Answer: (-35, 30)
Step-by-step explanation:
Since the scale factor is four, it denotes that it’s a positive dilation. The question is asking for 5 times the point. In other words, where would the point be if it was stretched out 5 times.
If you draw a line from the given to the QED, (-7, 6) to (-35, 30), then you’ll realize that the image is 5 times the original point.
K= (-7*5, 6*5)
Any number less than one means the point or shape is being compressed or made smaller.
15 over 25 in simplest form
Answer:
3/5
Step-by-step explanation:
The greatest common factor (GCF) of the numerator (15) and the denominator (25) is 5
GCF(15,25) = 5
15/25=
15 ÷ 25 ÷ 25 ÷ 5= 3/5
Determine the decimal of growth or decay.
7,545(0.96)^5
The given indicates that the decimal of growth or decay is 0.69 for this problem. Decimal of growth or decay can be determined using the formula A = P(1+r)ⁿ.
What is decimal of growth?Decimal of Growth is the change in the size of an entity over a period of time, expressed as a percentage. It is a measure of the rate at which something grows or shrinks.
Decimal of growth or decay can be determined using the formula A = P(1+r)ⁿ, where A is the final amount, P is the initial amount, r is the rate of growth or decay, and n is the number of intervals.
In this case, A=7,545, P=7,545, r=0.96, and n=5. Plugging these values into the formula, we get 7,545=(7,545)(1+0.96)⁵.
Using a calculator, we can determine that (1+0.96)⁵=0.69, resulting in A=7,545(0.69)=5,203. This indicates that the decimal of growth or decay is 0.69 for this problem.
For more question related to interval,
https://brainly.com/question/13708942
#SPJ1
Evaluate WITHOUT USING LOG.
Show steps.
16^x = 32
We can use the fact that 32 is equal to 2 raised to the power of 5:
32 = 2^5
Substituting this into the equation gives:
16^x = 2^5
We can then rewrite 16 as 2^4, since 16 is equal to 2 raised to the power of 4:
(2^4)^x = 2^5
Simplifying the left side of the equation gives:
2^(4x) = 2^5
Now we can see that the bases of both sides of the equation are equal, so we can set the exponents equal to each other:
4x = 5
Dividing both sides by 4 gives:
x = 5/4
Therefore, the solution to the equation 16^x = 32 is x = 5/4.
Please help me and please be correct! I’ve been sick the past few days so I haven’t got to understand what we are learning! - thanks! :)
I hope you're doing well and this gives a clear understanding to you.
The Triangle and square shown below have the same perimeter What is the length of one side of the square
The length of one side of the square is 1.5 units
What is the length of one side of the squareThe complete question is added as an attachment
From the question, we have
The triangle and the squate have the same perimeter
The perimeter is the sum of the side lengths
So, we have
Triangle = 3x + 4x + 5x
Square = 4 * (x + 1)
Evaluate
Triangle = 12x
Square = 4x + 4
So, we have
4x + 4 = 12x
Evaluate
8x = 4
So, we havr
x = 0.5
From the figure, we have
Length = x + 1
Evaluate
Length = 0.5 + 1
So, we have
Length = 1.5
Hence, the length is 1.5
Read more about perimeter at
https://brainly.com/question/24571594
#SPJ1
A class of 34 eighth graders are holding elections for class president, vice president, secretary, and treasurer. In how many ways can the officers be elected?
There are 1,162,624 ways for the class of 34 eighth graders to elect their officers.
Find the number of waysThere are 34 eighth graders in the class and 4 officer positions to be elected, which are class president, vice president, secretary, and treasurer.
We can use the multiplication principle to find the total number of ways the officers can be elected. The multiplication principle states that if there are a ways to do one thing and b ways to do another, then there are a × b ways to do both.
First, let's consider the class president position. There are 34 students who can be elected as class president. After the class president is elected, there are 33 students left who can be elected as vice president.
Similarly, there are 32 students left who can be elected as secretary, and 31 students left who can be elected as treasurer.
Therefore, the total number of ways the officers can be elected is:
34 × 33 × 32 × 31 = 1,162,624
So, there are 1,162,624 ways for the class of 34 eighth graders to elect their officers.
Learn more about probability at
https://brainly.com/question/30968481
#SPJ11
Determine whether the expression is a difference of squares. w^(2)+64 Is the expression a difference of squares? No Yes
No, the expression w^(2)+64 is not a difference of squares.
A difference of squares is an expression of the form a^2 - b^2, where a and b are real numbers. To determine if the expression is a difference of squares, you need to look at the expression and check if it has the form of a^2 - b^2.
In the expression w^2 + 64, the base of the first term is w, which is not a number, so it cannot be a difference of squares. The second term is 64, which is a real number, but it is not being subtracted from the first term. The expression does not have the form of a^2 - b^2, so it is not a difference of squares.
