What is the solution set to log:(4x + 2) + 4 2 5?
(-0.5, 00)
[1.5, 00)
thy5.c)
[5,00)

What Is The Solution Set To Log:(4x + 2) + 4 2 5?(-0.5, 00)[1.5, 00)thy5.c)[5,00)

Answers

Answer 1

Answer: (-0.5,00)

number one i think good luck

Step-by-step explanation:


Related Questions

A shoes store sells three categories of shoes, Athletics, Boots and Dress shoes. The categories are stocked in the ratio of 5 to 2 to 3. If the store has 70 pairs of boots, how many shoes do they have in total?

Answers

Answer:

350 pairs

Step-by-step explanation:

If the ratio of Athletics, Boots, and Dress shoes is 5 to 2 to 3, it means that for every 2 pairs of Boots they have 5 pairs of Athletics shoes and 3 pairs of dress shoes.

So, if they have 70 pairs of boots, we can calculate the number of Athletics as:

[tex]\frac{5*70}{2} =175[/tex]

And if they have 70 pairs of boots, the number of dress shoes are:

[tex]\frac{3*70}{2}=105[/tex]

Finally, they have 70 pairs of boots, 175 pairs of athletics, and 105 pairs of dress shoes. It means that they have 350 pairs in total.

70 + 175 + 105 = 350

The current particulate standard for diesel car emission is .6g/mi. It is hoped that a new engine design has reduced the emissions to a level below this standard. Set up the appropriate null and alternative hypotheses for confirming that the new engine has a mean emission level below the current standard. Discuss the practical consequences of making a Type I and a Type II error. (continue #5) A sample of 64 engines tested yields a mean emission level of = .5 g/mi. Assume that σ = .4. Find the p-value of the test. Do you think that H0 should be rejected? Explain. To what type of error are you now subject?

Answers

Answer:

Step-by-step explanation:

From the summary of the given statistics;

The null and the alternative hypothesis for confirming that the new engine has a mean emission level below the current standard can be computed as follows:

Null hypothesis:

[tex]H_0: \mu = 0.60[/tex]

Alternative hypothesis:

[tex]H_a: \mu < 0.60[/tex]

Type I  error: Here, the null hypothesis which is the new engine has a mean level equal to  .6g/ml is rejected when it is true.

Type II error:  Here, the alternative hypothesis which is the new engine has a mean level less than.6g/ml is rejected when it is true.

Similarly;

From , A sample of 64 engines tested yields a mean emission level of = .5 g/mi. Assume that σ = .4.

Sample size n = 64

sample mean [tex]\overline x[/tex] = .5 g/ml

standard deviation σ = .4

From above, the normal standard test statistics can be determined by using the formula:

[tex]z = \dfrac{\bar x- \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

[tex]z = \dfrac{0.5- 0.6}{\dfrac{0.4}{\sqrt{64}}}[/tex]

[tex]z = \dfrac{-0.1}{\dfrac{0.4}{8}}[/tex]

z = -2.00

The p-value = P(Z ≤ -2.00)

From the normal z distribution table

P -value = 0.0228

Decision Rule: At level of significance ∝ = 0.05, If P value is less than or equal to level of significance ∝ , we reject the null hypothesis.

Conclusion: SInce the p-value is less than the level of significance , we reject the null hypothesis. Therefore, we can conclude that there is enough evidence that a new engine design has reduced the emissions to a level below this standard.

The top and bottom margins of a poster are each 9 cm and the side margins are each 6 cm. If the area of the printed material on the poster is fixed at 864 cm2, find the dimensions of the poster with the smallest area.

Answers

Answer:

the dimensions of the poster with the smallest area is 36cm by 54cm

Step-by-step explanation:

✓Let us represent the WIDTH of the printed material on the poster as "x"

✓Let us represent the HEIGHT of the printed material on the poster as "y"

✓ The given AREA is given as 864 cm2

Then we have

864 cm2= xy ...................eqn(1)

We can make "y" subject of the formula.

y= 864/x .......................eqn(2)

✓The total height the big poster which includes the 9cm margin that is at the bottom as well as the top is

(y+18)

✓The total width of the poster which includes the 6cm margin that is at the bottom as well as the top is

(x+12)

✓Then AREA OF THE TOTAL poster

A= (y+18)(x+12) ...................eqn(3)

Substitute eqn (2) into eqn(3)

A= ( 18+ 864/x)(x+12)

We can now simplify by opening the bracket, as

A=18x +1080 +10368/x

A= 18x +10368/x +1080

Let us find the first derivative of A which is A'

