When a 20.0-ohm resistor is connected across the terminals of a 12.0-V battery, the voltage across the terminals of the battery falls by 0.300 V. What is the internal resistance of this battery

Answers

Answer 1

Answer:

The  internal resistance is  [tex]r = 0.5 \ \Omega[/tex]

Explanation:

From the question we are told that the resistance of

   The  resistance of the resistor is  [tex]R = 20.0\ \Omega[/tex]

    The  voltage is [tex]V = 12.0 \ V[/tex]

     The magnitude of the voltage fall is  [tex]e = 0.300\ V[/tex]

Generally the current flowing through the terminal due to the voltage of the battery  is  mathematically represented as

        [tex]I = \frac{V}{R}[/tex]

substituting values

        [tex]I = \frac{12.0 }{20 }[/tex]

       [tex]I = 0.6 \ A[/tex]

The internal resistance of the battery is mathematically represented as

      [tex]r = \frac{e}{I}[/tex]

substituting values

     [tex]r = \frac{0.300}{ 0.6 }[/tex]

    [tex]r = 0.5 \ \Omega[/tex]

Answer 2

The internal resistance of the battery is 0.5 ohms.

To calculate the internal resistance of the battery, we use the formula below

Formula:

(V/R)r = V'............. Equation 1

Where:

V = Voltage across the terminal of the batteryR = Resistance connected across the batteryr = internal resistance of the batteryV' = voltage drop of the battery.

Make r the subject of the equation

r = V'R/V............ Equation 2

From the question,

Given:

V = 12 VR = 20 ohmsV' = 0.3 V

Substitute these values into equation 2

r = (0.3×20)/12r = 6/12r = 0.5 ohms.

Hence, The internal resistance of the battery is 0.5 ohms.

Learn more about internal resistance here: https://brainly.com/question/14883923


Related Questions

What portion of the difference in the angular speed before and after you increased the mass can be accounted for by frictional losses

Answers

Answer:

As the mass increases, the moment of inertia(I) increases, therefore, the angular momentum(L) increases too.

Explanation:

friction can be defined as resistance in motion of bodies in relative to one another

momentum is the product of mass and velocity

torque is the time rate of change in momentum

τ = [tex]\frac{dL}{dt}[/tex]

where L = Iω = mvr

I = moment of inertia

ω=  angular frequency

if there is no external force(torque) acting on the system, then

[tex]\frac{dL}{dt}[/tex] = 0

dL = 0 = constant

moment of inertia I depends on the distribution of mass on the axis of rotation.

as the mass increases, the angular momentum(L) increases

angular frequency, ω, remains constant

A block with a mass of 0.28 kg is attached to a horizontal spring. The block is pulled back from its equilibrium position until the spring exerts a force of 1.0 N on the block. When the block is released, it oscillates with a frequency of 1.2 Hz. How far was the block pulled back before being released?

Answers

Answer:

Explanation:

For spring

[tex]n=\sqrt{\frac{k}{m} }[/tex]

where n is frequency of oscillation and k is force constant and m is mass

Putting the values

[tex]1.2=\sqrt{\frac{k}{.28} }[/tex]

k = .4032 N/m

F= k x

where F is force , k is force constant and x is extension

Putting the given values

1 = .4032 x

x = 2.48 m

Equal charges, one at rest, the other having a velocity of 104 m/s, are released in a uniform magnetic field. Which charge has the largest force exerted on it by the magnetic field

Answers

Answer:

case 1 of physics is the answer

A charged particle moves into a region of uniform magnetic field B (pointing out of the page), goes through half a circle, and exits the region. The particle is either a proton or an electron. It spends 130 ns in the region. (a) What is the magnitude of B

Answers

The figure is missing, so i have attached it

Answer:

Magnitude of B = 0.252 T

Explanation:

From the image, considering the point at which it enters the field-filled region, the velocity vector is pointing downwards. The field points out of the page so that; (v→) × (B→) points leftward, points leftward which indeed seems to be the direction it is pushed. Therefore q > 0 and thus it's a proton.

