When hydrogenation of two alkenes produce the same alkane, the more stable alkene has the___________ smaller heat of hydrogenation.

Answers

Answer 1

Explanation:

Heat of hydrogenation of alkenes is a measure of the stability of carbon-carbon double bonds.

In general, the lower the value of the heat of hydrogenation the more stable the double bond of the alkene.

Also, heat of hydrogenation of alkenes always have a negative value.


Related Questions

After the reaction between sodium borohydride and the ketone is complete, the reaction mixture is treated with water and H2SO4 to produce the desired alcohol. Explain the reaction by clearly indicating the source of the hydrogen atom that ends up on the oxygen

Answers

Answer:

The hydrogen can be gotten from the added Acid or water during "workup".

Explanation:

Basically we can say that the reaction describe in this question is a Reduction reaction because of the chemical compound called sodium borohydride. In the reaction described above we can see that there is a Reduction of ketone to alcohol by the compound; sodium borohydride.

For the reduction Reaction to occur the C-O bond must break so as to enable the formation of O-H bond and C-H bond.

So, "the reaction mixture is treated with water and H2SO4 to produce the desired alcohol", thus, the oxygen will definitely pick up the hydrogen from H2SO4 or H2O.

The reaction, 2 SO3(g) <--> 2 SO2(g) + O2(g) is endothermic. Predict what will happen if the tem­perature is increased.

Answers

Explanation:

This reaction is in equilibrium and would hence obey lechatelier's principle. This principle states that whenever a system at equilibrium undergoes a change, it would react in way so as to annul that change.

Since it is an endothermic reaction, increasing the temperature would cause the reaction to shift towards the right.

This means that it favours product formation and more of the product would be formed.

what is the IUPAC name of KNO3, Fe(OH)3, H2SO3 and Al2(SO4)3

Answers

Answer:

KNO₃ - Potassium nitrate

Fe(OH)₃ - Iron(III) hydroxide

H₂SO3 - Sulfurous acid

Al₂(SO₄)₃ - Aluminum sulfate

Hope that helps.

Answer: potassium nitrate

The Haber Process is the main industrial procedure to produce ammonia. The reaction combines nitrogen from air with hydrogen mainly from natural gas (methane) and is reversible and exothermic. The enthalpy change for this reaction is - 92 kJ mol-1. In an experiment, 1.5 moles of N2 and 4.0 moles of H2 is mixed in a 1.50 dm3 reaction vessel at 450 °C. After reaching equilibrium, the mixture contained 0.9 mole of NH3.
A) With the above information, write the reaction equilibrium equation in the Haber process. t.
B) Calculate Kc for this reaction.
C) What is the equilibrium yield of ammonia in this reaction?
D) Referring to Le Chatelier's principle and above information, suggest two ways to increase the yield of ammonia in this reaction and explain.

Answers

Answer:

A) [tex]N_2(g)+3H_2(g)\rightleftharpoons 2NH_3(g)[/tex].

B) [tex]Kc=0.0933[/tex].

C) 0.9 mol.

D) Increasing both temperature and pressure.

Explanation:

Hello,

In this case, given the information, we proceed as follows:

A)

[tex]N_2(g)+3H_2(g)\rightleftharpoons 2NH_3(g)[/tex]

B) For the calculation of Kc, we rate the equilibrium expression:

[tex]Kc=\frac{[NH_3]^2}{[N_2][H_2]^3}[/tex]

Next, since at equilibrium the concentration of ammonia is 0.6 M (0.9 mol in 1.5 dm³ or L), in terms of the reaction extent [tex]x[/tex], we have:

[tex][NH_3]=0.6M=2*x[/tex]

[tex]x=\frac{0.6M}{2}=0.3M[/tex]

Next, the concentrations of nitrogen and hydrogen at equilibrium are:

[tex][N_2]=\frac{1.5mol}{1.5L}-x=1M-0.3M=0.7M[/tex]

[tex][H_2]=\frac{4mol}{1.5L}-3*x=2.67M-0.9M=1.77M[/tex]

Therefore, the equilibrium constant is:

[tex]Kc=\frac{(0.6M)^2}{(0.7M)*(1.77M)^3}\\ \\Kc=0.0933[/tex]

C) In this case, the equilibrium yield of ammonia is clearly 0.9 mol since is the yielded amount once equilibrium is established.

D) Here, since the reaction is endothermic (positive enthalpy change), one way to increase the yield of ammonia is increasing the temperature since heat is reactant for endothermic reactions. Moreover, since this reaction has less moles at the products, another way to increase the yield is increasing the pressure since when pressure is increased the side with fewer moles is favored.

Best regards.

A compound decomposes with a half-life of 8.0 s and the half-life is independent of the concentration. How long does it take for the concentration to decrease to one-ninth of its initial value

Answers

Answer:

The concentration takes 25.360 seconds to decrease to one-ninth of its initial value.

