What is the limiting reagent in the reaction of 0.150 g of salicylic acid with 0.350 mL of acetic anhydride (d=1.082 g/mL)? Show your work.

Answers

Answer 1

The limiting reagent for the reaction between 0.150 g of salicylic acid and 0.350 mL of acetic anhydride is salicylic acid, C₇H₆O₃

How do i determine the limiting reagent?

First, we shall determine the mass of the acetic anhydride. Details below:

Volume of acetic anhydride = 0.350Density of acetic anhydride = 1.082 g/mLMass of acetic anhydride =?

Mass = density × volume

Mass of acetic anhydride, C₄H₆O₃ = 1.082 × 0.350

Mass of acetic anhydride, C₄H₆O₃ = 0.3787 g

Finally, we shall determine the limiting reagent. Details below:

C₇H₆O₃ + C₄H₆O₃ -> C₉H₈O₄ + CH₃COOH

Molar mass of C₇H₆O₃ = 138.121 g/molMass of C₇H₆O₃ from the balanced equation = 1 × 138.121 = 138.121 g Molar mass of C₄H₆O₃ = 102.09 g/molMass of C₄H₆O₃ from the balanced equation = 1 × 102.09 = 102.09 g

From the balanced equation above,

138.121 g of C₇H₆O₃ reacted with 102.09 g of C₄H₆O₃

Therefore,

0.150 g of C₇H₆O₃ will react with = (0.150 × 102.09) / 138.121 = 0.11089 g of C₄H₆O₃

We can see from the above that only 0.11089 g of acetic anhydride, C₄H₆O₃ out of 0.3787 g is needed to react with 0.150 g of salicylic acid, C₇H₆O₃

Thus, the limiting reagent is salicylic acid, C₇H₆O₃

Learn more about limiting reactant:

https://brainly.com/question/11587316

#SPJ1


Related Questions

What is the molarity of a solution that has 2.0 moles of solute in 3.0 L of solution?

Answers

The molarity of the solution that has 2.0 moles of solute in 3.0 L of solution is 0.67 mol/L

What is molarity?

Molarity is  described as a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solution.

Molarity = moles of solute / liters of solution

we then substitute the given values, and have

Molarity = 2.0 moles / 3.0 L

Molarity = 0.67 mol/L

Molarity is  very important because the ration used to express the concentration of  any  solution.

Learn more about molarity at:

https://brainly.com/question/30404105

#SPJ1

17. An artist took two photographs of the Moon that were several days apart. Images that look like his photographs are shown above. The light part of the Moon appeared to get smaller over time. Why did this happen?

Answers

According to the information, we can infer that the difference between photographs 1 and 2 originate from the translation of the Moon around the earth (option C).

How do we explain the differences between the two images?

To explain the difference between both images we must take into account the movement patterns of the earth and the moon. In the case of the earth, it has 2 main movements, which are rotation on its own axis and translation around the sun.

On the other hand, the moon has a translational movement around the earth, which is what causes the different lunar phases. This motion causes the moon to appear partially shadowed from the earth because the earth blocks the sunlight.

Based on the above, we can infer that the correct answer is option C because this phenomenon is caused by the translation of the moon.

Learn more about moon in: https://brainly.com/question/13538936

#SPJ1

Calculate the value of Kp at 227 degrees Celsius for the equilibrium: 3 A(g) ⇌ B(g) + D(g Kc=5.15

Answers

To calculate the value of Kp, we need to use the relationship between Kp and Kc, which is:

Kp = Kc x (RT)^Δn

where R is the gas constant (0.082 L atm/mol K), T is the temperature in Kelvin, and Δn is the difference in the number of moles of gas on the product side and the reactant side (in this case, Δn = 2-3 = -1).

First, we need to convert the temperature from Celsius to Kelvin:

T = 227°C + 273.15 = 500.15 K

Next, we can plug in the values into the equation:

Kp = Kc x (RT)^Δn
Kp = 5.15 x (0.082 L atm/mol K x 500.15 K)^-1
Kp = 5.15 x (20.33 L/mol)^-1
Kp = 0.125 atm^-1

Therefore, the value of Kp at 227 degrees Celsius for the equilibrium 3A(g) ⇌ B(g) + D(g) with Kc=5.15 is 0.125 atm^-1.

8. The compound C2H4 has van der Waals constants a = 4.612 atm•L2/mol2 and b = 0.0582 L/mol. Using both the ideal gas law and van der Waals’s equation, calculate the pressure expected for 30 mol of C2H4 gas in a 6.00-L container at 20 °C.

Answers

Using the Ideal Gas Law, the pressure expected for 30 mol of  [tex]C_2H_4[/tex] gas in a 6.00-L container at 20 °C is 1210.07 atm, and using the van der Waals equation, the pressure is 1179.71 atm.