A'= 18-(10368/x²)

If we set A' =0

Then

0= 18- (10368/x²)

18= (10368/x²)

x²= 10368/18

x²= 576

x=√576

x=24

The second derivatives will be A"= 2(10368)/x³ and this will be positive for x> 0, and here A is concave up and x=24 is can be regarded as a minimum

The value of "y" when x=24 can now be be calculated using eqn(2)

y= 864/x

y= 864/24

y=36cm

✓The total width of the poster= (x+12)

= 24+12=36cm

✓The total height big the poster= (y+18)=36+18=54cm

the dimensions of the poster with the smallest area is 36cm by 54cm

Answer:

The total width of the paper [tex]=36 cm.[/tex]

The total height of the paper [tex]=54cm[/tex]

Step-by-step explanation:

Given information:

Top margin of the paper = 9 [tex]cm\\[/tex]

Bottom margin of the paper = 6 [tex]cm\\[/tex]

Area of the printed material = [tex]864[/tex] [tex]cm^2[/tex]

Let, the width of the printed material = [tex]x[/tex]

And the height of the printed material = [tex]y[/tex]

So, Area [tex]x \times y=864[/tex] [tex]cm^2[/tex]

After including margins;

Width of the paper [tex]= (x+12)[/tex]

Height of the paper [tex]= (y+18)[/tex]

Area [tex](A) = (y+18) (x+12)[/tex]

[tex]A=18x+(10368/x)+1080\\[/tex]

Take first derivative:

[tex]A'= 18- (10368/x^2)[/tex]

When [tex]A'=0[/tex]

Then,

[tex]18-(10368/x^2)=0\\x^2=576\\x=24[/tex]

Now ,when we take second derivative and check if it is positive or not ,

We find that it is grater than zero so the obtained value can be consider as minimum and can be proceed for further solution.

Hence ,

[tex]x \times y=864\\y=864/24\\y=36\\[/tex]

Now ,

The total width of the paper

[tex]= 24+12\\=36 cm.[/tex]

And , total height of the paper

[tex]=36+18\\=54 cm.[/tex]

For more information visit:

https://brainly.com/question/14261130

The bar graph below shows trends in several economic indicators over the period . Over the​ six-year period, about what was the highest consumer price​ index, and when did it​ occur? Need help with both questions!

Answers

Please answer answer question answer answer me please answer answer please please thank lord lord thank lord please please thank you lord lord thank you please thank lord please thank

Does anyone know the answers to these?

Answers

Step-by-step explanation:

a. The point estimate is the mean, 47 days.

b. The margin of error is the critical value times the standard error.

At 31 degrees of freedom and 98% confidence, t = 2.453.

The margin of error is therefore:

MoE = 2.453 × 10.2 / √32

MoE = 4.42

c.  The confidence interval is:

CI = 47 ± 4.42

CI = (42.58, 51.42)

d. We can conclude with 98% confidence that the true mean is between 42.58 days and 51.42 days.

e. We can reduce the margin of error by either increasing the sample size, or using a lower confidence level.

A ball is thrown from a height of 20 meters with an initial downward velocity of 5 m/s. The ball's height h (in meters) after t seconds is given
by the following.
h=20-5t-5t²
How long after the ball is thrown does it hit the ground?
Round your answer(s) to the nearest hundredth.
(If there is more than one answer, use the "or" button.)

Answers

Answer:

1.56 seconds

Step-by-step explanation:

When the ball hits the ground, h = 0.

0 = 20 − 5t − 5t²

Divide both sides by -5.

0 = t² + t − 4

Solve with quadratic formula.

t = [ -1 ± √(1² − 4(1)(-4)) ] / 2(1)

t = (-1 ± √17) / 2

The time must be positive, so:

t = (-1 + √17) / 2

t ≈ 1.56

The amount of​ carbon-14 present in a paint after t years is given by y equals y Subscript o Baseline e Superscript negative 0.00012 t Baseline . The paint contains 27​% of its​ carbon-14. How old are the​ paintings?

Answers

Answer:

The painting is [tex]t = 10911.1 \ years \ old[/tex]

Step-by-step explanation:

From the question we are told that

    The amount of carbon present after t year is

           [tex]y(t) = y_o * e ^{-0.00012t}[/tex]    {Note ; This is the function }

Here  [tex]y(t)[/tex] is the amount of carbon-14 after time t

        [tex]y_o[/tex] the original amount of carbon-14

Now given that the paint as at now contain 27% of the original carbon-14

  Then it mean that

            [tex]y(t) = 0.27 y_o[/tex]

So the equation is represented as

       [tex]0.27 y_o = y_o * e ^{-0.00012t}[/tex]

=>    [tex]0.27 = * e ^{-0.00012t}[/tex]

=>    [tex]ln(0.27) = -0.00012t[/tex]

=>  [tex]- 1.30933 = -0.00012t[/tex]

=>  [tex]t = \frac{-1.30933}{-0.00012}[/tex]

=>   [tex]t = 10911.1 \ years[/tex]

Question 6 of 10
Which equation matches the graph of the greatest integer function given
below?