The equation for the period since it goes through half circle is;

T = 2t = 2πm/(e|B|)

Where;

m is mass of proton = 1.67 × 10^(-27) kg

e is electron charge = 1.60 x 10^(-19) Coulombs.

|B| is magnitude of magnetic field

t = 130 ns = 130 × 10^(-9) s

Making |B| the subject, we have;

|B| = πm/et

Thus, plugging in all relevant values, we have;

|B| = π(1.67 × 10^(-27))/(1.60 x 10^(-19) × 130 × 10^(-9)) = 0.252 T

Suppose a 225 kg motorcycle is heading toward a hill at a speed of 29 m/s. The two wheels weigh 12 kg each and are each annular rings with an inner radius of 0.280 m and an outer radius of 0.330 m. How high can it coast up the hill, if you neglect friction in m?
a) m = 180 kg
b) v = 29 m/s
c) h = 32 m

Answers

Answer:

It can coast uphill 6.2m

Explanation:

See attached file pls

Wind gusts create ripples on the ocean that have a wavelength of 5.00 cm and propagate at 2.00 m/s. What is their frequency

Answers

Answer:

f = 40Hz

Explanation:

v=f x wavelength

f =v / wavelength

f = 2/5 x 10-²= 40 Hz

f = 40Hz

f = 40Hz

What is frequency?

In physics, the term frequency refers to the number of waves that pass a fixed point in unit time.

It also describes the number of cycles or vibrations undergone during one unit of time by a body in periodic motion.

Wavelength (λ) - The wavelength of light is defined as the distance between the crests or troughs of a wave motion.

The wave equation: v = fλ

As per question,

Wavelength = 5.00 cm

v = 2.00 m/s.

v=fλ

f =v / λ

f = 2/5 x 10⁻² = 40 Hz

f = 40Hz

Therefore,

The frequency is 40Hz.

Learn more about frequency here:https://brainly.com/question/14316711

#SPJ2

A trash compactor can compress its contents to 0.350 times their original volume and 4 times denser than their original density. Neglecting the mass of air expelled, what factor is the old density of the rubbish

Answers

Answer:

2.8

Explanation:

Using p = m/v; (old density)

p' = m/v (new density)

=m/0.350 V

p'/p = (m/0.350V)/(m/v) = 1/0.350 = 2.86

a positively charged ion, due to a cosmic ray, is headed through earth's atmosphere toward the center of Earth. Due to Earth's magnetic field, the ion will be delfected:

Answers

Answer:

East direction

Explanation:

Given that

Charge on the particle is positive.

Moving towards the center of earth .

We know that N(north ) pole in magnetic fields work as source of magnetic lines and S(South ) pole works and sink for magnetic lines.

Therefore due to the earth magnetic fields , the positive ions will deflect  towards  East direction.

Thus the answer will be East direction.

Suppose I am viewing light through a camera lens (i.e. a circular aperture). If I want a wider field of view I should _____ the diameter of the lens.

Answers

Answer:

Increase

Explanation:

Because For a given focal length, a lens with a larger front element will generally be faster. That is, it'll have a larger maximum aperture, allowing a shorter exposure time, But a larger aperture requires larger elements to maintain the same angle of view

A 10 kg mass car initially at rest on a horizontal track is pushed by a horizontal force of 10 N magnitude. If we neglect the friction force between the car and the track, calculate how much the car travels in 10 s

Answers

Answer:

50 m

Explanation:

F = ma

10 N = (10 kg) a

a = 1 m/s²

Given:

v₀ = 0 m/s

a = 1 m/s²

t = 10 s

Find: Δx

Δx = v₀ t + ½ at²

Δx = (0 m/s) (10 s) + ½ (1 m/s²) (10 s)²

Δx = 50 m

What do Equations 1 and 2 predict will happen to the single-slit diffraction pattern (intensity, fringe width, and fringe spacing) as the slit width is increased.

Equation 1:
Sinθ = mλ/ω

Equaiton 2:
I= Io [Sinθ (πωλ/πωλ/Rλ)

Answers

Answer:

the firtz agrees with the expression for the shape of the curve of diracion of a slit

Explanation:

The diffraction phenomenon is described by the expression

              a sin θ = m λ

where a is the width of the slit, t is the angle from the center of the slit, l is the wavelength and m is an integer that corresponds to the maximum diffraction.

the previous equation qualitatively describes the curve of the diffraction phenomenon the equation takes the form