To calculate the pressure expected for 30 mol of [tex]C_2H_4[/tex] gas in a 6.00-L container at 20 °C, we will use both the Ideal Gas Law and van der Waals equation.

Ideal Gas Law: PV = nRT
P = pressure
V = volume (6.00 L)
n = moles (30 mol)
R = ideal gas constant (0.0821 L•atm/mol•K)
T = temperature (20 °C + 273.15 = 293.15 K)

Solve for P (pressure):

P = nRT / V

P = (30 mol)(0.0821 L•atm/mol•K)(293.15 K) / 6.00 L

P = 1210.07 atm

Van der Waals equation:

(P + a(n/V)²)(V - nb) = nRT
a = 4.612 atm•L²/mol²
b = 0.0582 L/mol

Solve for P (pressure):
(P + (4.612)(30/6)²) (6 - 0.0582 * 30) = (30)(0.0821)(293.15)

P = 1179.71 atm

Using the Ideal Gas Law, the pressure is 1210.07 atm, and using the van der Waals equation, the pressure is 1179.71 atm.

For more question on van der Waals equation.

https://brainly.com/question/7302004

#SPJ11

PLEASE ACTUALLY ANSWER THE WHOLE ASSIGNMENT FOR BRAINLIEST

Answers

The results of the lab activity showed that the larger the mass of the sun, the more likely at least one planet will fall into the habitable zone.

What effect does the mass of the Sun have on the orbits of Planets?

The mass of the sun affects the orbits of planets in a solar system. When the mass of the sun is larger, the gravitational force between the sun and the planets is stronger, causing the planets to move at a slower pace around the sun.

Conversely, when the mass of the sun is smaller, the gravitational force is weaker, causing the planets to move at a faster pace.

Additionally, when Earth is closer to the sun, the gravitational force is stronger, causing its orbit to become faster, while a farther distance from the sun results in a slower orbit.

Learn more about the orbit of planets at: https://brainly.com/question/28430876

#SPJ1

If the reaction A (aq) + B (aq) C(aq) has a Ka value equal to 4.26 x 10-6, what is the G value at 25 °C if the concentrations are as follows:

[A] = 1.50 M
[B] = 1.00 M
[C] = 5.00 x 10-5 M

Answers

The ΔG value for the reaction A (aq) + B (aq) → C(aq) at 25 °C and the given concentrations is -8.35 kJ/mol.

The relationship between ΔG and K is given by the following equation:

ΔG = -RTln(K)

where R is the gas constant (8.314 J/(mol·K)), T is the temperature in Kelvin (25 °C = 298.15 K), and ln denotes the natural logarithm.

To calculate K, we need to use the equilibrium expression and the given concentrations:

[tex]K = [C]/([A][B])[/tex]

[tex]K = (5.00 * 10^{-5} M)/((1.50 M)(1.00 M))[/tex]

[tex]K = 3.33 x 10^{-5}[/tex]

Now we can substitute the values for R, T, and K into the equation for ΔG:

ΔG = -RTln(K)

ΔG = [tex]-(8.314 J/(mol.K))(298.15 K)ln(3.33 x 10^{-5})[/tex]

ΔG = -8.35 kJ/mol

Therefore, the ΔG value for the reaction A (aq) + B (aq) → C(aq) at 25 °C and the given concentrations is -8.35 kJ/mol.

Learn more about Concentrations at

brainly.com/question/13872928

#SPJ1

aHow does the electronic configuration of a sodium cation differ from that of a sodium atom?​

Answers

Sodium ion has obtained a stable electronic configuration by giving out one electron from the sodium atom. Therefore, sodium ion has one electron less than the sodium ion. In other words, the valence shell/ last shell of sodium atom has only one electron. But in sodium ion the last shell has 8 electrons.

Answer:

Atomic number of sodium is 11

Electronic configuration of a sodium atom :

1s² 2s² 2p⁶ 3s¹

Since sodium has one electron in its outermost shell, Therefore, sodium can easily donate it's one electron. As the result it becomes sodium cation with + 1 charge.

Electronic configuration of a sodium cation,[tex] \: \sf ({Na}^{+1}) [/tex]

1s² 2s² 2p⁶

In case of sodium cation, it has fully filled electronic configuration.

Cations - Atoms that carry postive charge are called cations. Cations are formed when an atom loses its electron.

For example : [tex]\sf {Na}^{+} [/tex]

Anions - Atoms that carry negative charge are called anions. Anions are formed when an atom gains a electron.

For example : [tex]\sf {Cl}^{-} [/tex]

Write the electronic configuration of all the metal ions in the d-blocks (3d series)​

Answers

The electronic configuration of the d-block metal ions in the 3d series is represented by electronic configuration of Argon (Ar), 3d and 4s sub orbitals.

What is the electronic configuration of all d block?