Answers

Answer: A

Explanation:

y = [x] - 2

Y intercept is at (0,-2) which matches the graph above

There are three points on a line, A, B, and C, so that AB = 12 cm, BC = 13.5 cm. Find the length of the segment AC . Give all possible answers.

Answers

Answer:

AC = 25.5 or 1.5

Step-by-step explanation:

If they are on a line and they are in the order ABC

AB + BC = AC

12+13.5 = AC

25.5 = AC

If they are on a line and they are in the order CAB

CA + AB = BC

AC + 12 =13.5

AC = 13.5 -12

AC = 1.5

If they are on a line and they are in the order ACB

That would mean that AB is greater than BC and that is not the case

Edgar accumulated $5,000 in credit card debt. If the interest rate is 20% per year and he does not make any payments for 2 years, how much will he owe on this debt in 2 years by compounding continuously? Round to the nearest cent.

Answers

Answer:

$7200

Step-by-step explanation:

The interest rate on $5,000 accumulated by Edgar is 20%.

He does not make any payment for 2 years and the interests are compounded continuously.

The amount of money he owes after 2 years is the original $5000 and the interest that would have accumulated after 2 years.

The formula for compound amount is:

[tex]A = P(1 + R)^T[/tex]

where P = amount borrowed = $5000

R = interest rate = 20%

T = amount of time = 2 years

Therefore, the amount he will owe on his debt is:

[tex]A = 5000 (1 + 20/100)^2\\\\A = 5000(1 + 0.2)^2\\\\A = 5000(1.2)^2\\[/tex]

A = $7200

After 2 years, he will owe $7200

Answer:7,434.57

Explanation: A= 5000(1+0.2/12)^12•2

What will happen to the median height of the outlier is removed?
{75, 63, 58, 59, 63, 62, 56, 59)

Answers

Answer:

The meadian decreases by 1.5 when the outlier is removed.

Step-by-step explanation:

Well first we need to find the median of the following data set,

(75, 63, 58, 59, 63, 62, 56, 59)

So we order the set from least to greatest,

56, 58, 59, 59, 62, 63, 63, 75

Then we cross all the side numbers,

Which gets us 59 and 62.

59 + 62 = 121.

121 / 2 = 60.5

So 65 is the median before the outlier is removed.

Now when we remove the outlier which is 75.

Then we order it again,

56, 58, 59, 59, 62, 63, 63

Which gets us 59 as the median.

Thus,

the median height decreases by 1.5 units when the outlier is removed.

Hope this helps :)

Simplify.
Remove all perfect squares from inside the square roots.
Assume a and b are positive.

Answers

Answer:

9a^2sqrt(ab)

Step-by-step explanation:

The first noticable thing is that 81 has a perfect square of 9.

So it is now 9sqrt(a^5b)

you can split the a^5, to a^4 × a.

you can now take the sqrt of a^4, which is a^2, and pull it out from the sqrt

You are now left with 9a^2sqrt(ab)

Answer:

9a^2sqrt(ab)

Step-by-step explanation:

On August 21, 2009, the World Health Organization announced its prediction that the number of new cases of H1N1 (swine flu) virus would double every 4 days for several months. As of July 27, 2009, the number of new cases was 15,784. Determine the instantaneous growth rate for the virus (rounded to the nearest ten-thousandths).

Answers

Answer:

  growth rate = 0.1733 per day, or 17.33% per day

Step-by-step explanation:

Since the doubling time is 4 days, the growth factor over a period of t days is ...

  2^(t/4)

Then the growth factor for 1 day is

  2^(1/4) ≈ 1.189207

The instantaneous growth rate is the natural log of this:

  ln(1.189207) ≈ 0.1733 . . . per day

Find the slope of the line passing through the points (3, 4) and (8, -3).

Answers

Answer:

-7/5

Step-by-step explanation:

We can find the slope using the slope formula

m = ( y2-y1)/(x2-x1)

   = ( -3 -4)/(8-3)

   = -7/5

Answer:

-7/5

Step-by-step explanation:

Hey there!

