what is the total amount of energy stored in a 12- v , 60 a⋅h car battery when it is fully charged?

Answers

Answer 1

The total amount of energy stored in the battery when fully charged is 3240 kJ

Given DataVoltage = 12 voltscurrent = 60Ah

We know that the expression for power is given as

Power = IV

Power is also energy per time.

P = IV = E/t

Making E the subject of the formula we have

E = V It

E = (12 V)•(75 Ah)•(3600 s / h)

E = 3,240,000 J

E = 3240 kJ

Learn more about energy here:
https://brainly.com/question/21150914

#SPJ1


Related Questions

La distancia entre los centros de la Tierra y la Luna es de 380000 km qué otros datos son necesarios para calcular la velocidad de giro de la Luna en torno a la Tierra a partir de estos datos calcula la velocidad orbital la velocidad angular y el periodo de revolución de la luna

Answers

The orbital speed of the Moon around the Earth is approximately 1022 m/s. the angular speed of the Moon around the Earth is approximately 2.69 x [tex]10^-6[/tex] rad/s. the period of the Moon's revolution around the Earth is approximately 2.36 x 10⁶ seconds or 27.3 days (since there are approximately 86,400 seconds in a day).

To calculate the rate of rotation of the Moon around the Earth, we need to know the mass of the Moon and the gravitational constant (G). The mass of the Moon is approximately 7.342 x 10²² kg, and the gravitational constant is approximately 6.674 x 10⁻¹¹ m³/kg/s².

Using these values, we can calculate the orbital speed, angular speed, and period of the Moon's revolution as follows:

Orbital speed: The orbital speed of the Moon around the Earth can be calculated using the formula:

v = √(G(M+E)/r)

where v is the orbital speed, G is the gravitational constant, M is the mass of the Moon, E is the mass of the Earth, and r is the distance between their centers.

Plugging in the values, we get:

v = √(6.674 x 10⁻¹¹ x (7.342 x 10²² + 5.972 x 10²⁴) / (380,000 x 1000)) = 1022 m/s

Therefore, the orbital speed of the Moon around the Earth is approximately 1022 m/s.

Angular speed: The angular speed of the Moon around the Earth can be calculated using the formula:

ω = v/r

where ω is the angular speed and r is the distance between the centers of the Earth and the Moon.

Plugging in the values, we get:

ω = 1022 / (380,000 x 1000) = 2.69 x [tex]10^-6[/tex] rad/s

Therefore, the angular speed of the Moon around the Earth is approximately 2.69 x [tex]10^-6[/tex] rad/s.

Period of moon revolution: The period of the Moon's revolution around the Earth can be calculated using the formula:

T = 2πr/v

where T is the period, r is the distance between the centers of the Earth and the Moon, and v is the orbital speed.

Plugging in the values, we get:

T = 2π x 380,000 x 1000 / 1022 = 2.36 x [tex]10^6[/tex] s

Therefore, the period of the Moon's revolution around the Earth is approximately 2.36 x 10⁶ seconds or 27.3 days (since there are approximately 86,400 seconds in a day).

Learn more about orbital speed

https://brainly.com/question/541239

#SPJ4

Translated Question ;

The distance between the centers of the Earth and the Moon is 380,000 km, what other data are needed to calculate the rate of rotation of the Moon around the Earth, from these data, calculate the orbital speed, the angular speed, and the period of moon revolution

clay balls collide in mid air and stick together. the first has mass 3.55 kg and collides with a second that is initially at rest. the composite system moves with a speed equal to one-third the original speed of the 3.55 kg ball. what is the mass of the second sphere? answer in units of kg.

Answers

The mass of the second sphere is 7.1 kg. This is calculated using conservation of momentum and given conditions.

To find the mass of the second sphere, we must use the conservation of momentum. The initial momentum of the system is equal to the final momentum of the system.

The initial momentum is only from the first sphere, as the second is at rest. After the collision, the composite system moves with one-third the original speed.

By setting up the momentum equation (m1*v1 = (m1 + m2)*(1/3)v1), we can solve for the mass of the second sphere (m2). Plugging in the given values, we find that the mass of the second sphere is 7.1 kg.

For more such questions on mass , click on:

https://brainly.com/question/86444

#SPJ11

For the series ac network in Fig 4.84, determine:

A) The reactance of the capacitor.

B) The total impedance and impedance diagram

C) The current I

D) The voltages Vr and Vc using Ohm's Law

E) The voltages Vr and Vc using the voltage divider rule

F) the power of R

G) the power supplied by the voltage source e.

H) The phasor Diagram

I) The Fp of the networJ) Current and voltages in the time domain.

e = sqrt(2) * 120sin 1000t

R = 2kOhms

Xc = 0.1 uf

Answers

A) The reactance of the capacitor is 159.2 ohms.

B) The total impedance is 2k - j159.2 ohms and the impedance diagram is a line segment from (0,0) to (2000,-159.2).

C) The current I is 59.94 mA at an angle of -4.52 degrees.

D) Vr = IR = 0.1199 V, Vc = IXc = -15.92 V.

E) Vr = e * R / (R + Xc) = 5.598 V, Vc = e * Xc / (R + Xc) = -744.9 V.

F) The power of R is 0.2398 mW.

G) The power supplied by the voltage source e is 0.2398 mW.

H) The phasor diagram is a right triangle with legs 5.598 V and -744.9 V, and hypotenuse 744.9 V.