Explanation:

The decomposition of the compound has an exponential behavior and process can be represented by this linear first-order differential equation:

[tex]\frac{dc}{dt} = -\frac{1}{\tau}\cdot c(t)[/tex]

Where:

[tex]\tau[/tex] - Time constant, measured in seconds.

[tex]c(t)[/tex] - Concentration of the compound as a function of time.

The solution of the differential equation is:

[tex]c(t) = c_{o} \cdot e^{-\frac{t}{\tau} }[/tex]

Where [tex]c_{o}[/tex] is the initial concentration of the compound.

The time is now cleared in the result obtained previously:

[tex]\ln \frac{c(t)}{c_{o}} = -\frac{t}{\tau}[/tex]

[tex]t = -\tau \cdot \ln \frac{c(t)}{c_{o}}[/tex]

Time constant as a function of half-life is:

[tex]\tau = \frac{t_{1/2}}{\ln 2}[/tex]

Where [tex]t_{1/2}[/tex] is the half-life of the composite decomposition, measured in seconds.

If [tex]t_{1/2} = 8\,s[/tex], then:

[tex]\tau = \frac{8\,s}{\ln 2}[/tex]

[tex]\tau \approx 11.542\,s[/tex]

And lastly, given that [tex]\frac{c(t)}{c_{o}} = \frac{1}{9}[/tex] and [tex]\tau \approx 11.542\,s[/tex], the time taken for the concentration to decrease to one-ninth of its initial value is:

[tex]t = -(11.542\,s)\cdot \ln\frac{1}{9}[/tex]

[tex]t \approx 25.360\,s[/tex]

The concentration takes 25.360 seconds to decrease to one-ninth of its initial value.

For each row in the table below, decide whether the pair of elements will form a molecular compound held together by covalent chemical bonds

Answers

Answer:

1- yes

  HBr--hydrogen bromide

2- no

  BaBr₂----barium bromide  

3- yes

NCl----- nitrogen chlorine  

 

Hydrogen ,bromine and nitrogen , chlorine are the pair of elements which  will form a molecular compound by covalent bond as they have 1, 7,5, 7 valence electrons respectively.

What is a covalent bond?

Covalent bond is defined as a type of bond which is formed by the mutual sharing of electrons to form electron pairs between the two atoms.These electron pairs are called as bonding pairs or shared pair of electrons.

Due to the sharing of valence electrons , the atoms are able to achieve a stable electronic configuration . Covalent bonding involves many types of interactions like σ bonding,π bonding ,metal-to-metal bonding ,etc.

Sigma bonds are the strongest covalent bonds while the pi bonds are weaker covalent bonds .Covalent bonds are affected by electronegativities of the atoms present in the molecules.Compounds having covalent bonds have lower melting points as compared to those with ionic bonds.

Learn more about covalent bond,here:

https://brainly.com/question/19382448

#SPJ2

30. What is the Bronsted base of H2PO4- + OH- ⟶HPO42- + H2O?

Answers

Answer:

OH⁻ is the Bronsted-Lowry base.

Explanation:

A Bronsted-Lowry base is a substance that accepts protons. In the chemical equation, OH⁻ accepts a proton from H₂PO₄⁻ to become H₂O. H₂PO₄⁻ would be a Bronsted-Lowry acid because it donates a proton to OH⁻ and becomes HPO₄²⁻.

Hope that helps.

Question 7 options: The cell potential of an electrochemical cell made of an Fe, Fe2 half-cell and a Pb, Pb2 half-cell is _____ V. Enter your answer to the hundredths place and do not leave off the leading zero, if needed.

Answers

Answer: Thus the cell potential of an electrochemical cell is +0.28 V

Explanation:

The calculation of cell potential is done by :

[tex]E^0=E^0_{cathode}- E^0_{anode}[/tex]

Where both [tex]E^0[/tex] are standard reduction potentials.

[tex]E^0_{[Fe^{2+}/Fe]}= -0.41V[/tex]

[tex]E^0_{[Pb^{2+}/Pb]}=-0.13V[/tex]

As Reduction takes place easily if the standard reduction potential is higher(positive) and oxidation takes place easily if the standard reduction potential is less(more negative). Thus iron acts as anode and lead acts as cathode.

[tex]E^0=E^0_{[Pb^{2+}/Pb]}- E^0_{[Fe^{2+}/Fe]}[/tex]

[tex]E^0=-0.13- (-0.41V)=0.28V[/tex]

Thus the cell potential of an electrochemical cell is +0.28 V

the equilibrium concentrations were found to be [H2O]=0.250 M , [H2]=0.600 M , and [O2]=0.800 M . What is the equilibrium constant for this reaction?