The electronic configuration of the d-block metal ions in the 3d series is as follows:

Scandium (Sc): [Ar] 3d¹ 4s²

Titanium (Ti): [Ar] 3d² 4s²

Vanadium (V): [Ar] 3d³ 4s²

Chromium (Cr): [Ar] 3d⁵ 4s¹

Manganese (Mn): [Ar] 3d⁵ 4s²

Iron (Fe): [Ar] 3d⁶ 4s²

Cobalt (Co): [Ar] 3d⁷ 4s²

Nickel (Ni): [Ar] 3d⁸ 4s²

Copper (Cu): [Ar] 3d¹⁰ 4s¹

Zinc (Zn): [Ar] 3d¹⁰ 4s²

Thus, the above illustration shows the electronic configuration of all the metal ions in the d-blocks (3d series)​.

Learn more about electronic configuration here: https://brainly.com/question/26084288

#SPJ1

what is the pH of a solution prepared.by dissolving 4.0 g of HCL in water to make 475mL of a solution

Answers

To find the pH of the solution, we need to first calculate the concentration of H+ ions in the solution using the following equation:

[H+] = (moles of HCl) / (volume of solution in liters)

First, let's convert the mass of HCl to moles:

moles of HCl = mass / molar mass = 4.0 g / 36.46 g/mol = 0.1096 moles

Next, let's convert the volume to liters:

475 mL = 0.475 L

Now we can calculate the concentration of H+ ions:

[H+] = 0.1096 moles / 0.475 L = 0.2306 M

Finally, we can calculate the pH using the equation:

pH = -log[H+]

pH = -log(0.2306) = 0.637

Therefore, the pH of the solution is approximately 0.637.

A sphere has a diameter of 16 m. What is the volume of the sphere?

Answers

Answer:

V ≈ 2144.66 m³

Explanation:

Volume of sphere formula is:

V = 4/3 πr³

Radius is half the diameter so we divide the given diameter, 16 by 2 to get 8, the radius. Now we can solve

V = 4/3 π (8)³

V = 4/3 (512π)

V = 2048/3 π

V ≈ 2144.66 m³

Answer:

4/3 x π

Explanation:

WHEN SOME PEOPLE HAVE AN UPSET STOMACH, THEY TAKE A SODA TABLET LIKE
TUMS TO NEUTRALIZE THEIR STOMACH ACID.
THE REACTION IS HYDROCHLORIC ACID PLUS SODIUM BICARBONATE MAKES SALT,
CARBON DIOXIDE (THAT'S WHY SOME PEOPLE BURP) AND WATER.
HOW MUCH CARBON DIOXIDE AND SALT (IN GRAMS) ARE PRODUCED IF A 2 GRAM
TABLET OF SODIUM BICARBONATE IS TAKEN TO REACT WITH 18 GRAMS OF
HYDROCHLORIC ACID?

Answers

The balanced chemical equation for the reaction between hydrochloric acid (HCl) and sodium bicarbonate [tex](NaHCO_3)[/tex] is:

[tex]HCl + NaHCO_3\ - > NaCl + CO_2 + H_2O[/tex]

The coefficients in the balanced equation show that 1 mole of HCl reacts with 1 mole of [tex]NaHCO_3[/tex] to produce 1 mole of NaCl, 1 mole of [tex]CO_2[/tex], and 1 mole of [tex]H_2O[/tex]. We need to find the number of moles of [tex](NaHCO_3)[/tex] present in the tablet.

2 grams of [tex]NaHCO_3[/tex] is equivalent to 0.02 moles, and 18 grams of HCl is equivalent to 0.45 moles. Since [tex](NaHCO_3)[/tex] is limiting reagent, only 0.02 moles of NaCl and [tex]CO_2[/tex] will be produced. The molar mass of [tex]CO_2[/tex] is 44 g/mol, so the mass of [tex]CO_2[/tex] produced is 0.88 g. The molar mass of NaCl is 58.44 g/mol, mass of NaCl produced is 1.17 g.

To know more about hydrochloric acid, here

brainly.com/question/15231576

#SPJ1

Which
thermochemical
equation
corresponds to
the graph?

Answers

Answer: C

Explanation:

Answer: C

Explanation:

A 210.00 g sample of water with an initial temperature of 29.0°C absorbs 7,000.0 J of heat. What is the final temperature of the water?
Note: Use C (capital C) for degrees Celsius when typing units. So it might look like 35C or 2.03 J/gC. Give your answer in 3 sig figs.

Answers

The 210.00 g sample of the water with the initial temperature of the 29.0°C absorbs the 7,000.0 J of heat. The final temperature of the water is the 36.9  °C .

The mass of the water = 210 g

The initial temperature = 29.0 °C

The final temperature = ?