I) The Fp of the network is 0.999.

J) The current and voltages in the time domain are i = 59.94sin(1000t - 4.52 degrees), Vr = 0.1199sin(1000t), and Vc = -15.92sin(1000t + 85.48 degrees).

A) The reactance of the capacitor can be calculated using the formula X = 1/(2pif×C), where f is the frequency of the source and C is the capacitance of the capacitor.

B) The total impedance can be calculated using the formula Z = √(R² + Xc²). The impedance diagram can be drawn by representing the resistance and reactance as the horizontal and vertical components of a right-angled triangle, respectively.

C) The current I can be calculated using Ohm's Law, I = V/Z, where V is the voltage of the source.

D) The voltages Vr and Vc using Ohm's Law can be calculated by multiplying the current I by the resistance R and reactance Xc, respectively.

E) The voltages Vr and Vc using the voltage divider rule can be calculated by dividing the voltage of the source by the total impedance and the reactance of the capacitor, respectively.

F) The power of R can be calculated using the formula P = Vr²/R.

G) The power supplied by the voltage source e can be calculated using the formula P = Vrms Irms cos(theta), where Vrms and Irms are the RMS values of the voltage and current, respectively, and theta is the phase angle between them.

H) The phasor diagram can be drawn by representing the voltage and current as vectors with magnitudes equal to their RMS values and directions determined by their phase angles.

I) The power factor (Fp) of the network can be calculated using the formula Fp = cos(theta), where theta is the phase angle between the voltage and current.

J) Current and voltages in the time domain can be obtained by using the phasor representation and converting the phasors back to time domain using the inverse phasor transform.

To learn more about reactance of the capacitor, here

https://brainly.com/question/2436852

#SPJ4

The voltage applied to the circuit shown in Fig. 9.5 at t = 0 is 20 cos(800t + 25°) V. The circuit resis- tance is 80 and the initial current in the 75 mH inductor is zero. a) Find i(t) for t = 0. b) Write the expressions for the transient and steady-state components of i(t). c) Find the numerical value of i after the switch has been closed for 1.875 ms. d) What are the maximum amplitude, frequency (in radians per second), and phase angle of the steady-state current? e) By how many degrees are the voltage and the steady-state current out of phase?

Answers

a) At t=0, i(t)=0A since the initial current in the 75mH inductor is zero.
b) i(t) = itransient(t) + isteady-state(t)
c) i(1.875ms) ≈ 0.224 A
d) Maximum amplitude: ≈ 0.25 A, Frequency: 800 rad/s, Phase angle: ≈ -155°
e) Voltage and steady-state current are out of phase by 180° - 155° = 25°.


In this circuit problem, we are given a voltage source, resistance, and inductor.

To find the transient and steady-state components of the current, we need to solve the differential equation governing the R-L circuit.

Once we have the general expression for i(t), we can find the transient and steady-state components, and analyze other parameters such as amplitude, frequency, phase angle, and out of phase degrees.


Summary:
For the given R-L circuit with an applied voltage, we found the initial current at t=0, the transient and steady-state components of the current, the numerical value of the current after a specific time, and analyzed the maximum amplitude, frequency, and phase angle of the steady-state current. We also determined the degrees by which the voltage and steady-state current are out of phase.

Learn more about amplitude click here:

https://brainly.com/question/3613222

#SPJ11

A large locomotive with a mass 4 times that of the smaller motionless railroad car collides and couples together. What is their combined speed after the collision?

collision?

Answers

The combined speed of the locomotive and railroad car after the collision is one-fifth of the initial speed of the locomotive.

The combined speed of the locomotive and railroad car after the collision can be determined using the law of conservation of momentum. According to this law, the total momentum of a system before a collision is equal to the total momentum of the system after the collision, provided that no external forces act on the system.

Assuming that the railroad car is initially at rest, the momentum of the locomotive before the collision is:

p1 = m1v1

where m1 is the mass of the locomotive and v1 is its velocity.

After the collision, the locomotive and railroad car are coupled together and move with a common velocity v2. The momentum of the combined system after the collision is:

p2 = (m1 + m2) v2

where m2 is the mass of the railroad car.

Since momentum is conserved, we can set p1 = p2 and solve for v2:

m1v1 = (m1 + m2) v

v2 = (m1v1) / (m1 + m2)

Given that the mass of the locomotive is four times that of the railroad car, we can write m1 = 4m2. Substituting this into the equation above, we get:

v2 = (4m2v1) / (4m2 + m2)

v2 = v1 / 5

Therefore, the combined speed of the locomotive and railroad car after the collision is one-fifth of the initial speed of the locomotive.

Learn more about combined speed

https://brainly.com/question/14421054

#SPJ4

calculate the resistance of a bulb that draws 0.6 a of current with a potential difference of 3 v.

Answers

The  resistance of the bulb can be calculated using Ohm's Law, which states that resistance is equal to voltage divided by current.

Therefore, the resistance of the bulb can be calculated as follows:
[tex]Resistance = \frac{Voltage}{Current}[/tex]
[tex]Resistance =\frac{3V}{0.6 A}[/tex]
Resistance = 5 ohms
This means that the resistance of the bulb is 5 ohms, which indicates how much the bulb resists the flow of electric current.

The higher the resistance, the more difficult it is for the current to flow through the bulb.
By using Ohm's Law, we can easily calculate the resistance of a bulb that draws a certain amount of current and has a specific potential difference.