Answers

Answer:

Keq = 0.217

Explanation:

Let's determine the equilibrium reaction.

In gaseous state, water vapor can be decomposed to hydrogen and oxygen and this is a reversible reaction.

2H₂(g)  + O₂(g)  ⇄  2H₂O (g)         Keq

Let's make the expression for the equilibrium constant

Products / Reactants

We elevate the concentrations, to the stoichiometry coefficients.

Keq = [H₂O]² / [O₂] . [H₂]²

Keq = 0.250² / 0.8 . 0.6² =  0.217

A major component of gasoline is octane, C8H18. When octane is burned in air, it chemically reacts with oxygen gas (O2) to produce carbon dioxide (CO2) and water (H2O) . What mass of carbon dioxide is produced by the reaction of 3.2g of oxygen gas? Round your answer to 2 significant digits.

Answers

Answer:

[tex]m_{CO_2}=2.8gCO_2[/tex]

Explanation:

Hello,

In this case, the combustion of octane is chemically expressed by:

[tex]C_8H_{18}+\frac{25}{2} O_2\rightarrow 8CO_2+9H_2O[/tex]

In such a way, due to the 25/2:8 molar ratio between oxygen and carbon dioxide, we can compute the yielded grams of carbon dioxide (molar mass 44 g/mol) as shown below:

[tex]m_{CO_2}=3.2gO_2*\frac{1molO_2}{32gO_2} *\frac{8molCO_2}{\frac{25}{2}molO_2 } *\frac{44gCO_2}{1molCO_2}\\ \\m_{CO_2}=2.8gCO_2[/tex]

Best regards.

After heating a sample of hydrated CuSO4, the mass of released H2O was found to be 2.0 g. How many moles of H2O were released if the molar mass of H2O is 18.016 g/mol

Answers

Answer:

0.1110 mol

Explanation:

Mass = 2g

Molar mass = 18.016 g/mol

moles = ?

These quantities are realted by the following equation;

Moles = Mass / Molar mass

Substituting the values of the quantities and solving for moles, we have;

Moles = 2 / 18.016 = 0.1110 mol

For the following reaction at equilibrium, which gives a change that will shift the position of equilibrium to favor formation of more products? 2NOBr(g) 2NO(g) + Br 2(g), ΔHº rxn = 30 kJ/mol

Answers

Answer:

Based on the given reaction, it is evident that the reaction is endothermic as indicated by a positive sign of enthalpy of reaction. Thus, it can be stated that the favoring of the forward reaction will take place by upsurging the temperature of the reaction mixture.  

Apart from this, based on Le Chatelier’s principle, any modification in the quantity of any species is performed at equilibrium and the reaction will move in such an orientation so that the effect of the change gets minimized. Therefore, a slight enhancement in the concentration of the reactant will accelerate the reaction in the forward direction and hence more formation of the product takes place.  

g A spontaneous process is one in which: A. releases a large amount of heat B. may happen (is possible) C. will rapidly approach equilibrium D. will happen quickly

Answers

Answer:

A. releases a large amount of heat

Explanation:

A reaction is said to be spontaneous if it can proceed on its own without the addition of external energy. A spontaneous reaction is not determined by the length of time, because some spontaneous reactions are completed after a long period of time. They are exothermic in nature. An example is the conversion of graphite to carbon which takes a long period of time to complete. Spontaneous reactions are known to increase entropy in a system. Entropy is the rate of disorder in a system.

In the combustion of fire, energy is released to the surroundings as there is a decrease in energy. This is an example of a spontaneous reaction because it is an exothermic reaction, which causes an increase in entropy and a decrease in energy.

PLEASE HELP ME Calculate the change in boiling point when 0.402 moles of sodium chloride are added to 0.200 kilograms of water. Kf = -1.86°C/m; Kb = 0.512°C/m -2.1°C 2.1°C -7.5°C 7.5°C

Answers

Answer:

The change in the boiling point would be 2.1°C.

Explanation:

1 ) Let us first determine the molarity of this solution :

M = mol / kg,

M = 0.402 mol / 0.200 kg = 2.01 M NaCl

2 ) ΔT = i [tex]*[/tex] K [tex]*[/tex] m

ΔT = 2 [tex]*[/tex] 0.512C/m [tex]*[/tex] 2.01m

ΔT = 2.06C

As you can see, this is none of the answer choices. However the van't Hoff factor i in this case was taken to be 2, but this value is actually less than the predicted ideal solution. This is due to the ion pairing, causing i to be around 1.7 to 1.8. Therefore our solution is option b, 2.1°C.