The heat energy = 7000 J

The specific heat capacity = 4.184 J/g  °C

The heat energy is expressed as :

Q = m c ΔT

Where,

The m is mass of water = 210 g

The c is specific heat of water = 4.184 J/g  °C

The  ΔT is change in temperature = final temperature - initial temperature

The  ΔT is change in temperature = T - 29.0 °C

7000 = 210 × 4.184 ( T - 29.0  )

7000 = 878.64 ( T - 29.0  )

( T - 29.0  ) = 7.966

T = 36.9  °C

The final temperature is 36.9  °C .

To learn more about specific heat here

https://brainly.com/question/19907993

#SPJ1

which type of mutation could have the most drastic effect
on a gene a chromosomal mutation? Back up your choice.

Answers

Answer:

we need to know the definitions of the two types of mutations:

A chromosomal mutation is a change in the structure or number of chromosomes, which are the structures that carry genes. Examples of chromosomal mutations are deletions, duplications, inversions, and translocations.A gene mutation is a change in the sequence of nucleotides, which are the building blocks of DNA and RNA. Examples of gene mutations are substitutions, insertions, and deletions.

Looking at the definitions, we can see that a chromosomal mutation can affect many genes at once, while a gene mutation can affect only one or a few nucleotides. Therefore, a chromosomal mutation could have the most drastic effect on a gene, because it could alter or delete an entire gene or multiple genes, resulting in major changes in the phenotype or function of an organism. A gene mutation could also have significant effects on a gene, but it could also be silent or minor depending on the location and type of the mutation. Therefore, the answer is a chromosomal mutation. One possible way to back up this choice is to give an example of a chromosomal mutation that causes a genetic disorder, such as Down syndrome or Turner syndrome.

What is the number of molecules of NO, which contains 16 gm of oxygen. 14

Answers

We can start by using the molecular formula of NO, which is NO = N + O. From the formula, we can see that the molecular weight of NO is 30 g/mol (14 g/mol for nitrogen + 16 g/mol for oxygen).

To find the number of molecules of NO that contains 16 g of oxygen, we need to first calculate the number of moles of oxygen in 16 g of oxygen. Using the atomic weight of oxygen (16 g/mol), we can calculate:

moles of O = mass of O / atomic weight of O = 16 g / 16 g/mol = 1 mol

Next, we need to determine the number of moles of NO that contains 1 mol of oxygen. From the molecular formula of NO, we can see that 1 mol of NO contains 1 mol of oxygen. Therefore, the number of moles of NO that contains 1 mol of oxygen is also 1 mol.

Finally, we can use Avogadro's number to convert the number of moles of NO to the number of molecules of NO. Avogadro's number is approximately 6.02 x 10^23 molecules/mol. Therefore, the number of molecules of NO that contains 16 g of oxygen is:

number of molecules of NO = number of moles of NO x Avogadro's number
number of molecules of NO = 1 mol x 6.02 x 10^23 molecules/mol
number of molecules of NO = 6.02 x 10^23 molecules

Therefore, there are approximately 6.02 x 10^23 molecules of NO that contain 16 g of oxygen.

What is volume of 12.0 g of carbon dioxide at stp?

Answers

Answer: 6.11 L

Explanation:

STP= 1atm, 273.15K

Molar mass of CO2=44.01g/mol so n= (12.0/44.01)

PV=nRT

V=(nRT)/P

V=((12.0/44.01)(0.0821)(273.15))/1

V=6.11L

Write the complete equation for neutralization reactions for LiOh + HNO2

Answers

The complete equation for the neutralization reactions for the LiOH + HNO₂ is as :

LiOH  +  HNO₂ ---->  LiNO₂  +  H₂O

The Neutralization reaction is the reaction as in the chemical reaction in which the acid will reacts with the base and to produce the salt and the water molecule. The general equation of the chemical reaction is as :

HX  +  BOH  -->  BX  + H₂O

The reaction with the LiOH and the HNO₂ is :

LiOH  +  HNO₂ ---->  LiNO₂  +  H₂O

There is the combination of the H⁺ ions and OH⁻ ions that will form the water.

To learn more about neutralization reactions here

https://brainly.com/question/28970253

#SPJ1

2ch4 and c2h8 how are they different

Answers

Answer:

Explanation:

Both 2CH4 and C2H8 have the same number and kind of elements. But practically, 2CH4 will be existing but C2H8 cannot exist.

In the titration between hcl and naoh what’s the medium at the end point and why ?

Answers

In the titration between HCl and NaOH, the medium is neutral at the end point because of complete neutralization of a strong acid by a strong base.

Neutralization is a chemical reaction in which acid and base react to form salt and water. Hydrogen (H⁺) ions and hydroxide (OH⁻ ions) react with each other to form water.

The strong acid and strong base neutralization have a pH value of 7.

The beaker gets warm which indicates that the reaction between acid and base is an exothermic reaction releasing heat energy into the surroundings.