This information is important for understanding the behavior of electrical circuits and for selecting the right components for a particular application.

For more information on Ohm's law kindly visit to

https://brainly.com/question/1247379

#SPJ11

Th e engines of an airplane exert a force of1.2 3 102kN [E] during takeoff . Th e mass of theairplane is 42 t (1 t 5 103kg). (2.2) T/I A(a) Calculate the acceleration produced by theengines.(b) Calculate the minimum length of runway neededif the speed required for takeoff on this runwayis 71 m/s.

Answers

(a)The acceleration produced by the engines during takeoff is 2.93 m/s^2.

(b)The minimum length of runway needed for takeoff is approximately 1312 meters.

How to calculate the acceleration produced by the engines?

(a) To calculate the acceleration produced by the engines, we can use Newton's second law of motion, which states that force is equal to mass times acceleration (F=ma).

We have the force (F) exerted by the engines and the mass (m) of the airplane, so we can rearrange the formula to solve for acceleration (a):

a = F/m

a = (1.23 x 10^2 kN)/(42 x 10^3 kg)

a = 2.93 m/s^2

Therefore, the acceleration produced by the engines during takeoff is 2.93 m/s^2.

How to calculate the minimum length of runway?

(b) To calculate the minimum length of runway needed, we can use the formula:

d = (v^2)/(2a)

where d is the distance required for takeoff, v is the speed required for takeoff, and a is the acceleration produced by the engines.

d = (71 m/s)^2 / (2 x 2.93 m/s^2)

d = 1311.8 m

Therefore, the minimum length of runway needed for takeoff is approximately 1312 meters.

Learn more about acceleration

brainly.com/question/12550364

#SPJ11

A UB Shuttle traveling at 43 km/hr skids 2 m before stopping when the driver applies the brakes. How far will the shuttle skid if it is traveling at 85 km/hr when the brakes are applied

Answers

The shuttle will skid approximately 31.6 meters before stopping if it is traveling at 85 km/hr when the brakes are applied.

We can use the formula:

[tex]d = (v^2 - u^2)/(2a)[/tex]

where

d is the distance,

u is the initial velocity,

v is the final velocity, and

a is the acceleration.

First, let's convert the speeds to meters per second:

43 km/hr = 11.9 m/s

85 km/hr = 23.6 m/s

Now we can use the formula to calculate the distance:

For the first case:

u = 11.9 m/s, v = 0 m/s (since the shuttle stops), and a = unknown

[tex]2 m = (0^2 - 11.9^2)/(2a)[/tex]

[tex]2 m = (0^2 - 11.9^2)/(2a)[/tex]

[tex]a = (11.9^2)/(2*2)[/tex]

  = 35.515 m/s²

Now we can use the same formula for the second case:

u = 23.6 m/s,

v = 0 m/s, and

a = 35.515 m/s²

[tex]d = (23.6^2 - 0^2)/(2*35.515)[/tex]

   = 31.6 meters

Therefore, the shuttle will skid approximately 31.6 meters before stopping if it is traveling at 85 km/hr when the brakes are applied.

To know more about initial velocity refer here

brainly.com/question/9365999#

#SPJ11

the isotropy of the cosmic microwave background radiation (same temperature in all directions) indicates that

Answers

The isotropy of the cosmic microwave background radiation (CMB) indicates that the universe was once in a hot, dense, and homogeneous state.

This observation supports the Big Bang theory, which posits that the universe began as a singularity and has been expanding and cooling ever since. The CMB is the relic radiation left over from the early universe, and its isotropy reflects the uniformity of conditions at that time.

The nearly uniform temperature of the CMB across all directions (approximately 2.73 Kelvin) suggests that the early universe underwent a rapid period of expansion, known as cosmic inflation. This expansion stretched out any initial irregularities, resulting in the observed isotropy. The isotropic nature of the CMB is a strong piece of evidence for the inflationary model of the universe.

In conclusion, the isotropy of the cosmic microwave background radiation supports the idea that the universe began in a hot, dense state and underwent a rapid period of inflation, leading to its current large-scale uniformity. This evidence corroborates the Big Bang theory and provides insight into the early history of the universe.

Learn more about cosmic microwave background radiation (CMB) here: https://brainly.com/question/23428619

#SPJ11

Verify that Psi (x) = Nxe^-ax^2is an energy eigenfunction for the simple harmonic oscillator with energy eigenvalue 3hw/2 provided a = mw2h.

Answers

The energy eigenfunction oscillates at the same frequency as the oscillator's motion and describes the probability density of locating the oscillator at a specific location x.

The energy eigenfunction for a simple harmonic oscillator with energy eigenvalue [tex]3hw/2 and a = mw2h[/tex] is given by:

[tex]ψ(x) = NHe(n)(sqrt(mw/h)) * exp(-1/2(mw/h)x^2)[/tex]

where N is a normalization constant, He(n) is the nth Hermite polynomial, and x is the position of the oscillator. The energy eigenvalue of a simple harmonic oscillator is proportional to its frequency and the amplitude of its motion. In this case, the energy eigenvalue is [tex]3hw/2[/tex], where h is Planck's constant, w is the angular frequency of the oscillator, and m is its mass.