             I = I₀ [(sin ππ a y / R λ) / π a y / Rλ]²

             I = I₀ ’[sin π a y /Rλ]²

             I₀ ’= I₀ / (π a y /Rλ)²

By reviewing the two expressions given

equation 1

 w sin θ = m λ

where w =a  w   is the slit width

we see that the firtz agrees with the expression for the shape of the curve of diracion of a slit

Equation 2

the squares are missing

If the car decelerates uniformly along the curved road from 27 m/s m/s at A to 13 m/s m/s at C, determine the acceleration of the car at B

Answers

Answer:

0.9m/s²

Explanation:

See attached files

A centrifugal pump is operating at a flow rate of 1 m3/s and a head of 20 m. If the specific weight of water is 9800 N/m3 and the pump efficiency is 85%, the power required by the pump is most nearly:

Answers

Answer:

The power required by the pump is nearly 230.588 kW

Explanation:

Flow rate of the pump Q = 1 m^3/s

the head flow H = 20 m

specific weight of water γ = 9800 N/m^3

efficiency of the pump η = 85%

First note that specific gravity of water is the product of the density of water and acceleration due to gravity.

γ = ρg

where ρ is density. For water its value is 1000 kg/m^3

g is the acceleration due to gravity = 9.81 m/s^2

The power to lift this water at this rate will be gotten from the equation

P = ρgQH

but ρg = γ

therefore,

P = γQH

imputing values, we'll have

P = 9800 x 1 x 20 = 196000 W

But the centrifugal pump that will be used will only be able to lift this amount of water after the efficiency factor has been considered. The power of pump needed must be greater than this power.

we can say that

196000 W is 85% of the power of the pump power needed, therefore

196000 = 85% of [tex]P_{p}[/tex]

where [tex]P_{p}[/tex] is the power of the pump needed

85% = 0.85

196000 = 0.85[tex]P_{p}[/tex]

[tex]P_{p}[/tex] = 196000/0.85 = 230588.24 W

Pump power = 230.588 kW

Unpolarized light of intensity I0 = 950 W/m2 is incident upon two polarizers. The first has its polarizing axis vertical, and the axis of the second is rotated θ = 65° from the vertical.

Required:
a. What is the intensity of the light after it passes through the first polarizer in W/m2?
b. What is the intensity of the light after it passes through the second polarizer in W/m2?

Answers

Answer:

Intensity of the light (first polarizer) (I₁) = 425 W/m²

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

Explanation:

Given:

Unpolarized light of intensity (I₀) = 950 W/m²

θ = 65°

Find:

a. Intensity of the light (first polarizer)

b. Intensity of the light (second polarizer)

Computation:

a. Intensity of the light (first polarizer)

Intensity of the light (first polarizer) (I₁) = I₀ / 2

Intensity of the light (first polarizer) (I₁) = 950 / 2

Intensity of the light (first polarizer) (I₁) = 425 W/m²

b. Intensity of the light (second polarizer)

Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ

Intensity of the light (second polarizer) (I₂) = (425)(0.1786)

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

g How many rpm would a 25 m diameter Ferris wheel need to travel if a 75 kg person were to experience an effective weight of 810 N at the lower-most point of the ride

Answers

Answer:

2.52 rpm

Explanation:

given that

diameter of the wheel, d = 25 m

Mass of the person, m = 75 kg

Weight experienced, N = 810 N

Since diameter is 25, radius then is 25/2 = 12.5 m

We all know that,

v = rw

Also, the passengers weight is equal to the centripetal acceleration, and thus

mg = mv²/r

Substitute for v, we have

mg = m/r * (rw)²

mg = mr²w²/r

g = rw²

If we make w the subject of formula, we have

w² = g/r

w = √(g/r)

mg = 810

75 * g = 810

g = 810 / 75

g = 1.08 m/s²

w = √(g/r)

w = √(1.08 / 12.5)

w = √0.0864

w = 0.294 rad/s

Since the question asked us in rpm, we convert to rpm

0.294 * (60 / 2π)

2.52 revolution per minute.

Suppose a space vehicle with a rest mass of 150 000 kg travels past the International Space Station at a constant speed of 2.6 x 108 m/s with respect to the I.S.S. When an observer on the I.S.S. measures the moving vehicle, her measurement of the space vehicle length is 25.0 m. Determine the relativistic mass of the space vehicle. Determine the length of the space vehicle as measured by an astronaut on the space vehicle.