Why is phosphorus unusual compared to other group 15 elements? Select the correct answer below: A. There are compounds that contain phosphorus-phosphorus bonds with uncommon oxidation states. B. Phosphorus is relatively unreactive. C. Phosphorus only forms compounds where the oxidation number of phosphorus is 5+. D. Phosphorus is the most electronegative of the group 15 elements.

Answers

Answer:

There are compounds that contain phosphorus-phosphorus bonds with uncommon oxidation states.

Explanation:

Phosphorus is a member of group 15 in the periodic table. Its common oxidation States are -3 and +5. Phosphorus is believed to firm some of its compounds by the participation of hybridized d-orbitals in bonding although this is also disputed by some scientists owing to the high energy of d - orbitals.

Phosphorus form compounds having phosphorus-phosphorus bonds in unusual oxidation states such as diphosphorus tetrahydride, H2P-PH2, and tetraphosphorus trisulfide, P4S hence the answer.

Which characteristic of life best describes the process of photosynthesis?

Answers

Answer:

Using energy.

Explanation:

Treatment of 1 mole of dimethyl sulfate with 2 moles of sodium acetylide results in the formation of propyne as the major product.
A) Draw a reasonable mechanism accounting for the formation of the byproduct 2-butyne.
B) 2-Butyne is observed as a minor product of this reaction. Draw a mechanism accounting for the formation of this minor product and explain how your proposed mechanism is consistent with the observation that acetylene is present among the reaction products.
C) Predict the major and minor products that are expected if diethyl sulfate is used in place of dimethyl sulfate.

Answers

Answer:

(a) appended underneath is the inorganic ion shaped in the reaction and the mechanism of its formation  

(b) 2-butyne framed as a minor product is appeared in the connection. It is shaped when the monosodium subordinate of dimethylsulphoxide gets a hydrogen from the propyne and reacts again with monosodium methylsulphoxide.  

(c) The major product framed when diethylsulphoxide is utilized, would be butyne and minor product would be 3-hexyne.

Explanation:

attached below is diagram

Suppose of nickel(II) iodide is dissolved in of a aqueous solution of potassium carbonate. Calculate the final molarity of nickel(II) cation in the solution. You can assume the volume of the solution doesn't change when the nickel(II) iodide is dissolved in it. Round your answer to significant digits.

Answers

Answer:

0.619 M to 3 significant figures.

Explanation:

1 mole of [tex]NiI_{2}[/tex] - 312.5 g

? mole of [tex]NiI_{2}[/tex] - 2.9 g

= 2.9/312.5

= 0.0928 moles.

Concentration = no. of moles/vol in litres = [tex]\frac{0.0928}{0.150L}[/tex]

= 0.619 M

The titration of 78.5 mL of an unknown concentration H3PO4 solution requires 134 mL of 0.224 M KOH solution. What is the concentration of the H3PO4 solution

Answers

Answer:

0.127 M.

Explanation:

The balanced equation for the reaction is given below:

H3PO4 + 3KOH —› K3PO4 + 3H2O

From the balanced equation above, we obtained the following data:

Mole ratio of acid, H3PO4 (nA) = 1

Mole ratio of base, KOH (nB) = 3

Data obtained from the question include:

Volume of acid, H3PO4 (Va) = 78.5 mL

Molarity of acid, H3PO4 (Ma) =...?

Volume of base, KOH (Vb) = 134 mL

Molarity of base, KOH (Mb) = 0.224 M

The concentration of the acid, H3PO4 can be obtained as follow:

MaVa / MbVb = nA/nB

Ma x 78.5 / 0.224 x 134 = 1/3

Cross multiply

Ma x 78.5 x 3 = 0.224 x 134 x 1

Divide both side by 78.5 x 3

Ma = (0.224 x 134 x 1) /(78.5 x 3)

Ma = 0.127 M

Therefore, the concentration of the acid, H3PO4 is 0.127 M.

Do you expect the compound Na4S to be a stable sulfur compound? Explain why or why not. Select the correct answer below: A. Yes, because sulfur is significantly more electronegative than sodium, so it can ionize sodium. B. Yes, because sodium is significantly more electronegative than sulfur, so it can ionize sulfur. C. No, because sulfur does not typically form negative ions or oxidation states less than 2−. The binary compound formed by sulfur and sodium is Na2S. D. No, because elemental sulfur is not a strong enough oxidation agent to oxidize sodium.

Answers

Answer:

No, because sulfur does not typically form negative ions or oxidation states less than 2−. The binary compound formed by sulfur and sodium is Na2S

Explanation:

Sulphur is a member of group 16. The oxidation states expected for sulphur in group 16 are -1, -2, +1, +2,+3,+4,+5 or +6. The elements of group 16 usually form negative ions with oxidation number of -2. They do not typically form negative ions with oxidation state less than -2.