The parameter[tex]a = mw2h[/tex] is related to the spring constant of the oscillator. The energy eigenfunction describes the probability density of finding the oscillator at a particular position x, and it oscillates with the same frequency as the oscillator's motion.

To know more about oscillator's motion click here:

https://brainly.com/question/9435261

#SPJ11

explain why the two fermi levels move toward the middle of the gap at high temperature; one up and one down.

Answers

Answer:

In a semiconductor material, there exists a valence band and a conduction band, with an energy gap between them. At absolute zero temperature, all the electrons in the valence band are completely filled and there are no free electrons in the conduction band. Under these conditions, the Fermi level lies in the valence band.

As temperature is increased, some of the valence band electrons acquire enough thermal energy to be excited across the energy gap into the conduction band, leaving behind holes in the valence band. With increased thermal energy, the number of electrons and holes available for conduction increases. Electrons and holes are both charge carriers that are involved in conduction through a semiconductor material.

The Fermi level is the energy level at which there is a 50% probability of finding an electron with that energy level. At high temperatures, as more and more electrons are excited across the energy gap into the conduction band, the concentration of electrons in the conduction band increases. This causes the Fermi level to move upward in the conduction band, as more electrons are present in energy states closer to its energy level.

At the same time, the number of holes in the valence band also increases due to the excitation of electrons into the conduction band. As a result, the concentration of holes in the valence band decreases. This causes the Fermi level to move downward toward

An inductor is connected to an AC source. If the inductance of the inductor is 0.556 H and the output voltage of the source is given by Av = (120 V) sin((21.51 5-?)t], determine the following.

(a) the frequency of the source in Hz)
(b) the rms voltage across the inductor (in V)
(c) the inductive reactance of the circuit (in )
(d) the rms current in the inductor in A

Answers

a. The frequency of the source is: 3.42 Hz

b. The rms voltage across the inductor is: 84.85 V

c. The inductive reactance of the circuit is: 11.97 Ω

d. The rms current in the inductor is: 7.09 A

(a) To find the frequency of the source in Hz, first, identify the angular frequency (ω) from the given output voltage equation Av = (120 V) sin((21.51 5-?)t). Assuming the equation should be Av = (120 V) sin(21.515t), we have ω = 21.515 rad/s. Now, use the formula:
Frequency (f) = ω / (2π)
f = 21.515 / (2π) ≈ 3.42 Hz

(b) The rms voltage across the inductor is the same as the rms voltage of the AC source since they are connected in series. To calculate it, use the formula:
Vrms = V_peak / √2
Vrms = 120 V / √2 ≈ 84.85 V

(c) To find the inductive reactance of the circuit (X_L), use the formula:
X_L = ωL
X_L = 21.515 * 0.556 H ≈ 11.97 Ω

(d) To find the rms current in the inductor (I_rms), use Ohm's Law:
I_rms = Vrms / X_L
I_rms = 84.85 V / 11.97 Ω ≈ 7.09 A

To know more about "Angular frequency" refer here:

https://brainly.com/question/3654452#

#SPJ11

Nellie tosses a ball upward at an angle. Assuming no air resistance, which component of velocity changes with time? A) the vertical component B) the horizontal component
C) both of these D) neither of these

Answers

When Nellie tosses a ball upward at an angle,  Assuming no air resistance, the component of velocity changes with time A) the vertical component

This is because the force of gravity is acting on the ball, pulling it downward. As the ball moves upward, its vertical velocity decreases until it reaches its maximum height, where its vertical velocity becomes zero. Then, as the ball falls back down, its vertical velocity increases again.

On the other hand, the horizontal component of velocity remains constant throughout the motion of the ball, assuming no external forces act upon it. This is because there are no forces acting in the horizontal direction to change the ball's velocity. Therefore, When Nellie tosses a ball upward at an angle,  Assuming no air resistance, the component of velocity changes with time A) the vertical component

Learn more about gravity here:

https://brainly.com/question/14874038

#SPJ11

Manipulate the mass of the puck by dragging the Mass bar to the right for increasing the mass and to the left for decreasing it. What changes do
you see in the speed of the puck? Which principle works behind this change?

Answers

Answer:

The positive charges point away from each other

Explanation:

Arrows point away from the positive charge and toward the negative charge.

Final answer:

Increasing the mass of the puck decreases its speed, while decreasing the mass increases its speed. This change is explained by the principle of conservation of momentum.

Explanation:

When the mass of a puck is increased, its speed decreases, and when the mass is decreased, the speed increases. This is known as the principle of conservation of momentum, which states that the total momentum of a system remains constant when there is no external force acting on it. The momentum of an object is the product of its mass and velocity, so when the mass of the puck is increased, the momentum decreases, resulting in a decrease in speed. Similarly, when the mass is decreased, the momentum increases, leading to an increase in speed.

Learn more about Conservation of momentum here:

https://brainly.com/question/32309314

#SPJ3

how many of each, friction plates and steel plates, are commonly used in a multidisc clutch?

Answers

The number of each type of plate used in a clutch can depend on factors such as the size of the clutch, the torque capacity required, and the intended use.

The number of friction plates and steel plates used in a multidisc clutch can vary depending on the design of the clutch and the intended use. However, in general, multidisc clutches have multiple alternating layers of friction plates and steel plates stacked together.

For example, a typical high-performance multidisc clutch for a sports car might have around 8 to 10 friction plates and 7 to 9 steel plates. However, the exact number and thickness of plates can vary based on the specific design and requirements of the clutch.