To find the slope of a line with 2 given points we'll use the following formula,

[tex]\frac{y^2-y^1}{x^2-x^2}[/tex]

-3 - 4 = -7

8 - 3 = 5

-7/5

Hope this helps :)

A photoconductor film is manufactured at a nominal thickness of 25 mils. The product engineer wishes to increase the mean speed of the film and believes that this can be achieved by reducing the thickness of the film to 20 mils. Eight samples of each film thickness are manufactured in a pilot production process, and the film speed (in microjoules per square inch) is measured. For the 25-mil film, the sample data result is: Mean Standard deviation 1.15 0.11 For the 20-mil film the data yield: Mean Standard deviation 1.06 0.09 *Note: An increase in film speed would lower the value of the observation in microjoules per square inch. We may also assume the speeds of the film follow a normal distribution. Use this information to construct a 98% interval estimate for the difference in mean speed of the films. Does decreasing the thickness of the film increase the speed of the film?

Answers

Answer:

A 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].

Step-by-step explanation:

We are given that Eight samples of each film thickness are manufactured in a pilot production process, and the film speed (in microjoules per square inch) is measured.

For the 25-mil film, the sample data result is: Mean Standard deviation 1.15 0.11 and For the 20-mil film the data yield: Mean Standard deviation 1.06 0.09.

Firstly, the pivotal quantity for finding the confidence interval for the difference in population mean is given by;

                     P.Q.  =  [tex]\frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex]  ~  [tex]t__n_1_+_n_2_-_2[/tex]

where, [tex]\bar X_1[/tex] = sample mean speed for the 25-mil film = 1.15

[tex]\bar X_1[/tex] = sample mean speed for the 20-mil film = 1.06

[tex]s_1[/tex] = sample standard deviation for the 25-mil film = 0.11

[tex]s_2[/tex] = sample standard deviation for the 20-mil film = 0.09

[tex]n_1[/tex] = sample of 25-mil film = 8

[tex]n_2[/tex] = sample of 20-mil film = 8

[tex]\mu_1[/tex] = population mean speed for the 25-mil film

[tex]\mu_2[/tex] = population mean speed for the 20-mil film

Also,  [tex]s_p =\sqrt{\frac{(n_1-1)s_1^{2}+ (n_2-1)s_2^{2}}{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(8-1)\times 0.11^{2}+ (8-1)\times 0.09^{2}}{8+8-2} }[/tex] = 0.1005

Here for constructing a 98% confidence interval we have used a Two-sample t-test statistics because we don't know about population standard deviations.

So, 98% confidence interval for the difference in population means, ([tex]\mu_1-\mu_2[/tex]) is;

P(-2.624 < [tex]t_1_4[/tex] < 2.624) = 0.98  {As the critical value of t at 14 degrees of

                                             freedom are -2.624 & 2.624 with P = 1%}  

P(-2.624 < [tex]\frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < 2.624) = 0.98

P( [tex]-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < [tex]2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] <  ) = 0.98

P( [tex](\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < ([tex]\mu_1-\mu_2[/tex]) < [tex](\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ) = 0.98

98% confidence interval for ([tex]\mu_1-\mu_2[/tex]) = [ [tex](\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] , [tex](\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ]

= [ [tex](1.15-1.06)-2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } }[/tex] , [tex](1.15-1.06)+2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } }[/tex] ]

 = [-0.042, 0.222]

Therefore, a 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].

Since the above interval contains 0; this means that decreasing the thickness of the film doesn't increase the speed of the film.

1. There are a total of 230 mint and chocolate sweets in a jar. 60% of the total number of sweets were mint sweets. After more chocolate sweets were added into the jar, the percentage of the mint sweets in the jar decreased to 40% How many chocolate sweets were added into the jar?
2. In August, 36% of the people who visited the zoo were locals and the rest were foreigners. In September, the percentage of local visitors decreased by 25% while the percentage of foreign participants increased by 50%. In the end, there were 161 fewer visitors in August than in September. How many visitors were there in September?

Answers

Answer:

1. 115 chocolates were added

2. 861 visitors in September

Step-by-step explanation:

1.

Initially:

m=number of mints

60% of 230 sweets were mints  =>

m = 230*0.6 = 138 mints

initial number of chocolates, c1  =  230 - 138 = 92

Now chocolates were added

138 mints represented 40% of the total number of sweets, so

total number of sweets  = 138 / 0.4 = 345

Number of chocolates added = 345 - 230 = 115

2.

In August 36% were locals, 64% were from elsewhere.