The implication of this is that we actually do not expect the existence of a compound in which sulphur forms an S^4- anion. In reality, such an anion does not exist. Rather a binary compound of sulphur and sodium will have the formula Na2S because it contains the S^2- anion.

Calculate the net change in enthalpy for the formation of one mole of acrylic acid from calcium carbide, water and carbon dioxide from these reactions. Round your answer to the nearest .

Answers

Answer:

-471 Kj/mole acrylic acid

Explanation:

THIS IS THE COMPLETE QUESTION BELOW;

There are two steps in the usual industrial preparation of acrylic acid, the immediate precursor of several useful plastics. In the first step, calcium carbide and water react to form acetylene and calcium hydroxide: CaC (s) + 2 H2O(g) - CH (9) + Ca(OH),(s) AH -414. kJ In the second step, acetylene, carbon dioxide and water react to form acrylic acid: 6 C H (9) + 3 CO2(9) + 4H2O(g) - SCH,CHCO,H) AH-132. kJ Calculate the net change in enthalpy for the formation of one mole of acrylic acid from calcium carbide, water and carbon dioxide from these reactions. Round your answer to the nearest kJ. x 5 ?

The two equations from the reaction can be written as;

a)CaC₂(s) + 2H₂O(l) ------->C₂H₂(g) + CaOH₂(s)

Δ H= -414Kj ........................ equation (a)

b)6C₂H₂(g) +3CO₂(g)+4H₂O(g) -------> 5CH₂CHCO₂H(g) Δ H= 132Kj ...................... equation (b)

In equation (b)acrylic acid was produced by the reaction between Acetylene carbon dioxide and water

Then we can multiply equation(a) by factor of 6 and the ΔH Then we have (6× -414Kj)= ΔH= -2484Kj.

6CaC₂(s) + 12H₂O(l) ------->6C₂H₂(g) + 6CaOH₂(s)

Δ H= -2484Kj.................. equation (c)

6C₂H₂(g) +3CO₂(g)+4H₂O(g) -------> 5CH₂CHCO₂H(g) Δ H= 132Kj

Then add equation (c) and equation(b) then we have

6CaC₂(s) + 16H₂O(l)+3CO₂(g)------> 5CH₂CHCO₂H(g) + 6CaOH₂(s) ΔH= -2352Kj

ΔH(net)= -2352Kj/5moles

=-471Kj/mole

therefore, net change in enthalpy for the formation of one mole of acrylic acid from calcium carbide, water and carbon dioxide from these reactions. Round your answer to the nearest kJ. x 5 ? is -471Kj/mole acrylic acid

a certain compound was found to contain 54.0 g of carbon and 10.5 grams of hydrogen. its relative molecular mass is 86.0. find the empirical and molecular formulas

Answers

Answer:

empirical formula = C3H7

molecular formula = C6H14

The equilibrium constant is given for two of the reactions below. Determine the value of the missing equilibrium constant. A(g) + 2B(g) ↔ AB2(g) Kc = 59 AB2(g) + B(g) ↔ AB3(g) Kc = ? A(g) + 3B(g) ↔ AB3(g) Kc = 478

Answers

Answer:

The correct answer is 8.10

Explanation:

Given:

A(g) + 2B(g) ↔ AB₂(g)   Kc = 59 ---- Eq. 1

A(g) + 3B(g) ↔ AB₃(g)   Kc = 478 ----- Eq. 2

We have to rearrange the chemical equations in order to obtain:

AB₂(g) + B(g) ↔ AB₃(g) Kc = ?

AB₂(g) is a reactant, so we have to use the reverse reaction of Eq. 1, in this case Kc= 1/59. Since AB₃(g) is a product, we use the forward reaction of Eq.2, and the constant is the same: Kc= 478.  The following is the sum of rearranged chemical equations, and the compounds in bold and italic are canceled:

 AB₂(g)       ↔   A(g) + 2B(g)          Kc₁= 1/59

A(g) + 3B(g) ↔   AB₃(g)                  Kc₂= 478

-----------------------------------------

AB₂(g) + B(g) ↔ AB₃(g)

If we add reactions at equilibrium, the equilibrium constants Kc are mutiplied as follows:

Kc = Kc₁ x Kc₂ = 1/59 x 478 = 478/59 = 8.10

The value of the missing equilibrium constant is 8.10.

The value of the missing equilibrium constant is 8.10

Chemical Equations:

Since

A(g) + 2B(g) ↔ AB₂(g)   Kc = 59 ---- Eq. 1

A(g) + 3B(g) ↔ AB₃(g)   Kc = 478 ----- Eq. 2

Now we have to rearrange the chemical equations in order to obtain:

AB₂(g) + B(g) ↔ AB₃(g) Kc = ?

Here AB₂(g) represents a reactant, so we have to applied the reverse reaction of Eq. 1, in this case Kc= 1/59. Since AB₃(g) is a product, we use the forward reaction of Eq.2, and the constant should be the same: Kc= 478.  