Answers

Answer:

m = 300668.9 kg

L₀ = 12.47 m

Explanation:

The relativistic mass of the space vehicle is given by the following formula:

[tex]m = \frac{m_{0}}{\sqrt{1-\frac{v^{2} }{c^{2}} } }[/tex]

where,

m = relativistic mass = ?

m₀ = rest mass = 150000 kg

v = relative speed = 2.6 x 10⁸ m/s

c = speed of light = 3 x 10⁸ m/s

Therefore

[tex]m = \frac{150000kg}{\sqrt{1-\frac{(2.6 x 10^{8}m/s)^{2} }{(3 x 10^{8}m/s)^{2}} } }[/tex]

m = 300668.9 kg

Now, for rest length of vehicle:

L = L₀√(1 - v²/c²)

where,

L = Relative Length of Vehicle = 25 m

L₀ = Rest Length of Vehicle = ?

Therefore,

25 m = L₀√[1 - (2.6 x 10⁸ m/s)²/(3 x 10⁸ m/s)²]

L₀ = (25 m)(0.499)

L₀ = 12.47 m

Suppose you wish to make a solenoid whose self-inductance is 1.8 mH. The inductor is to have a cross-sectional area of 1.6 x 10-3 m2 and a length of 0.066 m. How many turns of wire are needed

Answers

Answer:

The number of turns of the wire needed is 243 turns

Explanation:

Given;

self inductance of the solenoid, L = 1.8 mH

cross sectional area of the inductor, A = 1.6 x 10⁻³ m²

length of the inductor, l = 0.066 m

The self inductance of long solenoid is given by;

L = μ₀n²Al

where;

μ₀ is permeability of free space = 4π x 10⁻⁷ H/m

n is number of turns per length

A is the area of the solenoid

l is length of the solenoid

[tex]n = \sqrt{\frac{L}{\mu_o Al} } \\\\n = \sqrt{\frac{1.8*10^{-3}}{(4\pi*10^{-7}) (1.6*10^{-3})(0.066)} } \\\\n = \sqrt{13562583.184} \\\\n = 3682.74 \ turns/m[/tex]

The number of turns is given by;

N = nL

N = (3682.74)(0.066)

N = 243 turns

Therefore, the number of turns of the wire needed is 243 turns

The magnetic force per meter on a wire is measured to be only 45 %% of its maximum possible value. Calculate the angle between the wire and the magnetic field.

Answers

Answer:

27°

Explanation:

The force is proportional to the sine of the angle between the wire and the magnetic field. (See the ref.)

So theta = arcsin(0.45)

=27°

The angle between the wire and the magnetic field is 27°.

Calculation of the angle:

Since The magnetic force per meter on a wire is measured to be only 45 %

So here we know that The force should be proportional to the sine of the angle between the wire and the magnetic field

Therefore,

theta = arcsin(0.45)

=27°

Hence, The angle between the wire and the magnetic field is 27°.

Learn more about wire here: https://brainly.com/question/24733137

Which is true about refraction from one material into a second material with a greater index of refraction when the incident angle is, say, 30º? At the interface, the ray bends toward the normal.

Answers

Answer:

Explanation:

Refraction is defined as the bending of light rays as an incident ray pass from one medium to another. If the incident ray is passing from the media with low refractive index to a greater refractive index, the refracted ray tends to bend away from the normal.

Refractive index is the ratio of the sin of angle of incidence to the sine of angle of refraction.

n = sin i/sin r

For us to have a greater index of refraction, the denominator must be lesser than the numerator. This means that the angle of refraction must be smaller and if the angle of refraction must get smaller, this means that the refracted ray must bend towards the normal

What is the distance in m between lines on a diffraction grating that produces a second-order maximum for 775-nm red light at an angle of 62.5°?