In suptember,

locals decreassed by 25% to 36*0.75=27% (of August total)

foreigner increased by 50% to 64*1.5=96% (of August total)

Total Inrease = 96+27-100 = 23% of August total  = 161 visitors

August total = 161/0.23 = 700 visitors

September total = 700 + 161 = 861 visitors

Am I right or wrong?

Answers

You are absolutely right.

Write the following exponential expression in expanded form 28 to the 6th power. Enter your answer in the following format a • a• a

Answers

Answer:

  28 • 28 • 28 • 28 • 28 • 28

Step-by-step explanation:

The exponent signifies the number of times the base appears as a factor in the product. Here, the base 28 is a factor 6 times:

  28×28×28×28×28×28

as a sales person at Trending Card Unlimited, Justin receives a monthly base pay plus commission on all that he sells. If he sells $400 worth of merchandise in one month, he is paid $500. If he sells $700 worth of merchandise in one month, he is paid $575. Find justin's salary if he sells $2500 worth of merchandise

Answers

Answer:

  $1025

Step-by-step explanation:

We can use the 2-point form of the equation of a line to write a function that gives Justin's salary as a function of his sales.

We start with (sales, salary) = (400, 500) and (700, 575)

__

The 2-point form of the equation of a line is ...

  y = (y2 -y1)/(x2 -x1)(x -x1) +y1

  salary = (575 -500)/(700 -400)(sales -400) +500

  salary = 75/300(sales -400) +500

For sales of 2500, this will be ...

  salary = (1/4)(2500 -400) +500 = (2100/4) +500 = 1025

Justin's salary after selling $2500 in merchandise is $1025.

In an isolated environment, a disease spreads at a rate proportional to the product of the infected and non-infected populations. Let I(t) denote the number of infected individuals. Suppose that the total population is 2000, the proportionality constant is 0.0001, and that 1% of the population is infected at time t-0, write down the intial value problem and the solution I(t).
dI/dt =
1(0) =
I(t) =
symbolic formatting help

Answers

Answer:

dI/dt = 0.0001(2000 - I)I

I(0) = 20

[tex]I(t)=\frac{2000}{1+99e^{-0.2t}}[/tex]

Step-by-step explanation:

It is given in the question that the rate of spread of the disease is proportional to the product of the non infected and the infected population.

Also given I(t) is the number of the infected individual at a time t.

[tex]\frac{dI}{dt}\propto \textup{ the product of the infected and the non infected populations}[/tex]

Given total population is 2000. So the non infected population = 2000 - I.

[tex]\frac{dI}{dt}\propto (2000-I)I\\\frac{dI}{dt}=k (2000-I)I, \ \textup{ k is proportionality constant.}\\\textup{Since}\ k = 0.0001\\ \therefore \frac{dI}{dt}=0.0001 (2000-I)I[/tex]

Now, I(0) is the number of infected persons at time t = 0.

So, I(0) = 1% of 2000

            = 20

Now, we have dI/dt = 0.0001(2000 - I)I  and  I(0) = 20

[tex]\frac{dI}{dt}=0.0001(2000-I)I\\\frac{dI}{(2000-I)I}=0.0001 dt\\\left ( \frac{1}{2000I}-\frac{1}{2000(I-2000)} \right )dI=0.0001dt\\\frac{dI}{2000I}-\frac{dI}{2000(I-2000)}=0.0001dt\\\textup{Integrating we get},\\\frac{lnI}{2000}-\frac{ln(I-2000)}{2000}=0.0001t+k \ \ \ (k \text{ is constant})\\ln\left ( \frac{I}{I-222} \right )=0.2t+2000k[/tex]

[tex]\frac{I}{I-2000}=Ae^{0.2t}\\\frac{I-2000}{I}=Be^{-0.2t}\\\frac{2000}{I}=1-Be^{-0.2t}\\I(t)=\frac{2000}{1-Be^{-0.2t}}\textup{Now we have}, I(0)=20\\\frac{2000}{1-B}=20\\\frac{100}{1-B}=1\\B=-99\\ \therefore I(t)=\frac{2000}{1+99e^{-0.2t}}[/tex]

The required expressions are presented below:

Differential equation

[tex]\frac{dI}{dt} = 0.0001\cdot I\cdot (2000-I)[/tex] [tex]\blacksquare[/tex]

Initial value

[tex]I(0) = \frac{1}{100}[/tex] [tex]\blacksquare[/tex]

Solution of the differential equation

[tex]I(t) = \frac{20\cdot e^{\frac{t}{5} }}{1+20\cdot e^{\frac{t}{5} }}[/tex] [tex]\blacksquare[/tex]

Analysis of an ordinary differential equation for the spread of a disease in an isolated population

After reading the statement, we obtain the following differential equation:

[tex]\frac{dI}{dt} = k\cdot I\cdot (n-I)[/tex] (1)

Where:

[tex]k[/tex] - Proportionality constant[tex]I[/tex] - Number of infected individuals[tex]n[/tex] - Total population[tex]\frac{dI}{dt}[/tex] - Rate of change of the infected population.