The following is the sum of rearranged chemical equations, and the compounds in bold and italic should be canceled:

AB₂(g)       ↔   A(g) + 2B(g)          Kc₁= 1/59

A(g) + 3B(g) ↔   AB₃(g)                  Kc₂= 478

-----------------------------------------

AB₂(g) + B(g) ↔ AB₃(g)

In the case when we add reactions at equilibrium, the equilibrium constants Kc are multiplied as follows:

Kc = Kc₁ x Kc₂ = 1/59 x 478 = 478/59 = 8.10

Learn more about reaction here: https://brainly.com/question/1200811

What are representative elements"?
A. Elements in the short columns of the periodic table
B. Elements in the same row of the periodic table
C. Elements that share the same properties on the periodic table
D. Elements in the tall columns of the periodic table

Answers

The representative elements are the elements in the tall columns of the periodic table.

What are the representative elements?

The representative elements that can also be referred to as the main group elements. They can be used to represent the chemistry of the group to which they belong.

Hence, the representative elements are the elements in the tall columns of the periodic table.

Learn more about representative elements:https://brainly.com/question/2040861?

#SPJ1

Determine which complex of the electron transport chain (respiratory chain) each phrase describes. (Coenzyme Q is also called ubiquinone or ubiquinol, depending on whether it is in oxidized or reduced form.)
Complex I:
Complex II:
Complex III:
Complex IV:
Here are the choices that need to be put in the correct complex:
1) NADH-ubiquinone(NADH-coenzyme Q oxidoreductase)
2) Coenzyme Q-cytochrome c oxidoreductase
3) Electron transfer from succinate to ubiquinone (coenzyme Q)
4) Electron transfer from cytochrome c to O2
5) Succinate-coenzyme Q Oxidoreductase (succinate dehydrogenase)
6) Cytochrome c oxidase
7) Electron transfer from ubiquinol (QH2) to cytochrom c
8) Electron transfer from NADH to ubiquinone (coenzyme Q)

Answers

Answer:

Complex I:  (1) NADH-ubiquinone(NADH-coenzyme Q oxidoreductase), (8) Electron transfer from NADH to ubiquinone (coenzyme Q)

Complex II:  (3) Electron transfer from succinate to ubiquinone (coenzyme Q) (5) Succinate-coenzyme Q Oxidoreductase (succinate dehydrogenase)

Complex III:  (2) Coenzyme Q-cytochrome c oxidoreductase, (7) Electron transfer from ubiquinol (QH2) to cytochrome c

Complex IV: (4) Electron transfer from cytochrome c to O2, (6) Cytochrome c oxidase

Explanation:

The electron transport chain (ETC) in the mitochondria provides a pathway by which electrons are transferred from NADH and FADH₂ through a series of membrane-bound carriers to  molecular oxygen reducing it to water.

The electron transport chain electron carriers are organized into four complexes, Complexes I - IV.

Complex I : It is also called NADH:ubiquinone reductase. It transfers electrons from NADH to ubiquinone (also known as coenzyme Q)

Complex II : It is also called succinate dehydrogenase. It functions to tranfer electrons from succinate to FAD and then to ubiquinone.

Complex III : It is also called ubiquinone:cytochrome c oxidoreductase. It functions to transfer electrons from ubiquinol (reduced ubiquinone) to cytochrome c.

Complex IV : It is also called cytochrome oxidase. It functions to transfer electrons from cytochrome c to molecular oxygen reducing it to water.

The electron transporter chain is a series of enzymatic reactions to produce and store energy for the organism’s correct functioning. Complex I: 1 and 8. Complex II: 3 and 5. Complex III: 2 and 7. Complex IV: 4 and 6.

---------------------------------

Electron transporter chain

The electron transporter chain is located in the internal mitochondrial membrane. It constitutes a series of enzymatic reactions to release and save energy for the organism’s correct functioning.  

Along the chain, there are four proteinic complexes in the membrane, I, II, III, and IV, that contain the electrons transporters and the enzymes necessary to catalyze the electrons' transference from one complex to the other.  

Different redox reactions occur to pass electrons along the chain.  

Released energy creates a proton concentration gradient used to synthesize ATP.  

1)  NADH provides electrons to the first complex, Complex I (NADH-  

   ubiquinone or NADH-coenzyme Q oxidoreductase).

From there, electrons go to the coenzyme Q (Ubiquinone) that carries them to complex II and III. Meanwhile, complex I pomp four protons to the intermembrane space.  

2) Complex II (succinate-dehydrogenase) receives electrons from CoQ and also receives electrons from FADH2. Electrons are sent from complex II to ubiquinone Q that carries these electrons to complex III.