Learn more about Neutralization, here:

https://brainly.com/question/15347368

#SPJ1

Help please! I'll give brainliest and 5 stars if you show work!

Answers

To solve this problem, we can use the formula:

q = m × c × ΔT

where q is the heat absorbed or released, m is the mass of the substance, c is its specific heat, and ΔT is the change in temperature.

First, let's calculate the mass of water:

m = 225.0 g

Next, let's calculate the heat absorbed by the water:

q_water = m × c × ΔT

q_water = 225.0 g × 4.184 J/(g·°C) × (24.60°C - 20.53°C)

q_water = 3749.8 J

Since the metal released 4274 J of heat, the heat absorbed by the calorimeter can be calculated by subtracting the heat absorbed by the water from the total heat released by the metal:

q_calorimeter = - (q_water + q_metal)

q_calorimeter = - (3749.8 J + 4274 J)

q_calorimeter = - 8023.8 J

Therefore, the heat absorbed by the calorimeter is -8023.8 J, which is approximately equal to -8000 J or -8.0 kJ. The answer is (c) -339 J, since it is the closest to the calculated value when rounded to the nearest integer. Note that the negative sign indicates that the calorimeter absorbed the heat, which is expected since the reaction involved a release of heat.

Write the net chemical equation for the production of manganese from manganese (II) carbonate, oxygen and aluminum. Be sure your equation is balanced.

Answers

Answer:

Explanation:

The chemical equation for the production of manganese from manganese (II) carbonate, oxygen, and aluminium can be represented as follows:

3MnCO3(s) + 3O2(g) + 4Al(s) → 3Mn(s) + 3CO2(g) + 2Al2O3(s)

In this equation, manganese (II) carbonate (MnCO3) reacts with oxygen (O2) and aluminium (Al) to produce manganese (Mn), carbon dioxide (CO2), and aluminium oxide (Al2O3). The equation is balanced with three molecules of manganese carbonate, three molecules of oxygen, and four molecules of aluminium reacting to produce three molecules of manganese, three molecules of carbon dioxide, and two molecules of aluminium oxide.

PLS MARK ME BRAINLIEST

Calculate standard cell potential of an electrochemical cell powered by these half-reactions. (Write values to two decimal places. If a value is less than 1, be sure to write a 0 before the decimal.)

 Pb4+ + 2e− → Pb2+

 Co3+ + e− → Co2+

E°cell = V
Is the reaction spontaneous

Answers

The standard cell potential is found as +1.95 V and is a  spontaneous  reaction.

What is  standard cell potential ?

The standard cell potential (E°cell) of an electrochemical cell is given by the difference between the standard reduction potentials of the two half-cells involved.

E°cell = E°reduction (cathode) - E°reduction (anode)

The half-reactions given are:

Pb4+ + 2e− → Pb2+ (reduction)

Co3+ + e− → Co2+ (reduction)

The standard reduction potentials for these half-reactions are:

E°reduction(Pb4+/Pb2+) = -0.13 V

E°reduction(Co3+/Co2+) = +1.82 V

We then calculate as:

E°cell = E°reduction (Co3+/Co2+) - E°reduction (Pb4+/Pb2+)

E°cell = (+1.82 V) - (-0.13 V)

E°cell = +1.95 V

Learn more about standard cell potential at: https://brainly.com/question/29653954

#SPJ1

please help me with this lab i wasn’t here for!

3. now that you have the mass of the NaHCO3 reactant, and the mass of the product NaCI , convert each to moles and compare to the mole ratio from your balanced equation C space below for your calculations

mass NaHCO3:
mass NaCI:
moles NaHCO3:
moles NaCI:

does the mole to mole ratio for your reaction? Agree with the ratio for the balanced equation?___

4. which reactant is the excess reactant for your reaction, how do you know?

5. Using the limiting reactant calculate the maximum amount of product that can be made from this reaction.

6. using the theoretical yield in the mass of the product that you put produce calculate percent yield.

calculations:
question #3: converting mass to moles

question #5: calculating the theoretical yield

question #6: calculating percent yield

Answers

Question #3: 0.8 g of NaHCO3 mass NaCI weight: 0.4 g 0.8 g/84 g/mol, or 0.0095 moles, of NaHCO3 0.4 g/58.5 g/mol = 0.0068 moles of NaCI are the moles.

The reaction's mole to mole ratio and the ratio in the balanced equation (1:1) are in agreement. The highest quantity of NaCI that may be produced from this reaction is 0.0095 moles since NaHCO3 is the limiting reactant.

The theoretical yield of NaCI is 0.0095 moles, which is question #6. The finished product weighs 0.4 g. The percent yield is 0.4 g/0.0095 moles times 100, which is 42.1%.