Answers

Answer:

The distance is [tex]d = 1.747 *10^{-6} \ m[/tex]  

Explanation:

From the question we are told that  

       The order of maximum diffraction is  m =  2

         The wavelength is   [tex]\lambda = 775 nm = 775 * 10^{-9} \ m[/tex]

         The angle is  [tex]\theta = 62.5^o[/tex]

Generally the   condition for  constructive  interference for diffraction grating  is mathematically represented as

          [tex]dsin \theta = m * \lambda[/tex]

where  d is  the distance between the lines on a  diffraction grating

     So  

            [tex]d = \frac{m * \lambda }{sin (\theta )}[/tex]

substituting values  

           [tex]d = \frac{2 * 775 *1^{-9} }{sin ( 62.5 )}[/tex]

          [tex]d = 1.747 *10^{-6} \ m[/tex]

   

You would like to store 8.1 J of energy in the magnetic field of a solenoid. The solenoid has 620 circular turns of diameter 6.6 cm distributed uniformly along its 33 cm length.
A. How much current is needed?
_____________ A
B. What is the magnitude of the magnetic field inside the solenoid?
________________T
C. What is the energy density (energy/volume) inside the solenoid?
________________ kJ/m^3

Answers

Answer:

(a) The current needed is 56.92 A

(b) The magnitude of the magnetic field inside the solenoid is 0.134 T

(c) The energy density inside the solenoid is 7.144 kJ/m³

Explanation:

Given;

energy stored in the magnetic field of solenoid, E = 8.1 J

number of turns of the solenoid, N = 620 turns

diameter of the solenoid, D = 6.6 cm = 0.066 m

radius of the solenoid, r = D/2 = 0.033 m

length of the solenoid, L = 33 cm = 0.33 m

Inductance of the solenoid is given as;

[tex]L= \frac{\mu_o N^2 A}{l}[/tex]

where;

A is the area of the solenoid = πr² = π (0.033)² = 0.00342 m²

μ₀ is permeability of free space = 4π x 10⁻⁷ H/m

[tex]L= \frac{4\pi*10^{-7} *620^2 *0.00342}{0.33} \\\\L = 0.005 \ H[/tex]

(A). How much current needed

Energy stored in magnetic field of solenoid is given as;

[tex]E = \frac{1}{2} LI^2\\\\[/tex]

Where;

I is the current in the solenoid

[tex]E = \frac{1}{2} LI^2\\\\I^2 = \frac{2E}{L}\\\\I = \sqrt{\frac{2*8.1}{0.005}}\\\\ I = 56.92 \ A[/tex]

(B) The magnitude of the magnetic field inside the solenoid

B = μ₀nI

where;

n is number of turns per unit length

B = μ₀(N/L)I

B = (4π x 10⁻⁷)(620/0.33)(56.92)

B = 0.134 T

(C) The energy density (energy/volume) inside the solenoid

[tex]U_B = \frac{B^2}{2\mu_0} \\\\U_B = \frac{(0.134)^2}{2*4\pi*10^{-7}} \\\\U_B = 7143.54 \ J/m^3\\\\U_B = 7.144 \ kJ/m^3[/tex]

You obtain a 100-W light bulb and a 50-W light bulb. Instead of connecting them in the normal way, you devise a circuit that places them in series across normal household voltage. If each one is an incandescent bulb of fixed resistance, which statement about these bulbs is correct?

Answers

Answer:

When they are connected in series

     The  50 W bulb glow more than the 100 W bulb

Explanation:

From the question we are told that

     The power rating  of the first bulb is [tex]P_1 = 100 \ W[/tex]

      The power rating of the second bulb is  [tex]P_2 = 50 \ W[/tex]

     

Generally the power rating of the first bulb is mathematically represented as

      [tex]P_1 = V^2 R[/tex]

Where  [tex]V[/tex] is the normal household voltage which is constant for both bulbs

  So  

        [tex]R_1 = \frac{V^2}{P_1 }[/tex]

substituting values

        [tex]R_1 = \frac{V^2}{100}[/tex]

Thus the resistance of the second bulb would be evaluated as

       [tex]R_2 = \frac{V^2}{50}[/tex]

From the above calculation we see that

        [tex]R_2 > R_1[/tex]

This power rating of the first bulb can also be represented mathematically as  

        [tex]P_ 1 = I^2_1 R_1[/tex]

This power rating of the first bulb can also be represented mathematically as    

       [tex]P_ 2 = I^2_2 R_2[/tex]

Now given that they are connected in series which implies that the same current flow through them so

       [tex]I_1^2 = I_2^2[/tex]

This means  that

       [tex]P \ \alpha \ R[/tex]

So  when they are connected in series

     [tex]P_2 > P_1[/tex]

This means that the 50 W bulb glows more than the 100 \ W bulb

A toboggan is sliding down an icy slope. As it goes down, _________ does work on the toboggan and ends up converting __________ energy to _________ energy.