3) Complex III (Cytochrome C-reductase) receives electrons from ubiquinone Q and pomps protons to the intermembrane space.

Electrons are transferred to Cytochrome c.  

Electrons travel from cytochrome c to complex IV.

4) Complex IV (Cytochrome C-oxidase)  is the last complex that pomps protons to the intermembrane space. It takes electrons from cytochrome C and sends them to oxygen.

5) Electrons are sent to O₂ molecules, which also receive protons in the matrix to create water molecules.

Four electrons are needed to produce two water molecules from one O₂ molecule.  

The proton gradient is used to produce ATP molecules.

Now, we can join the complexes with the phrases.

Complex I:

1) NADH-ubiquinone (NADH-coenzyme Q oxidoreductase)

8) Electron transfer from NADH to ubiquinone (coenzyme Q)

Complex II:

3) Electron transfer from succinate to ubiquinone (coenzyme Q)

5) Succinate-coenzyme Q Oxidoreductase (succinate dehydrogenase)

Complex III:

2) Coenzyme Q - cytochrome c oxidoreductase

7) Electron transfer from ubiquinol (QH₂) to cytochrom c

Complex IV:

6) Cytochrome C oxidase

4) Electron transfer from cytochrome c to O₂

-----------------------------------

Related link: https://brainly.com/question/24372542?referrer=searchResults

                     https://brainly.com/question/13975046?referrer=searchResults

Calculate the frequency (Hz) and wavelength (nm)

of the emitted photon when an electron drops from

the n = 4 to the n=2 level in a hydrogen atom

Answers

Answer:

wavelength, λ =  486.6 nm

frequency, f = 6.16 * 10¹⁴ Hz

Explanation:

a. Wavelength

Using the wavelength equation; 1/λ = (1/hc) * 2.18 * 10⁻¹⁸ J * (1/nf² - 1/ni²)

Where nf is the final energy level; ni is the initial energy level; h is Planck's constant = 6.63 * 10⁻³⁴ J.s; c is velocity of light = 3 * 10⁸ m/s

1/λ = 1/(6.63 * 10⁻³⁴ J.s * 3 * 10⁸ m/s) * 2.18 * 10⁻¹⁸ J * (1/2² - 1/4²)

1/λ = 2.055 * 10⁶ m

λ = 4.866 * 10⁻⁷ m

wavelength, λ =  486.6 nm

b.  Frequency

Using f = c/λ

f = (3 * 10⁸ m/s) / 4.866 * 10⁻⁷ m

frequency, f = 6.16 * 10¹⁴ Hz

Which of the following best describes the interaction of the alkali metals with water? Select the correct answer below: A. They all dissolve easily in water. B. They do not react or dissolve in water. C. They react strongly with water to produce an alkaline solution and hydrogen. D. They react strongly with water to produce an alkaline solution and oxygen.

Answers

Answer:

C. They react strongly with water to produce an alkaline solution and hydrogen

Explanation:

All alkali metals react vigorously with cold water. In the reaction, hydrogen gas is given off and the metal hydroxide is produced.

Hope that helps.

The equilibrium between carbon dioxide gas and carbonic acid is very important in biology and environmental science. CO2 ( aq) + H2O ( l) H2CO3 ( aq) Which one of the following is the correct equilibrium constant expression (K c) for this reaction?
a) K =[H2CO3]/ [CO2]
b) K=[CO2]/ [H2CO3]
c) K=[H2CO3]/ [CO2][H2O]
d) K=[CO2][H2O]/ [H2CO3]
e) K=1/[H2CO3]

Answers

Answer:

Kc = [H₂CO₃] / [CO₂]

Explanation:

Equilibrium constant expression (Kc) of any reaction is defined as the ratio between molar concentrations in equilibrium of products over reactants.

Pure solids and liquids don't affect the equilibrium and you don't have to take its concentrations in the equilibrium.

Also, each specie must be powered to its reactant coefficient.

For example, for the reaction:

aA(s) + bB(aq) ⇄ cC(l) + nD(g) + xE(aq)

The equilibrium constant, kc is:

Kc = [D]ⁿ / [B]ᵇ[E]ˣ

You don't take A nor C species because are pure solids and liquids. b, n and x are the reactant coefficients of each substance. Ratio of products over reactants

Thus, for the reaction:

CO₂(aq) + H₂O(l) ⇄ H₂CO₃(aq)

The Kc is:

Kc = [H₂CO₃] / [CO₂]

A pressure cooker contains 5.68 liters of air at a temperature of 394 K. If the absolute pressure of the air in the pressure cooker is 205 pascals, how many moles of air are in the cooker? The cooker contains _______ moles of air. 1 SEE ANSWER

Answers

Answer:

Explanation:

We shall find out volume of air at NTP or at 273 K and 10⁵ Pa ( 1 atm )

Let it be V₂

[tex]\frac{P_1V_1}{T_1} =\frac{P_2V_2}{T_2}[/tex]

[tex]\frac{2\times 10^5\times 5.68}{394} =\frac{10^5\times V_2}{273}[/tex]

V₂ = 7.87 litres

22.4 litres of any gas is equivalent to 1 mole

7.87 litres of air will be equivalent to

7.87 / 22.4 moles

= .35 moles .