It's important to note that the number and arrangement of plates can have a significant impact on the clutch's performance characteristics, such as its engagement feel and durability.

To learn more about friction, click here:

https://brainly.com/question/29607980

#SPJ11

what is the speed of a transverse wave in a rope of length 3.5 m and mass 35 g under a tension of 420 n?

Answers

The speed of the transverse wave in the given rope is approximately 64.8 m/s.

What is the velocity of a transverse wave?

The speed of a transverse wave in a rope of length 3.5 m and mass 35 g under a tension of 420 N can be calculated using the formula v = sqrt(T/μ), where T is the tension, μ is the linear density (mass per unit length) of the rope, and v is the speed of the wave.

To find the linear density, we divide the mass of the rope by its length:

μ = m/L = 0.035 kg / 3.5 m = 0.01 kg/m

Now we can calculate the speed of the wave:

v = sqrt(T/μ) = sqrt(420 N / 0.01 kg/m) = 64.8 m/s

Therefore, the speed of the transverse wave in the given rope is approximately 64.8 m/s.

Learn more about transverse wave

brainly.com/question/13863548

#SPJ11

5. determine the turns ratio of an ideal transformer that will step a voltage of 480 v down to 277 v. does it bother you that this is not the turns ratio is not an integer? (1.734:1 and no!)

Answers

The ratio of a transformer's turns between its primary and secondary coils is known as the turns ratio. It comes from:

turns ratio is equal to the product of the turns in the primary and secondary coils.

We may use the following equation to determine the relationship between the voltages since, in an ideal transformer, the voltage in the secondary coil is proportional to the turns ratio:

Turns ratio: V_secondary / V_primary

Given that we need to step down a voltage from 480 V to 277 V, the following numbers may be entered into the equation above to determine the turns ratio:

Turns ratio = 277 V/480 V

turns ratio equals 0.57

Consequently, the quantity of turns in.

learn more about primary and secondary coil here:

https://brainly.com/question/12000388

#SPJ11

what are the angular diameters of the orbits of jupiter's four galilean satellites, as seen from earth at closest approach (assuming, for definiteness, that opposition occurs near perihelion)?

Answers

The angular diameters of Jupiter's four Galilean satellites - Io, Europa, Ganymede, and Callisto - vary depending on their distance from Jupiter and their position in their orbits.

At closest approach, when opposition occurs near perihelion, the angular diameters of the Galilean satellites as seen from Earth are:

- Io: 0.63 arcseconds
- Europa: 0.52 arcseconds
- Ganymede: 0.83 arcseconds
- Callisto: 0.52 arcseconds

It's important to note that these values are approximate and can vary slightly depending on factors such as the observer's location and the specific positions of Jupiter and its moons at the time of observation. These values are based on the assumption that Earth is at its closest distance to Jupiter during opposition near perihelion.

Learn more about Galilean satellites here:

brainly.com/question/29345280

#SPJ11

hat can you say about the series an in each of the following cases? (a) lim n → [infinity] an 1 an = 2 absolutely convergent conditionally convergent divergent cannot be determined

Answers

Based on the given information, we can apply the ratio test to determine the convergence of the series. Using the ratio test, we have:

lim n → [infinity] |an+1/an| = lim n → [infinity] |1/(an/2)| = 1/2

Since the limit is less than 1, the series is absolutely convergent. Therefore, the answer is:

(a) The series an is absolutely convergent.
Based on your question, it seems like you're asking about the convergence of a series . Let's analyze the given information:

1. Limit as n approaches infinity: + 1 / = 2

To determine whether the series is convergent or divergent, we can use the ratio test. The ratio test states that if the limit as n approaches infinity of |+1 / | is:

- Less than 1, the series is absolutely convergent.
- Greater than 1, the series is divergent.
- Equal to 1, the test is inconclusive, and we cannot determine the convergence.

Step 1: Apply the ratio test
Take the limit as n approaches infinity of |+1 / |:

lim n → ∞ (|+1 / |) = 2

Step 2: Compare the limit value to 1
Since the limit is greater than 1, we can conclude that the series is divergent.

Learn more about limit value here:-brainly.com/question/28505667

#SPJ11

a light meter reports that a camera setting of 1125s at f/5.6 will give a correct exposure. but the photographer wishes to use f/16 to increase the depth of field. part a what should the shutter speed be? express your answer using two significant figures and include the appropriate units.

Answers

To determine the appropriate shutter speed when using f/16 instead of f/5.6, we need to use the exposure triangle.

Increasing the aperture by two stops (from f/5.6 to f/16) decreases the amount of light by four times, so we need to compensate by increasing the shutter speed by two stops as well. Therefore, the new shutter speed should be 4500s (1125s x 2 x 2), expressed with two significant figures, or 1/4500s (or 1/4000s or 1/5000s, depending on the camera's available settings).
To find the correct shutter speed for a camera setting of f/16, given that a light meter reports a correct exposure at 1125s and f/5.6, we will use the exposure value (EV) formula:
EV = log2(aperture² / shutter speed)
First, we need to find the exposure value (EV) for the initial settings:
EV_initial = log2((5.6)² / 1125s)

Next, we need to calculate the shutter speed for f/16 while maintaining the same exposure value:
aperture² / shutter speed = 2^(EV_initial)
(16)² / shutter speed = 2^(EV_initial)
Now, we solve for the shutter speed:
shutter speed = (16)² / 2^(EV_initial)
Use the EV_initial we calculated from the initial settings:
shutter speed = (16)² / 2^(log2((5.6)² / 1125s))
Shutter speed ≈ 362s
The shutter speed should be approximately 362s to achieve a correct exposure at f/16, expressed using two significant figures and including the appropriate units.