Then, we solve the expression by variable separation and partial fraction integration:

[tex]\frac{1}{k} \int {\frac{dI}{I\cdot (n-I)} } = \int {dt}[/tex]

[tex]\frac{1}{k\cdot n} \int {\frac{dl}{l} } + \frac{1}{kn}\int {\frac{dI}{n-I} } = \int {dt}[/tex]

[tex]\frac{1}{k\cdot n} \cdot \ln |I| -\frac{1}{k\cdot n}\cdot \ln|n-I| = t + C[/tex]

[tex]\frac{1}{k\cdot n}\cdot \ln \left|\frac{I}{n-I} \right| = C\cdot e^{k\cdot n \cdot t}[/tex]

[tex]I(t) = \frac{n\cdot C\cdot e^{k\cdot n\cdot t}}{1+C\cdot e^{k\cdot n \cdot t}}[/tex], where [tex]C = \frac{I_{o}}{n}[/tex] (2, 3)

Note - Please notice that [tex]I_{o}[/tex] is the initial infected population.

If we know that [tex]n = 2000[/tex], [tex]k = 0.0001[/tex] and [tex]I_{o} = 20[/tex], then we have the following set of expressions:

Differential equation

[tex]\frac{dI}{dt} = 0.0001\cdot I\cdot (2000-I)[/tex] [tex]\blacksquare[/tex]

Initial value

[tex]I(0) = \frac{1}{100}[/tex] [tex]\blacksquare[/tex]

Solution of the differential equation

[tex]I(t) = \frac{20\cdot e^{\frac{t}{5} }}{1+20\cdot e^{\frac{t}{5} }}[/tex] [tex]\blacksquare[/tex]

To learn more on differential equations, we kindly invite to check this verified question: https://brainly.com/question/1164377

What is the output of the function f(x) = x + 21 if the input is 4?
When the input is 4, the output of f(x) = x + 21.

Answers

Answer: output = 25

Work Shown:

Replace every x with 4. Use the order of operations PEMDAS to simplify

f(x) = x + 21

f(4) = 4 + 21

f(4) = 25

The input 4 leads to the output 25.

Solve for x −ax + 2b > 8

Answers

Answer:

x < -( 8-2b) /a  a > 0

Step-by-step explanation:

−ax + 2b > 8

Subtract 2b from each side

−ax + 2b-2b > 8-2b

-ax > 8 -2b

Divide each side by -a, remembering to flip the inequality ( assuming a>0)

-ax/-a < ( 8-2b) /-a

x < -( 8-2b) /a  a > 0

Answer: [tex]x<\frac{-8+2b}{a}[/tex]

                  [tex]a>0[/tex]

Step-by-step explanation:

[tex]-ax+2b>8[/tex]

[tex]\mathrm{Subtract\:}2b\mathrm{\:from\:both\:sides}[/tex]

[tex]-ax>8-2b[/tex]

[tex]\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}[/tex]

[tex]\left(-ax\right)\left(-1\right)<8\left(-1\right)-2b\left(-1\right)[/tex]

[tex]ax<-8+2b[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}a[/tex]

[tex]\frac{ax}{a}<-\frac{8}{a}+\frac{2b}{a};\quad \:a>0[/tex]

[tex]x<\frac{-8+2b}{a};\quad \:a>0[/tex]

Graph the solution for the following linear inequality system. Click on the graph until the final result is displayed.
x+y>0
x + y +5<0

Answers

Answer:

Step-by-step explanation:

x+y>0, x>0, when y=0

x+y<-5 x<-5 when y=0

since the sign is only< then it is dotted line, and since one is greater and is less than they actually do not intersect

Answer:

No solution with slanted lines

Step-by-step explanation:

Jessie is adept at Imagining abstract concepts and applying advanced mathematical formulas while creating flowcharts for her programs. Jessle has strength in which

skill?

communication

Answers

Answer:

Design thinking skills

Step-by-step explanation:

The design thinking skills is observable in individuals who can effectively use Intuition to create prototypes of abstract objects.