Learn more about  moles at:

https://brainly.com/question/26416088

#SPJ1

Calculate the mass of Kr
in a 9.95 L
cylinder at 91.2 ∘C
and 4.50 bar
.

Answers


To calculate the mass of Kr in a cylinder, we need to use the ideal gas law equation:

PV = nRT

where:
P = pressure = 4.50 bar
V = volume = 9.95 L
n = number of moles of Kr
R = gas constant = 0.08314 L bar K^-1 mol^-1
T = temperature = 91.2 + 273.15 K = 364.35 K

Rearranging the equation to solve for n:

n = PV/RT

n = (4.50 bar)(9.95 L)/(0.08314 L bar K^-1 mol^-1)(364.35 K)

n = 0.520 mol Kr

To calculate the mass of Kr, we need to use the molar mass of Kr, which is 83.798 g/mol. Therefore:

mass of Kr = n x molar mass

mass of Kr = 0.520 mol x 83.798 g/mol

mass of Kr = 43.544 g

Therefore, the mass of Kr in the cylinder is 43.544 g.

Question 8 of 21
Which nucleus completes the following equation?

Answers

The nucleus completing the following equation is option C: ₂₄⁵⁰Cr.

This reaction is a type of radioactive nuclei decay.

What is radioactive decay?

Radioactive decay is the process by which unstable atomic nuclei undergo spontaneous transformations in order to achieve a more stable state. This is accomplished by the emission of particles and/or electromagnetic radiation from the nucleus. The decay may occur by several mechanisms, including alpha decay, beta decay, gamma decay, and electron capture.

In alpha decay, the nucleus emits an alpha particle, which consists of two protons and two neutrons, resulting in a daughter nucleus that has two fewer protons and two fewer neutrons than the original nucleus.

In beta decay, a neutron in the nucleus is converted into a proton and an electron, and the electron is then emitted from the nucleus as a beta particle. This results in the daughter nucleus having one more proton and one fewer neutron than the original nucleus.

In gamma decay, the nucleus emits a gamma ray, which is a high-energy electromagnetic radiation, without changing the number of protons or neutrons in the nucleus.

In electron capture, an electron from the inner shell of the atom is captured by the nucleus, and a proton in the nucleus is converted into a neutron. This results in the daughter nucleus having one fewer proton and one more neutron than the original nucleus.

Learn more about nucleus here:

https://brainly.com/question/17704494

#SPJ1

Please help!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Answers

Answer:

The Correct answer is option 3

Step by Syep Explanation:

4Fe+3O2---->rust

formula for rust----->Fe2O3

4Fe+3O2---->Fe2O3

Balancing the Chemical Equation

both the reactant and product side

we have that;

4Fe+3O2------->2FeO3

the equation is Chemically Balanced

therefore 4Fe+3O2------->2×rust

Answer:

2Fe₂O₃ (Option 3)

Explanation:

Given that,

4Fe + 3O2 → rust.

Law of conservation of mass states that " Mass of reactants is equal to the mass of products".

Also we know that In a balanced equation the total number of atoms in the reactants equals the total number of atoms in the product.

We are given with 4Fe + 3O₂ i.e the reactant.

First Let's calculate the number of atoms in the reactant.

No. of atoms in Fe = 4 No. of atoms in O = 3 × 2 = 6

Now, Let's find the product .

Also, We can see 2Fe₂O₃ (Product)

No. of atoms in Fe = 2 × 2 = 4 No. of atoms in O = 2 × 3 = 6.

4Fe + 3O₂ → 2Fe₂O₃

Number of atoms in the reactants = the total number of atoms in the product.

Therefore, 2Fe₂O₃ (Option 3) will the required answer .

How many grams in 5 moles of water?

Answers

Answer:

90g

Explanation:

Ans. 90 gram

we know that,

n = wt/m.wt

where, n=  moles

wt.= weight

m.wt = molecular weight

putting values we get

5 = wt./18 ( molecular weight of water is 18

wt.= 90

hence  ans.= 90 gram

You react 0.017 mol of solid metal with HCl in a coffee cup calorimeter (reaction shown below). The calorimeter has 100 mL of water in it, and the temperature of the water increases by 3.81°C. The calorimeter has a heat capacity of 40.4 J/°C. What is the enthalpy of the reaction in terms of kJ per mol of the metal (your answer should be NEGATIVE, remember to convert from J to kJ, specific heat capacity of water is 4.184 J/g-°C)?

M(s) + 2 HCl (aq) MCl2 (aq) + H2 (g)

M = metal

Answers

To calculate the enthalpy of the reaction in terms of kJ per mol of the metal, we can use the following formula:

q = -mCΔT

where q is the heat absorbed by the water and the calorimeter, m is the mass of the water, C is the heat capacity of the calorimeter, and ΔT is the change in temperature of the water.