Visit here to learn more about speed:

brainly.com/question/28224010

#SPJ11

To analyze and design a passive, second-order bandpass filter using a series RLC circuit.

A bandpass filter is needed for an equalizer, a device that allows one to select the level of amplification of sounds within a specific frequency band while not affecting the sounds outside that band. The filter should block frequencies lower than 1.3 kHz and have a resonant frequency of 3.6 kHz. A 4.0 micro-F capacitor and any needed resistors and inductors are available to be used in the filter. Design and analyze the RLC circuit that will make this bandpass filter.

A) The highest frequency of the passband

What is the upper cutoff frequency for the filter?

B) The resistance and inductance required

Find the values of the resistance, R, and inductance, L, required for the bandpass filter to block frequencies lower than 1.3 kHz and have a resonant frequency of 3.6 kHz.

Answers

The values of R and L required for the bandpass filter to block frequencies lower than 1.3 kHz and have a resonant frequency of 3.6 kHz are R = 110.27 Ω and L = 1.1 mH.

To design a passive, second-order bandpass filter using a series RLC circuit, we can start with the general equation for a second-order bandpass filter:

H(s) = (s / (Qω_0)) / (s² + s(Q/ω_0) + 1)

where s is the complex frequency variable, ω_0 is the resonant frequency, and Q is the quality factor. We want to block frequencies lower than 1.3 kHz and have a resonant frequency of 3.6 kHz, so we can choose:

ω₀ = 2πf₀

     = 2π(3.6 kHz)

     = 22.62 kHz

[tex]f_L[/tex] = 1.3 kHz

[tex]f_H[/tex] = ?

To find the upper cutoff frequency, we can use the formula:

[tex]f_H[/tex] = ω₀ / (2πQ)

where Q = ω₀ / (R√C/L) is the quality factor.

Since we want to block frequencies lower than 1.3 kHz, we can choose a high Q value to make the cutoff frequency as close to the resonant frequency as possible. Let's choose Q = 10.

[tex]f_H[/tex] = ω₀ / (2πQ)

    = 22.62 kHz / (2π(10))

    = 360 Hz

So the upper cutoff frequency is 360 Hz.

To find the values of R and L required for the bandpass filter, we can use the following equations:

R = Q / (ω₀C)

L = 1 / (ω₀²C)

  = 1 / ((2πf₀)²C)

Substituting the values we have chosen, we get:

R = 10 / (2π(3.6 kHz)(4.0 μF))

  = 110.27 Ω

L = 1 / ((2π(3.6 kHz))^2(4.0 μF)) = 1.1 mH

So the values of R and L required for the bandpass filter to block frequencies lower than 1.3 kHz and have a resonant frequency of 3.6 kHz are R = 110.27 Ω and L = 1.1 mH.

We can use a 4.0 μF capacitor along with these values to construct the bandpass filter.

To know more about refer RLC circuit here

brainly.com/question/13092725#

#SPJ11

if gravity is spacetime rather than a force, could other forces be their own version of space or time?

Answers

There is little chance that additional forces could be simply translated into spacetime in the same manner that gravity is.

The general relativity theory proposes that gravity is the bending of spacetime brought on by the existence of mass and energy. This theory describes gravity.

The strong nuclear force, the weak nuclear force, and other basic forces are all explained by various theories that do not use the idea of spacetime curvature in the same manner that general relativity does.

 

The basic forces are mediated through objects referred to as bosons in quantum mechanics, which explains how small-scale particles behave. Every force has a certain sort of boson attached to it, and depending on how these bosons interact with other particles, the forces exhibit various behaviours.

It is still totally speculative to say that other basic forces may be construed as properties of spacetime in a unified theory of physics at this time. It is also important to keep in mind that the idea of spacetime is specific to relativity and cannot be used in other branches of physics.

There is therefore little chance that additional forces could be simply translated into spacetime in the same manner that gravity is.

To learn more about gravity at

brainly.com/question/14874038?referrer=searchResults

#SPJ4

The earth's radius is 6.37×106m; it rotates once every 24 hours. What is the earth's angular speed?

Answers

The Earth's angular speed is 7.27×10⁻⁵ radians per second.

The angular speed, represented by the Greek letter omega (ω), is defined as the change in the angle over time. In the case of the Earth, it makes one full rotation (2π radians) in 24 hours, or 86,400 seconds. Thus, we can calculate the angular speed as:

ω = Δθ/Δt

where Δθ = 2π radians and Δt = 86,400 seconds.

ω = (2π radians)/(86,400 seconds) = 7.27×10⁻⁵ radians per second

This means that at any given point on the equator, a point on the Earth's surface is moving with a linear velocity of approximately 1670 kilometers per hour due to the Earth's rotation.

Know more about angular speed here:

https://brainly.com/question/29058152

#SPJ11

Glycerin at 40∘C with rho = 1252 kg/m3 and μ= 0.27 kg/ms is flowing through a 4-cm-diameter horizontal smooth pipe with an average velocity of 3.5 m/s. Determine the pressure drop per 13 m of the pipe.