Jessie thus shows that she possess design thinking skills by been able to imagine abstract concepts at the same and she applies advanced mathematical formulas which in turn provides solutions to problems.

helpppp with this will give bralienst but need hurry

Answers

Answer:

20.25is how much each friend gets.

Step-by-step explanation:

40.50/2 = 20.25

You have to divide by 2. This way both of the people will get the same amount of money.

Answer:

each friend will get

Step-by-step explanation:

20 .25

as 40 .50 ÷ 2 = 20 .25

hope this helps

pls can u heart and like and give my answer brainliest pls i beg u thx !!! : )

Help me!!! please!!! ​

Answers

Answer:

a) The five ordered pairs are:-

(1,60) , (2,120) , (3,180) , (4,240) , (5,300)

b)When You divide the y value by x value for each ordered pair u find the slope.

c)The graph shows a proportional relationship.Because as x-value increases so does y-value.

d)Y=mx+b-->  Y=60x (No y-intercept because it starts from 0)

e)If a person hiked for 9 hours then the distance would be 540. Because If u plug in the number of hours in the x value of the equatione then u will get 540. Here's the work:-

Y=60(9)

Y=540

Step-by-step explanation:

Hope it helps u. And if u get it right pls give me brainliest.

1. An architect is designing a house for the Mullet family. In the design he
must consider the desires of the family and the local building codes. The
rectangular lot on which the house will be built has 91 feet of frontage
on a lake and is 158 feet deep.

Answers

Answer:

An architect is designing a house for the Frazier family. In the design he must consider the desires of the family and the local building codes. The rectangular lot on which the house will be built has 91 feet of frontage on a lake and is 158 feet deep.

The building codes states that one can build no closer than 10 ft. to the lot line. Write an inequality and solve to see how long the front of the house facing the lake may be.

------

length = 91 - 2*10 = 71 ft.

-------------------------------

The Fraziers requested that the house contain no less 2800 ft square and no more than 3200 ft square of floor sample. Write an inequality to represent the range of permissible widths for the house.

---------

2800 <= area <= 3200

2800 <= (length)(width) <= 3200

2800 <= 71w <= 3200

39.44 <= width <= 45.07

hope it helpsss

Step-by-step explanation:

Answer: An architect is designing a house for the Frazier family. In the design he must consider the desires of the family and the local building codes. The rectangular lot on which the house will be built has 91 feet of frontage on a lake and is 158 feet deep.

The building codes states that one can build no closer than 10 ft. to the lot line. Write an inequality and solve to see how long the front of the house facing the lake may be.

------

length = 91 - 2*10 = 71 ft.

-------------------------------

The Fraziers requested that the house contain no less 2800 ft square and no more than 3200 ft square of floor sample. Write an inequality to represent the range of permissible widths for the house.

---------

2800 <= area <= 3200

2800 <= (length)(width) <= 3200

2800 <= 71w <= 3200

39.44 <= width <= 45.07

One positive integer is 6 less than twice another. The sum of their squares is 801. Find the integers

Answers

Answer:

[tex]\large \boxed{\sf 15 \ \ and \ \ 24 \ \ }[/tex]

Step-by-step explanation:

Hello,

We can write the following, x being the second number.

[tex](2x-6)^2+x^2=801\\\\6^2-2\cdot 6 \cdot 2x + (2x)^2+x^2=801\\\\36-24x+4x^2+x^2=801\\\\5x^2-24x+36-801=0\\\\5x^2-24x-765=0\\\\[/tex]

Let's use the discriminant.

[tex]\Delta=b^4-4ac=24^2+4*5*765=15876=126^2[/tex]

There are two solutions and the positive one is

[tex]\dfrac{-b+\sqrt{b^2-4ac}}{2a}=\dfrac{24+126}{10}=\dfrac{150}{10}=15[/tex]

So the solutions are 15 and 15*2-6 = 30-6 = 24

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

in science class savannah measures the temperature of a liquid to be 34 celsius. her teacher wants her to convert the temperature to degrees fahrenheit. what is the temperature of savannah's liquid to the nearest degress fahrenheit

Answers

93.2 degrees fahrenheit

the domain of u(x) is the set of all real values except 0 and the domain of v(x) is the set of all real values excpet 2. what are the restrictions on the domain of (u•v)(x)?

Answers

Answer:

[tex](-\infty, 0) \cup (0,2) \cup (2,\infty)[/tex]

Step-by-step explanation:

Remember that the domain of the product of functions is the intersection of domains, therefore when you intercept them you get the following interval.

