x = c × sin(α)

x = 15 x sin(38)

= 9.23492

=      9.2

Step-by-step explanation:

In the figure below, YZA and YZX are right angles, XYZ and AYZ are congruent, and XZ = 10. What is the length of ?



A.
25

B.
20

C.
10

D.
5

Answers

Answer:

  C.  10

Step-by-step explanation:

The given information tells you that triangles YZX and YZA are congruent, so ZA = ZX = 10.

A family dines in a popular franchise restaurant. At the end of the meal, they decide to leave their server a monetary tip that is equal to 20% of the total bill amount, $60.50. How much will the family leave their server as a tip?

Answers

Answer:

$12.10

Step-by-step explanation:

First, you have to set up a proportion to find what 20% of $60.50, or 60.5, is. On one side of the proportion you have 20/100 to represent the percent, anytime you have a percent it will always go over 100. On the other side you'll have x/60.5 because you are trying to find a value out of 60.5. This gives you the proportion 20/100=x/60.5. In order to solve this you have to cross multiply using the equation 20(60.5)=100x. First, you multiply to get 1210=100x, then divide both sides by 100 to get 12.1=x. In order for this to represent money, we add a zero on the end. This means that 20% of $60.50 is $12.10, so $12.10 is the tip.

Please helppp!!!!! Geometry

Answers

Answer:

[tex]\boxed{Option \ 4}[/tex]

Step-by-step explanation:

∠YVZ = 180 - 52 - 43 - 38   (Angles on a straight line add up to 180 degrees so if we try to find an unknown angle on the straight line, we need too subtract all the other angles from 180 degrees)

=> ∠YUZ = 47 degrees

Step-by-step explanation: In the figure shown, <UVW is a straight angle.

This means it measures 180 degrees.

So to find <YVZ, we add up all the angles and subtract the sum

from 180 to get the answer to this problem.

43 + 52 + 38 gives us a sum of 133.

Now we take 180 - 133 yo get 47.

So m<YVZ is 47 degrees.

Simplify the expression:
4 + 5u + 8 – 4

Answers

Answer:

5u+8

Step-by-step explanation:

Both of the 4's will cancel out with each other.

5u+8. it works actuallly by taking common nunbers and cancelling them. in this case. 4. leaving it with just 5u+8 :)

what is 4 1/3 x 4 1/5=

Answers

Answer:

18 1/5

Step-by-step explanation:

Hey there!

Well to multiply them let's make them improper.

13/3 * 21/5

13*21 = 273

3*5 = 15

273/15

Simplified

18 1/5

Hope this helps :)

Answer:

[tex]\huge\boxed{4\dfrac{1}{3}\times4\dfrac{1}{5}=18\dfrac{1}{5}}[/tex]

Step-by-step explanation:

[tex]4\dfrac{1}{3}\times4\dfrac{1}{5}\\\\\bold{STEP\ 1}\\\text{convert the mixed numbers to the improper fractions}\\\\4\dfrac{1}{3}=\dfrac{4\times3+1}{3}=\dfrac{12+1}{3}=\dfrac{13}{3}\\\\4\dfrac{1}{5}=\dfrac{4\times5+1}{5}=\dfrac{20+1}{5}=\dfrac{21}{5}\\\\\bold{STEP\ 2}\\\text{simplify fractions}\\\\4\dfrac{1}{3}\times4\dfrac{1}{5}=\dfrac{13}{3}\times\dfrac{21}{5}=\dfrac{13}{1}\times\dfrac{7}{5}\\\\\bold{STEP\ 3}\\\text{multiply numerators and denominators}\\\\=\dfrac{13\times7}{1\times5}=\dfrac{91}{5}[/tex]

[tex]\bold{STEP 4}\\\text{convert the improper fraction to the mixed number}\\\\=\dfrac{91}{5}=\dfrac{90+1}{5}=\dfrac{90}{5}+\dfrac{1}{5}=18\dfrac{1}{5}[/tex]

CAN SOMEONE PLEASE HELP ME! To find x

ANSWERS
A-(11)
B-(14)
C-(7)
D-(3)

Answers

Answer:

C-(7)

Step-by-step explanation:

Given figure is a trapezoid and 21 - x is the mid segment.

Therefore by mid-segment formula of a trapezoid, we have:

21 - x = 1/2(17 + 11)

21 - x = 1/2 * 28

21 - x = 14

21 - 14 = x

7 = x

x = 7

Please help what’s the answer!!!