Calculate the heat absorbed by a sample of water that has a mass of 45.00 g when the temperature increases from 21.0oC to 38.5 oC. (s=4.184 J/g.o C)

Answers

Answer:

The heat absorbed by the sample of water is 3,294.9 J

Explanation:

Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.

The sensible heat of a body is the amount of heat received or transferred by a body when it undergoes a temperature variation (Δt) without there being a change of physical state (solid, liquid or gaseous). Its mathematical expression is:

Q = c * m * ΔT

Where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.

In this case:

Q=?m= 45 gc= 4.184 [tex]\frac{J}{g*C}[/tex]ΔT= Tfinal - Tinitial= 38.5 C - 21 C= 17.5 C

Replacing:

Q= 4.184 [tex]\frac{J}{g*C}[/tex] * 45 g* 17.5 C

Solving:

Q=3,294.9 J

The heat absorbed by the sample of water is 3,294.9 J

Other Questions
In addition to the natural loss of muscle mass that occurs as we move into our older years, changes in lifestyle, such as transition from employment to retirement, also account for a decrease in ___________. a. stress response b. energy needs c. hormones d. brain activity Why does Helen's sister kill her own husband?She did so in order to get even with him for sacrificing their daughter.She knew that the Greek ships would sail safely to Troy without the favorable wind.She was trying to prevent their son from killing her.She thought that the favorable wind was more important to her husband than she, herself, was. According to our textbook, the _____________________ is a reoccurring theme or motif found throughout the book of Ecclesiastes. Describe two ways in which the pampas are similar to the Great Plains of the United States Import tariffs generally ________ the output of domestic producers of the affected products and also _________ the output of domestic exporters. Justify the statement "The same job title can have different job roles and different qualification criteria in different organizations." Compare job titles and their respective roles and qualifications from at least two organizations in different industries, and write a short essay explaining your reasoning. Two point charges attract each other with an electric force of magnitude F. If one charge is reduced to one-third its original value and the distance between the charges is doubled, what is the resulting magnitude of the electric force between them In the news, you hear tuition is expected to increase by 7% next year. If tuition this year was $1200 per quarter, what will it be next year? Solve for y 110 75 100 55 What activities can help develop each intelligence? You would like to have $50,000 in 15 years. To accumulate this amount you plan to deposit each year an equal sum in the bank, which will earn 7% interest annually. Your first payment will be made at the end of the year. Required:A) How much must you deposit annually to accumulate this amount? B) If you decide to make a lump-sum deposit today instead of the annual deposits, how large should this lump-sum deposit be?C) At the end of five years, you will receive $10,000 and deposit this in the bank towards your goal of $50,000 at the end of 15 years. In addition to this deposit, how much must you deposit in equal annual deposits in order to reach your goal? Class work four .Write a two paragraphs on the topic The effect of Corona virus on education. Match each correlation coefficient, r, to its description.weak negativecorrelationweak positivecorrelationstrong positivecorrelationstrong negativecorrelationr = 0.83arrowRightr = 0.08arrowRightr = 0.96arrowRightr = 0.06arrowRight Consider the following three objects, each of the same mass and radius: (1) a solid sphere(2) a solid disk(3) a hoop All three are released from rest at the top of an inclined plane. The three objects proceed down the incline undergoing rolling motion without slipping. Use work-kinetic energy theorem to determine which object will reach the bottom of the incline first.a) 1, 2, 3 b) 2, 3, 1 c) 3, 1, 2 d) 3, 2, 1 e) All three reach the bottom at the same time. You are conversing with a colleague over a secure instant message system. This conversation contains classified information in the body of the conversation. You need to save the conversation for later use. What markings will apply The medulla oblongs ya controls the contraction and relaxation of the blank causing the lungs to inflate and deflate during breathing. Based on the context of each quote from Incidents in the Life of a Slave Girl by Harriet Ann Jacobs, find the word that most closely matches the denotation of the bolded word. Which store will give Martina the best deal if she has 60 people in attendance?IglooTastyFreds Three different divers kept track of the number of treasure boxes they've found this year. Diver Dives Treasure boxes found Scuba Sam 11 33 Wet Suit Willy 18 81 Deep Diving Dan 26 104 Which diver found the most treasures per dive? Write the equation of a circle with center (7, -12) and radius 9.