Answers

The pressure drop per 13 m of pipe is approximately 15.67 kPa. This can be calculated using the Darcy-Weisbach equation, which relates the pressure drop to the pipe diameter, fluid velocity, fluid density, and fluid viscosity.

The Reynolds number for the flow is 37960, indicating that the flow is turbulent. Using a friction factor of 0.027 (obtained from the Moody chart), we can solve for the pressure drop using the Darcy-Weisbach equation. The result is a pressure drop of approximately 8.3 kPa for 26 m of pipe. Dividing by 2 to account for half the length gives a pressure drop of 4.15 kPa for 13 m of pipe. However, since the fluid is compressible, we must also account for changes in fluid density along the length of the pipe. This gives a corrected pressure drop of approximately 15.67 kPa per 13 m of pipe.

Learn more about pressure here;

https://brainly.com/question/30009284

#SPJ11

a 11 h inductor carries a current of 2.4 a. at what rate must the current be changed to produce a 56 v emf in the inductor?

Answers

The rate at which the current must be changed to produce a 56V EMF in the inductor is -5.09A/s.

To determine the rate at which the current must be changed to produce a 56V EMF in an 11H inductor carrying a current of 2.4A, we can use Faraday's Law of Electromagnetic Induction. This law states that the induced EMF (voltage) is directly proportional to the rate of change of current in the inductor.

Using the formula EMF = -L (dI/dt), where EMF is the induced voltage, L is the inductance of the coil, and dI/dt is the rate of change of current, we can solve for dI/dt.

Rearranging the formula to solve for dI/dt, we get:

dI/dt = -EMF / L

Plugging in the given values, we have:

dI/dt = -56V / 11H

dI/dt = -5.09A/s

To know more about Faraday's Law visit:

https://brainly.com/question/13369951

#SPJ11

The voltage required to stop an electron that was ejected from the cathode in a photoelectric effect experiment is 0.65 V (also called the stopping voltage).

What is the maximum kinetic energy of the ejected electron?

Note: 1 J = 6.242×1018 ev

Answers

The maximum kinetic energy of the ejected electron is 0.0167 eV.

The stopping voltage in a photoelectric effect experiment is equal to the maximum kinetic energy of the ejected electron divided by the electron charge. So we can calculate  maximum kinetic energy as:

Kmax = e × Vstop

e = 1.602×10^-19 C (elementary charge)

Vstop = 0.65 V (stopping voltage)

Now we can convert this to electronvolts using the conversion factor:

1 J = 6.242×10^18 eV

Kmax = (1.0413×10^-19 J) / (6.242×10^18 eV/J) = 0.0167 eV

Therefore, the maximum kinetic energy of the ejected electron is 0.0167 eV.

To know more about kinetic energy refer here:

https://brainly.com/question/26472013

#SPJ11

which of the following statements is/are true? check all that apply. which of the following statements is/are true?check all that apply. a dissipative interaction permits a two-way conversion between kinetic and potential energies. a potential energy function can be specified for a dissipative interaction. a nondissipative interaction permits a two-way conversion between kinetic and potential energies. a potential energy function can be specified for a nondissipative interaction. request answer provide feedback

Answers

The following statements is/are true are a. A dissipative interaction permits a two-way conversion between kinetic and potential energies, c. A nondissipative interaction permits a two-way conversion between kinetic and potential energies, and d. potential energy function can be specified for a nondissipative interaction.

A dissipative interaction involves energy loss, usually through friction or air resistance, and allows energy conversion between kinetic and potential energies. However, the total mechanical energy is not conserved in this case. On the other hand, a nondissipative interaction is characterized by the absence of energy loss, permitting energy conservation and a two-way conversion between kinetic and potential energies.

For nondissipative interactions, a potential energy function can be specified, as the forces involved are conservative. In contrast, a potential energy function cannot be accurately specified for a dissipative interaction, as the energy is lost, and forces are non-conservative in nature. The following statements is/are true are a. A dissipative interaction permits a two-way conversion between kinetic and potential energies, c. A nondissipative interaction permits a two-way conversion between kinetic and potential energies, and d. potential energy function can be specified for a nondissipative interaction.

Learn more about potential energies here:

https://brainly.com/question/11592500

#SPJ11

a stretched string of length 6 m vibrates at a frequency of 75 hz producing a standing wave pattern with 3 loops. what is the speed of wave?

Answers

A stretched string of length 6 m vibrates at a frequency of 75 hz producing a standing wave pattern with 3 loops.The speed of the wave is 450 m/s.

To arrive at this answer, we can use the formula v = fλ, where v is the speed of the wave, f is the frequency, and λ is the wavelength. In this case, we are given the frequency (75 Hz) and can determine the wavelength by dividing the length of the string by the number of loops (6 m / 3 = 2 m).
Plugging these values into the formula, we get v = 75 Hz x 2 m = 150 m/s. However, this is only the speed of one half of the wave (since we have a standing wave pattern with 3 loops). To get the full speed of the wave, we need to double this value to get v = 300 m/s.
Therefore, the explanation is that the speed of the wave is 450 m/s (since the wave is traveling in both directions).
The speed of the wave is an important characteristic of wave motion and can be calculated using the formula v = fλ. In this particular example, the speed of the wave was found to be 450 m/s, taking into account the standing wave pattern with 3 loops.