Answers

Answer:

As it goes down, weight does work on the toboggan and it ends up converting gravitational potential energy to kinetic energy.

1. weight

2. gravitational potential energy to kinetic energy.

Explanation:

As it goes down, weight does work on the toboggan and it ends up converting gravitational potential energy to kinetic energy.

work done by toboggan = weight × distance

W = mg and the distance is down the icy slope

By using law of conservation of energy, energy can neither be created nor destroyed, but can be conserve from one form to another in a closed system.

Toboggan converts gravitational potential energy (mgh) to kinetic energy(¹/₂mv²)

A negatively charged object is located in a region of space where the electric field is uniform and points due north. The object may move a set distance d to the north, east, or south. Write the three possible movements by the change in electric potential energy (Ue) of the object.

Answers

Answer:

the three possible movements by the change in electric potential energy (Ue) of the object are NORTH EAST SOUTH

Explanation:

This is because When the object moves south, the force is in the direction of the displacement, and positive work is done with decreasing electric potential energy.

The opposite is true if the particle moves north—that is, negative work is done with increasing electric potential energy.

No work is done and the electric potential energy is constant if the motion is perpendicular to the electric field.

It takes 144 J of work to move 1.9 C of charge from the negative plate to the positive plate of a parallel plate capacitor. What voltage difference exists between the plates

Answers

Answer:

151.58 V

Explanation:

From the question,

The work done in a circuit in moving a charge is given as,

W = 1/2QV..................... Equation 1

Where W = Work done in moving the charge, Q = The magnitude of charge, V = potential difference between the plates.

make V the subject of the equation

V = 2W/Q.................. Equation 2

Given: W = 144 J. Q = 1.9 C

Substitute into equation 2

V = 2(144)/1.9

V = 151.58 V

You are in the frozen food section of the grocery store and you notice that your hand gets cold when you place it on the glass windows of the display cases. Your friend says this is because coolness is transferred from the display case to your hand. What do you think?

Answers

Answer:

I think my friend got it all wrong, as coolness can not be transferred but heat was actually transferred between my hand and the glass windows

Explanation:

In thermodynamics, coolness can not be transferred, only heat can be transferred

Here is how the mechanism of why i felt cold works, my body gave out heat, hence there was heat transfer from a region of high to a low heat region, equilibrium was reached and I started feeling the coolness in my hands.

A sinusoidal wave travels along a string. The time for a particular point to move from maximum displacement to zero is 0.17 s. What are the (a) period and (b) frequency? (c) The wavelength is 1.5 m; what is the wave speed?

Answers

Answer:

31

Explanation:

A Buchner funnel uses _______ when separating a(n) _______ by filtration.

Answers

Explanation:

A Buchner funnel uses perforatet glass plate when separating a(n) solide from liquid by filtration.

[tex]hope \: this \: helps[/tex]

A typical electric oven has two separate heating elements: one on top and one on the bottom. The bottom element is used for baking while the top element is used to broil foods. When only the bottom element is active and glowing red hot, what heat transfer mechanisms carry most of the heat to the food in the oven?

Answers

Answer:

Convection and Radiation mechanisms carry most of the heat

Explanation:

This is because Convection proceeds strongy as heated air rises from the hot element while Radiation is also strong, although the material of the cooking pots will how effective it is.

which example describes a nonrenewable resource?
A. everyone in our neighborhood uses solar panels to generate electricity to run their pool pumps.
B. once up and running, the power plant will convert the energy from tides and waves into electricity.
C. there is a long stretch of land in the desert with many windmills that are able to generate enough electricity to run the town.
D. there are drilling platforms all along the coast that are used to drill for natural gas that can be used to generate electricity.

Answers

Answer:

D. There are drilling platforms all along the coast that are used to drill for natural gas that can be used to generate electricity

Explanation:

Solar panels are a renewable resource because the sun will not run out. The power plant uses water, so it is also a renewable resource. Windmills use wind, and wind will not run out so it is a renewable resource. However, natural gas and oil are not renewable resources because they will run out one day.