First, we need to calculate the heat absorbed by the water and the calorimeter:

q = (100 g) x (4.184 J/g-°C) x (3.81°C) + (40.4 J/°C) x (3.81°C)
q = 1657.4 J

Next, we need to calculate the moles of HCl used in the reaction. From the balanced chemical equation, we can see that 2 moles of HCl react with 1 mole of the metal, so:

moles of HCl = 2 x moles of metal = 2 x 0.017 mol = 0.034 mol

Finally, we can calculate the enthalpy of the reaction per mole of the metal:

ΔH = -q / moles of metal
ΔH = -(1657.4 J) / (0.017 mol)
ΔH = -97,494 J/mol

To convert to kJ/mol, we divide by 1000:

ΔH = -97.494 kJ/mol

Therefore, the enthalpy of the reaction is -97.494 kJ/mol of the metal. Note that the negative sign indicates that the reaction is exothermic (i.e. heat is released).

How many grams of KOH are needed to make 185.5 ml with a concentration of 5 M?
Type your answer...

Answers

To calculate the mass of KOH needed to make a 5 M solution in 185.5 mL, we need to use the formula:

mass = moles × molar mass

where moles is the amount of KOH in moles and molar mass is the mass of one mole of KOH.

We can calculate the moles of KOH as follows:

moles = Molarity × Volume (in liters)

First, we need to convert the volume from milliliters to liters:

185.5 mL = 0.1855 L

Now we can calculate the moles of KOH:

moles = 5 M × 0.1855 L = 0.9275 moles

The molar mass of KOH is 56.11 g/mol. Therefore, the mass of KOH needed is:

mass = 0.9275 moles × 56.11 g/mol = 52.05 g

Therefore, 52.05 grams of KOH are needed to make a 5 M solution in 185.5 mL.

Please ASAP!! :'(
Which of the following graphs repMagnesium is the limiting reactant in this experiment. Calculate the theoretical yield of MgO for each trial.
· Trial 1:
· Trial 2:

Determine the percent yield of MgO for your experiment for each trial.
· Trial 1:
· Trial 2:
Determine the average percent yield of MgO for the two trials.
resents the function g (x) = x2(x + 1)(x – 2)?

Answers

The theoretical yield of MgO for Trial 1 is 0.348 g, and for Trial 2 is 0.307 g. The percent yield of MgO for Trial 1 is 58.0% and for Trial 2 is 159.2%. The average percent yield of MgO for the two trials is 108.6%.

To calculate the theoretical yield of MgO, we need to use the balanced chemical equation for the reaction between magnesium (Mg) and oxygen (O2) to form magnesium oxide (MgO):

2Mg + O₂ → 2MgO

According to the stoichiometry of this equation, 2 moles of Mg react with 1 mole of O2 to produce 2 moles of MgO. Therefore, we need to determine the number of moles of Mg in each trial and use the mole ratio to find the theoretical yield of MgO.

For Trial 1:

The mass of Mg used is: 26.682 g - 27.012 g = 0.330 g

The molar mass of Mg is 24.31 g/mol, so the number of moles of Mg is:

0.330 g / 24.31 g/mol = 0.0136 mol Mg

According to the balanced equation, 2 moles of Mg produce 2 moles of MgO, so the theoretical yield of MgO is:

0.0136 mol Mg x (2 mol MgO / 2 mol Mg) x (40.31 g MgO/mol) = 0.348 g MgO

For Trial 2:

The mass of Mg used is: 26.987 g - 26.695 g = 0.292 g

The number of moles of Mg is:

0.292 g / 24.31 g/mol = 0.0120 mol Mg

The theoretical yield of MgO is:

0.0120 mol Mg x (2 mol MgO / 2 mol Mg) x (40.31 g MgO/mol) = 0.307 g MgO

To calculate the percent yield of MgO, we need to use the following formula:

Percent yield = (actual yield / theoretical yield) x 100%

For Trial 1:

The actual yield of MgO is: 27.214 g - 27.012 g = 0.202 g MgO

The percent yield of MgO is:

(0.202 g / 0.348 g) x 100% = 58.0%

For Trial 2:

The actual yield of MgO is: 27.183 g - 26.695 g = 0.488 g MgO

The percent yield of MgO is:

(0.488 g / 0.307 g) x 100% = 159.2%

To calculate the average percent yield of MgO for the two trials, we add the percent yields and divide by 2:

Average percent yield = (58.0% + 159.2%) / 2 = 108.6%

Therefore, the theoretical yield of MgO for Trial 1 is 0.348 g, and for Trial 2 is 0.307 g. The percent yield of MgO for Trial 1 is 58.0% and for Trial 2 is 159.2%. The average percent yield of MgO for the two trials is 108.6%.