[tex](-\infty, 0) \cup (0,2) \cup (2,\infty)[/tex]

Other Questions
Earthquake damage causes two rabbits to be separated from the rest of the rabbits in their large habitat. They have no way to get back to their original habitat. The two rabbits mate with each other. Over time, all the offspring in the new habitat are descendants of the original two rabbits. What are the outcomes of this situation? A.The rabbits in the new habitat will have lower genetic variation than the rabbits in the original habitat. B. The rabbits in the new habitat will have a higher risk of random genetic mutations than the rabbits in the original habitat. C. The rabbits in the original habitat have a greater likelihood of choosing an unrelated mate than the rabbits in the new habitat. D.The rabbits in the original habitat will be less likely to reproduce than the rabbits in the new habitat. To find the number of units that gives break-even for the product, solve the equation R C. Round your answer to the nearest whole unit A manufacturer has total revenue given by the function R = 90x and has total cost given by C 35x + 17,000, where x is the number of units produced and sold. A, 55 units B. 125 units C. 136 units D. 309 units In a short essay whats your inspiration. Ill mark brainliest solve the nonlinear system of equations. State the number of solutions. Passing structured query language commands to a web application and getting the website to execute it is called SQL script:______.A) Injection. B) Processing. C) Attacking. D) Execution. Mr. Chase has opened a custom furniture business and is concerned about the costs associated with storing raw materials, machinery, and finished products. Mr. Chase should consider using a method of production known as just-in-time (JIT) production to help control his inventory costsIndicate whether the statement is true or false. Simplify (5/7)a+13-(5/7)a-3 what is the slope line through (0, 5) and (-2, -1) Who is most likely to have claimed that "As the client becomes more self-aware, more self-acceptant, less defensive and more open, she finds at last some of the freedom to grow and change in directions natural to the human organism.?" help me please, explanation not necessary but would be appreciated Jason's cellphone company allows him to use his smartphone as a wireless hotspot with his laptop when traveling. Jason notices that if he runs a speed test from his smartphone, the cellular connection is 8761 kbps. If he runs the same speed test connection from his laptop which is connected to his cellphone over its wireless hotspot,the speed drops to 243 kbps. Which of the following is the MOST likely cause for the drop in the speed test results?Explanationa) The smartphone's RFID signal is lowb) The wireless hotspot feature is throttling the cellular connection speedc) The SSID for the wireless hotspot is not being broadcastd) The laptop is out of range of the smartphone's hotspot A client is admitted for intracavitary radiation as treatment for her reproductive tract cancer. Which client statement demonstrates to the nurse that the client understands the planned procedure? Question 2 of 10What was one result of the large numbers of immigrants settling in the citiesof the North in the mid-1800s?A. Problems between cultural groups B. Laws allowing noncitizens to votec. Peaceful cultural exchangesO D. Unemployment in factoriesSUBMIT The attendance for a week at a local theatre is normally distributed, with a mean of 4000 and a standard deviation of 500. What percentage of the attendance figures would be less than 3500? What percentage of the attendance figures would be greater than 5000? what percentage of the attendance figures would be between 3700 and 4300 each week? Find the width of a rectangle if the diagonal is 19 and the length is 16 Paul and Emilka have a child together. If Paul decides to leave Emilka and the baby, how will his legal obligations change? He will need to provide child support. He will no longer be the legal father. He will no longer have a legal obligation. He will need to get custody of the child. A citizen group raised funds to establish an endowment for the Eastville City Library. Under the terms of the trust agreement, the principal must be maintained, but the earnings of the fund are to be used to purchase database and periodical subscriptions for the library. A preclosing trial balance of the library permanent fund follows:Trial Balance-December 31, 2017 Debits CreditsCash $8,500 Investments 18,000 Additions to permanent endowments $510,000Investment income 48,000 Expenditures-subscriptions 39,500Intergovernmental grant 8,000Net increase in fair value of investments 2,000 Accrued interest receivable 2,000Accounts payable $568,000 $568,000 Required:A. Prepare any closing entries necessary at year-end.B. Prepare a Statement of Revenues, Expenditures, and Changes in Fund Balance for the library permanent fund.C. Prepare a balance sheet for the Library Permanent Fund (Use Assigned to Library for any spendable fund balance). At the toy store, you could get 4 board games for $25.84. Online, the price for 5 board games is $32.15. Which place has the highest price for a board game? which geometric solid is formed by rotating the rectangle about line m? Type the correct answer in each box. If necessary, use / for the fraction bar. Complete the statements about series A and B. Series A: 10+4+8/5+16/25+32/125+ Series B: 15+3/5+9/5+27/5+81/5+ Series__ has an r value of___where 0