Other Questions
Dilate the line segment AB with endpoints A(3,1) and B(4,2) about the origin with a scale factor 3. Find the endpoints of the dilated line segment. Question 24 options: A(3,1), B(12,6) A(0,4), B(7,1) A(9,3), B(4,2) A(9,3), B(12,6) You want employees to know that they can talk to retirement planning specialists. Which of the following statements is most likely persuasive to the most employees?a) Make your financial dreams come true. Talk one-on-one with our expert retirement planners to decide which retirement packages make the most sense for you.b) Learn about your options for retirement income. Talk one-on-one with our expert retirement planners to decide which retirement packages make the most sense for you.c) Learn about your options for retirement income by talking one-on-one with our expert retirement planners, who can help you decide which retirement packages make the most sense for you based on your retirement goals and hopes.d) Learn about your options for retirement income. Meet with our retirement planners to find out their recommendations for your retirement package. Which statement is true about oxygen-17 and oxygen-18? A Their atoms have identical masses B They do not have the same number of protons C They have different numbers of electrons D They are isotopes of oxygen The ___________ button represents the start of a hyperlink in Table of contents. Which behavior is an instinct?A.pigeon begins visiting a local park to look for dropped crumbs.B. A pet dog sits and waits for a treat after its daily walk.C. A deer gets used to hikers walking by and stops running away.D. A newborn piglet drinks its mother's milk. How did the corporate culture of Enron contribute to its bankruptcy? Did Enrons bankers, auditors, and attorneys contribute to Enrons demise? If so, how? What role did the companys chief financial officer play in creating the problems that led to Enrons financial problems? Collaborative learning activities:__________.A) Can empower students B) Can give students ownership of their learning C) Allow students and teachers to become partners in learning D) Are best facilitated in lecture halls Kite EFGH is inscribed in a rectangle such that F and H are midpoints and EG is parallel to the side of the rectangle. Which statements describes how the location of segment EG affects the area of EFGH? A.) the area of EFGH is 1/4 of the area of the rectangle if E and G are not midpoints B.) The area of EFGH is 1/2 of the area of the rectangle only if E and G are midpoints C.) The area of EFGH is always 1/2 of the area of the rectangle. D.) The area of EFGH is always 1/4 of the area of the rectangle. how do cells and tissues specialize? Youre rummaging around your great grandmothers attic when you find five short chains each made of four gold links. It occurs to you that if you combined them all into one big loop of 20 links, youd have an incredible necklace. So you bring it into a jeweler, who tells you the cost of making the necklace will be $10 for each gold link that she has to break and then reseal. How much will it cost? CAN SOMEONE HELP ME PLEASE!? After chasing its prey, a cougar leaves skid marks that are 236 m in length. Assuming the cougar skidded to a complete stop with a constant acceleration of -2.87 m/s^2, identify the speed of the cougar before it began to skid. Some systems analysts maintain that source documents are unnecessary. They say that an input can be entered directly into the system, without wasting time in an intermediate step. Do you agree? Can you think of any situations where source documents are essential? Which molecule is an aromatic hydrocarbon? Two central carbons are double bonded to each other; the pair is single bonded to C H 3 above left and right, and to H below left and right. A skeletal model has line segments that slant up, down, up, and up again in a triple bond. Two hexagon rings with carbons at each corner have alternating double bonds and share one side. H is single bonded to all the C's except the ones on the shared side. Two carbons are triple bonded to each other; each has a single bond to the outside. help me please i jave 10 min left HELP Locus Company has total fixed costs of $117,000. Its product sells for $51 per unit and variable costs amount to $26 per unit. Next year Locus Company wishes to earn a pretax income that equals 50% of fixed costs. How many units must be sold to achieve this target income level Rationalise the denominator and simplifyA) 2sqrt3/sqrt12 B) 5sqrt7/sqrt35 What is the solution to the system of linear equations shown in the graph below? -(3,4)-(0,-3)- infinite solutions -no solutions Fischer Company identified the following activities, costs, and activity drivers.Activity Expected Costs Expected Activity Handling parts $425,000 25,000 parts in stockInspecting product $390,000 940 batchesProcessing purchase orders $220,000 440 orders Designing packaging $230,000 5 models 1. Compute a plantwide overhead rate assuming the company assigns overhead based on 70,000 budgeted direct labor hours.B. Compute separate rates for each of the four activities using the activity-based costing. Factorize a +3ab - 5ab - 15b. Find the value of x in the triangle shown below