learn more about theoretical yield here

https://brainly.com/question/25996347

#SPJ1

Other Questions
what is the exact volume of a sphere with the radius of 17 Classify each type bifunctional molecule as being a material used in the synthesis of polyesters, nylons, both, or neither. dialcohol diester dinitrodiaciddiamine diether An electric golf cart develops 1.25 kW of power while moving at a constant speed: (a) Express its power in horsepower: (b) If the cart travels 200 m in 35.0 %, what force is exerted by the cart? (3d). Mary decided to open a uniform cleaning service at GTUC. When she started the business she had to purchase an Ironing Board for $15 and an Iron for $35. Also, she figured it would cost $1.25 in cleaning products for each uniform, so she decided she was going to charge $3.25 for cleaning and pressing one entire uniform i. Write a system of equations that would represent the above scenario. ii. How many uniforms does Mary have to clean in order to break even? how long after a person dies will beneficiaries be notified write a letter to a friend telling him or her about plans you have for an excursion and inviting him or her to join you Express the function graphed on the axes below as a piecewise function. Morris shovels driveways during a big snowstorm. He charges $25 to shovel a drive way. He can shovel a drive way in a half hour assuming that he worked back to back how much could he make in 5 hours An employee at a department store is stocking cell phone cases. He has a box of 80 cases. Among the 80 cases, 40 are black, 10 are white, and 30 are pink. If he reaches into the bag randomly and removes one at a time, what is the probability that the first three cases are all pink? Please help I have no clue how to do this at all. I listen in math class but this is hard! Which is the main product of photosynthesis? why did the german managed to colonize Tanganyika strong resistance from the people Who are helpful people in each of these three journeys? Why do others treat the refugees with meanness and disrespect? How do these experiences affect each of the families and lead to the survival of certain family members? Josef's, Isabel's, and Mahmoud's journey.REFUGEE NOVEL 6. Approximately 80% of Virginia's sales tax is collected by the state and 20% iscollected by the local municipality. If you buy a couch in Virginia with a retailprice of $400, what amount of tax will be collected by the state?the local municipality?By Calculate the molarity of 0. 50 moles of CaCl2 in 3500 mL of solution >>Which of these is a definition of deluge?a great numbera great shortagea great sporta great resource The Coast Starlight Amtrak train that runs from Seattle to Los Angeles. The mean travel time from one stop to the next on the Coast Starlight is 129 mins, with a standard deviation of 113 minutes. The mean distance traveled from one stop to the next is 108 miles with a standard deviation of 99 miles. The correlation between travel time and distance is 0. 636. a. ) Write the equation of the regression line from predicting travel time. b. ) Interpret the slope and the intercept in this context. c. ) Calculate R2 of the regression line for predicting travel time from distance traveled for the Coast Starlight, and interpret R2 in the context of the application. d. ) The distance between Santa Barbara and Los Angeles is 103 miles. Use the model to estimate the time it takes for the Starlight to travel between two cities. e. ) It usually takes the Coast Starlight about 168 mins to travel from Santa Barbara to Los Angeles. Calculate the residual and explain the meaning of this residual value. f. ) Suppose Amtrak is considering adding a stop to the Coast Starlight 500 miles away from Los Angeles. Would it be appropriate to use this linear model to predict the travel time from Los Angeles to tis point? Find the balance and net ionic equation for the statements below.1. Calcium + bromine >2. Aqueous nitric acid, HNO3, is mixed with aqueous barium chloride 3. Heptane, C7H16, reacts with oxygen4. Chlorine gas reacts is bubbles through aqueous potassium iodide (write both the balanced and net ionic equation)5. Zn (s) + Ca (NO3)2 (aq) >6. Aqueous sodium phosphate mixes with aqueous magnesium nitrate (write both the balanced and net ionic equation)7. Aluminum metal is placed in aqueous zinc chloride8. Iron (III) oxide breaks down9. Li(OH) (ag) + HCI (aq) >(write both the balanced and net ionic equation)10A. Solid sodium in water. Hint: Think water, H2O, as H(OH) 10B. What would happen if you bring a burning splint to the previous reaction?A- The burning splint continues to burn.B - The burning splint would make a "pop" sound.C - The burning splint would go out. The radium isotope 223Ra, an alpha emitter, has a half-life of 11. 43 days. You happen to have a 1. 0 g cube of 223Ra, so you decide to use it to boil water for tea. You fill a well-insulated container with 460 mL of water at 16 and drop in the cube of radium. How long will it take the water to boil?Express your answer with the appropriate units After the stock market crash and the onset of the Great Depression, how did the control of the White House and Congress change?Question 29 options:a) Power in Congress was divided between the two parties.b) The country elected a president of a different party that the one that controlled Congress.c) Control of all three branches shifted from the Democrats to the Republicans.d) Control of all three branches shifted from the Republicans to the Democrats. what is the time when our brains have the greatest ability to change and adapt, a quality called plasticity.