Answers

Answer:

-1

Step-by-step explanation:

Anything raised to  0 is 1

Multiply i 1 by  1

Simplify.

Rewrite i2 as −1

Move −1  to the left of i

Rewrite −1 i as −i

Factor out i2

Rewrite i2 as −1

Rewrite i2 as  −1

Rewrite i4 as 1

Multiply −1 by  1

Find the area of the shaded region. The graph to the right depicts IQ scores of adults, and those scores are normally distributed with a
mean of 100 and a standard deviation of 15.
n
f0 and
102
130
are
The area of the shaded region is (Round to four decimal places as needed.)
sions
Kented in
V3 and
andomly
d by in-
on affect
otes
ents
le
Enter your answer in the answer box and then click Check Answer.
section
different
version
Clear All
Check Answer
All parts showing

Answers

Answer: 0.4255

Step-by-step explanation:

Given:  IQ scores of adults, and those scores are normally distributed

Mean: [tex]\mu=100[/tex]

Standard deviation: [tex]\sigma= 15[/tex]

Let X denotes the IQ of a random adults.

The area between 102 and 130 = [tex]P(102<X<130)=P(\dfrac{102-100}{15}<\dfrac{X-\mu}{\sigma}<\dfrac{130-100}{15})[/tex]

[tex]=P(0.13<Z<2)\ \ \ [Z=\dfrac{X-\mu}{\sigma}]\\\\=P(Z<2)-P(Z<0.13)\\\\=0.9772- 0.5517\ [\text{By z-table}]\\\\=0.4255[/tex]

Hence, area between 102 and 130 = 0.4255

The graph of an exponential function has a y-intercept of 4 and contains the point (3,500). Construct the exponential function that describes the graph.

Answers

Answer:

The "formula" for an exponential function is f(x) = a * bˣ where a is the initial value / y-intercept. Therefore, a = 4 so f(x) = 4 * bˣ. To solve for b, we can plug in the values x = 3 and f(x) = 500 which becomes:

500 = 4 * b³

125 = b³

b = 5 so the answer is f(x) = 4 · 5ˣ.

Answer:

f(x)=4(5)x

Step-by-step explanation:

An exponential equation in the form y=a(b)x has initial value a and common ratio b. The initial value is the same as the y-intercept, 4, so the equation is in the form y=4(b)x. Substituting the point (3,500) gives 500=4(b)3. Solve for b to find that the common ratio is 5.

Write the following Arithmetic Sequence using a Recursive Formula: a = -7 + 3(n - 1)
A : A1 = -7, an = an-1 + 3
B : A1= -7, a, = an+1 + 3
C : A1 = 3, an = an+1 - 7
D : A1 = 3, an = an-1 - 7

NEED ANSWER ASAP

Answers

Answer:

A : A1 = -7, an = an-1 + 3

Step-by-step explanation:

a1=-7, a2=-7+(1)3=-4

a3=-7+(2)3=-1

Other Questions
Nora has been complaining of abdominal pain. Often, the pain wakes her up at night. Her doctor suspects that she has ulcers. What diagnostic procedure is the doctor likely to use?A. blood testB. endoscopyC. urine examinationD. hemoccult test Which of these groups of elements show the least electronegativity? Which of the following is true about mortgage-backed securities? I) They aggregate individual home mortgages into homogeneous pools. II) The purchaser receives monthly interest and principal payments received from payments made on the pool. III) The banks that originated the mortgages maintain ownership of them. IV) The banks that originated the mortgages continue to service them. algebra 1 help the answers are on the bottom please help me The Digit 6 in which numbers repesent a value of 6 ones? HELP PLEASE 40 POINTS The graph shows the prices of different numbers of bushels of corn at a store in the current year. The table shows the prices of different numbers of bushels of corn at the same store in the previous year. A graph shows Number of Bushels on x-axis and Price of Corn in dollars on y-axis. The x-axis scale is shown from 0 to 21 at increments of 3, and the y-axis scale is shown from 0 to 168 at increments of 24. A straight line joins the ordered pairs 3, 24 and 6, 48 and 9, 72 and 12, 96 and 15, 120 and 18, 144. Previous Year Number of Bushels Price of Corn (dollars) 3 21 6 42 9 63 12 84 Part A: Describe in words how you can find the rate of change of a bushel of corn in the current year, and find the value. Part B: How many dollars more is the price of a bushel of corn in the current year than the price of a bushel of corn in the previous year? Show your work. AND IT IS NOT QUESTION AND ANSWER PLEASE LOOK AT THE GRAPH AND READ THE PARAGRAPH answer asap please!!!!!!!!!!!!! Kyle writes an essay about indentured servants in the 1800s: Unlike the colonial era, indentured servants in the 1800s were mostly born in the United States. Many indentured servants were young people who hoped to gain a better life after a period of work. They committed themselves to a master for a period of several years. The master usually paid some of their expenses and was required to free them at the end of their contract period. Which statement corrects a mistake in Kyle's essay? Indentured servants in the early 1800s were usually immigrants. Most indentured servants were older people who had fallen on hard times. Indentured servants had the right to stop working whenever they wished. Masters rarely freed indentured servants at the end of a contract. I need a. Correct answer Ill mark brainliest How would you respond when Ellen expresses her beliefs that a miracle is about to happen and soon she will be going home? Ellen is a terminally I'll patient in comfort care. Jackpot Mining Company operates a copper mine in central Montana. The company paid $1,150,000 in 2021 for the mining site and spent an additional $630,000 to prepare the mine for extraction of the copper. After the copper is extracted in approximately four years, the company is required to restore the land to its original condition, including repaving of roads and replacing a greenbelt. The company has provided the following three cash flow possibilities for the restoration costs: (FV of $1, PV of $1, FVA of $1, PVA of $1, FVAD of $1 and PVAD of $1) Cash flow Probability1 $330,000 25%2 430,000 40%3 630,000 35%To aid extraction, Jackpot purchased some new equipment on July 1, 2021, for $150,000. After the copper is removed from this mine, the equipment will be sold. The credit-adjusted, risk-free rate of interest is 10%. Required: a. Determine the cost of the copper mine. b. Prepare the journal entries to record the acquisition costs. Identify the algebraic series. A) 10, 23, 36...... B) 4 + 8 + 16 +...... C) 100, 90, 81,...... D) 84 + 73 + 62 +....... A centrifugal pump is operating at a flow rate of 1 m3/s and a head of 20 m. If the specific weight of water is 9800 N/m3 and the pump efficiency is 85%, the power required by the pump is most nearly: 1 - Fill the space blanksIf we make a sequence selecting three elements from three different elements{1, 2, 3} and we permit overlapped elements for the sequence, then the totalnumber of sequences is [ ] . If we do not take into account the order, the totalnumber of the selections is [ ] .I'm totally lost in this, what is overlapped elements? This is about what math content? And what is the answer? Please i need help. APPLYING VAN IDEASRussia surrendered Poland with thea Treaty of Brest-Litovsk.b. Treaty of the Vare.c. Treaty of Paris.d. Treaty of Versailles. Evaluate the following: 3 (2). (5 points) a. -5 B. -1 c. 1 d. -6 Please help.. tysm if you do Tara has had many negative experiences over which she had little control. At this point, Tara has given up trying to make her life better because she believes she can do nothing to change her life for the better. Taras negative attitude may lead her to develop: Bermuda Triangle Corporation (BTC) currently has 390,000 shares of stock outstanding that sell for $102 per share. Assume no market imperfections or tax effects exist. Determine the share price and new number of shares outstanding if: (Do not round intermediate calculations. Round your price per share answers to 2 decimal places, e.g., 32.16, and shares outstanding answers to the nearest whole number, e.g., 32.) a. BTC has a five-for-three stock split. b. BTC has a 10 percent stock dividend. c. BTC has a 37.0 percent stock dividend. d. BTC has a four-for-seven reverse stock split. 1. Select the correct statement regarding relevant costs and revenues. A. Sunk costs are relevant for decision-making purposes. B. Relevant costs are frequently called unavoidable costs. C. Direct labor is an example of a unit-level cost. D. Only variable costs are relevant for decision making.2. Expected future revenues that differ among the alternatives under consideration are often referred to as:_______.A. Alternative revenues.B. Preferential revenues.C. Relative revenues.D. Differential revenues.3. The benefits sacrificed when one alternative is chosen over another are referred to as:______.A. Avoidable costs.B. Opportunity costs.C. Sacrificial costs.D. Beneficial costs.