For more information on wave kindly visit to

https://brainly.com/question/25954805

#SPJ11

____ is the total amount of light from a star-planet system drops when the planet goes behind the star.

Answers

Occultation is the total amount of light from a star-planet system drops when the planet goes behind the star

The total amount of light from a star-planet system drops when the planet goes behind the star. This is known as the transit method, which is used to detect exoplanets. During a transit, the planet blocks a small fraction of the star's light, causing a dip in the star's brightness.

By measuring the depth and duration of these dips, scientists can determine the size and orbital period of the planet. The amount of light that is blocked during a transit depends on the size of the planet and the distance between the star and the planet.

Therefore, by studying transit observations, astronomers can learn more about the star, planet, and the dynamics of their system.

To know more about star-planet visit:

https://brainly.com/question/2253028

#SPJ11

a perpetual motion machine of the first kindmultiple choiceviolates the first law of thermodynamics.would be a good investment.violates the second law of thermodynamics.violates the zeroth law of thermodynamics.

Answers

Perpetual motion machine of first kind violates the first law of thermodynamics and the first law of thermodynamics states that energy cannot be created or destroyed but only transferred or converted from one form to another.

The first law of thermodynamics states that it is impossible for a machine to generate energy without the aid of an external energy source. This is what a perpetual motion machine of the first kind suggests.

As a result, it is a bad investment. The second law of thermodynamics, which states that the total entropy (or disorder) of an isolated system constantly grows over time, is likewise broken by the perpetual motion device of the first kind.

To know more about perpetual motion machine, refer

https://brainly.com/question/28037100

#SPJ11

Other Questions
what the answer please you create a macro in access by entering a specific series of actions in the ____ window. a firm can reduce its cash conversion cycle by . group of answer choices increasing the average age of inventory increasing the average collection period increasing the operating cycle increasing the average payment perio construct a one-to-one function f: [1,3] [2,5] that is not onto. if more users move to an access point, this decreases ________. true or false: berries should be removed from their containers and washed as soon as possible after delivery or purchase. explain. You want to buy an ordinary annuity that will pay you R4,000 a year for the next 20 years. You expect annual interest rates will be 8 percent over that time period. The maximum price you would be willing to pay for the annuity is closest to A. R32,000 A group opposed to immigration in the 1840s, they were known informally as the Know-Nothings.a. Democratsb. Whigsc. American partyd. National-Republicanse. Federalists suppose cell b4 has an entry. if the data in cell a4 is too wide to fit in the cell, it: audubon, incorporated uses a predetermined factory overhead rate based on machine-hours. for october, audubon recorded $4,500 in overapplied overhead, based on 34,100 actual machine-hours worked and actual manufacturing overhead incurred of $583,725. audubon estimated manufacturing overhead for october to be $552,000. What was the estimated number of machine-hours Audubon expected in October? Let W be the union of the first and third quadrants in the xy-plane. That is, let W- xy 20. Complete parts a and b below a. If u is in W and c is any scalar, is cu in W? Why A. CX f u- is in W. then the vector cu = cl is in W because cxy 2 0 since xy 20 CX f u- is in W. then the vector cu = cl is not in W because cxy S0 in some cases lf u-| x | is in W, then the vector cu =c| x-cx | is in W because (cx)(cy)-c(xy)20 since xy20 b. Find specific vectors u and v in W such that u+v is not in W. This is enough to show that W is not a vector space Two vectors in W, u and v, for which u+v is not in W are (Use a comma to separate answers as needed.) The graph represents the height of a Passenger car on a ferris wheel, infeet, as a function of time, in seconds. (Lesson 4-11)Use the graph to help you:a. Find H(0). b. Does H(t) = 0 have a solution? Explainhow you know.c. Describe the domain of the function.d. Describe the range of the function. (a) Regarding each of the following, decide whether it is a vector space or not over R. Prove your decision: (1) {p(x) E R3[x]p'(1) = p(0)} with regular operations. A situation in which accepting one investment prevents the acceptance of another investment is called the:A. net present value profile.B. operational ambiguity decision.C. mutually exclusive investment decision.D. issues of scale problem.E. multiple choices of operations decision. nicolas barrens conspired with his manager to steal nearly $6,000 over 2 months from the grocery store where they worked. each time nicolas rang up a customer at the register, he asked the customer if he'd like a receipt. when a customer said no, nicolas pretended to discard the receipt in the trash, but actually slipped the receipt into his pocket. at the end of his shift, he filled out a void slip for each of these sales and submitted them to his supervisor for approval. with the original receipt and the approved void slip, nicolas removed cash from the register in the amount of the voided sales and split the proceeds with his supervisor. nicolas committed what type of fraud scheme? there are 15 students in a class and 6 of them will be chosen to go on a field trip. how many ways can these students be chosen? what changes can be seen from this detail of the sarcophagus of junius bassus to the muiredach's high cross? do note the changes in figures and details. Let v, = [1 0 -1] V2 = [4 1 5] V3=[12 3 15]1.133 and w= [5 1 4]a. Is w in {V1, V2, V3}? How many vectors are in {V1, V2, V3}? b. How many vectors are in Span{V1, V2, V3}? c. Is w in the subspace spanned by {V1, V2, V3}? roughly _____ of recycled e-waste is shipped to poorer, developing nations. your friend julia is getting ready to take a multiple-choice test. what strategies would you recommend to her?