To summarize, the expression w^2 + 64 is not a difference of squares because it does not have the form of a^2 - b^2.
For more about squares:
https://brainly.com/question/30556035
#SPJ11
For 1-4, find each product. Use the arrays drawn on grids to help.
1. 26 x 18
2. 23 x 23
3. 19 x 27
4. 11 x 16
Answer:
1. 468
2. 529
3. 513
4. 176
Step-by-step explanation:
solve for x
help me pls
The value of x from the similar triangles is x = 4
What are similar triangles?If two triangles' corresponding angles are congruent and their corresponding sides are proportional, they are said to be similar triangles. In other words, similar triangles have the same shape but may or may not be the same size. The triangles are congruent if their corresponding sides are also of identical length.
Corresponding sides of similar triangles are in the same ratio. The ratio of area of similar triangles is the same as the ratio of the square of any pair of their corresponding sides
Given data ,
Let the first triangle be ΔQRS
Let the second triangle be ΔLMN
Now , the measure of ∠QRS = measure of ∠NLM
And , the triangles are similar
Now , the corresponding sides of similar triangles are in the same ratio
On simplifying , we get
LM / RQ = LN / QS
( 2x + 4 ) / 8 = 9 / 6
Multiply by 8 on both sides , we get
2x + 4 = ( 3/2 ) 8
2x + 4 = 12
Subtracting 4 on both sides , we get
2x = 8
Divide by 2 on both sides , we get
x = 4
Therefore , the value of x is 4
Hence , the similar triangles are solved
To learn more about similar triangles click :
https://brainly.com/question/29378183
#SPJ1
need help ! !
answer quick
Answer:
p = 78.8 m
mass of chain = 134 kg
Step-by-step explanation:
a) sin28 = 37/p sin = opposite/hypotenuse
p = 37/sin28 = 78.8 m
b) 78.8 m x 1.7 kg/m = 134 kg
nd all values of h for which the quadratic equation has one real solution. 6x^(2)+7x-h=0 Vrite your answer as an equality or inequality in terms of h.
The one real solution of the equation 6x^(2)+7x-h=0 can be expressed in terms of equality as h = -49/24 using discriminant formula.
To find all values of h for which the quadratic equation 6x^(2)+7x-h=0 has one real solution, we need to use the discriminant formula. The discriminant formula is given by:
D = b^(2) - 4ac
Where a, b, and c are the coefficients of the quadratic equation. In this case, a = 6, b = 7, and c = -h. Plugging these values into the formula, we get:
D = 7^(2) - 4(6)(-h)
D = 49 + 24h
For the quadratic equation to have one real solution, the discriminant must be equal to 0. Therefore, we can set D = 0 and solve for h:
49 + 24h = 0
24h = -49
h = -49/24
Therefore, the value of h for which the quadratic equation has one real solution is h = -49/24. We can write this as an equality:
h = -49/24
To know more about discriminant formula, refer here:
https://brainly.com/question/9300679#
#SPJ11
Starting at the origin, a bug jumps randomly along a number line. Each second it jumps either one unit to the right or one unit to the left, either move being equally likely. This is called a one-dimensional random walk. What is the probability that,
after eight jumps, the bug has returned to the point of departure?
b. After eight jumps, the bug will be within three units of the point of departure?
After eight leaps, there is a 0.3828 percent chance that the bug will still be within three units of where it started.
a. To return to the origin after eight jumps, the bug must take an equal number of left and right jumps. Since there are [tex]2^8=256[/tex] possible sequences of eight left/right jumps, we need to count how many of these sequences have an equal number of left and right jumps. To do this, we can use the binomial coefficient:
[tex]C(8,4) = 8! / (4! * 4!) = 70[/tex]
This counts the number of ways to choose 4 out of 8 jumps to be leftward, with the other 4 jumps being rightward. Therefore, the probability of returning to the origin after eight jumps is:
[tex]P(return to origin) = 70 / 256 = 0.2734[/tex]
b. To be within three units of the origin after eight jumps, the bug must take at most three more rightward than leftward jumps or three more leftward than rightward jumps. We can compute the probabilities of each of these cases separately and add them up. Let's first consider the case where there are three more rightward jumps than leftward jumps. To count the number of such sequences, we can choose three out of the eight jumps to be leftward, with the other five jumps being rightward. Therefore, the probability of this case is:
P(3 more rightward) = C(8,3) / 256 = 0.1094
Similarly, the probability of having three more leftward jumps than rightward jumps is also 0.1094. To count the number of sequences where there are two more rightward jumps than leftward jumps, we can choose two out of the eight jumps to be leftward, with the other six jumps being rightward. There are also C(8,2) sequences with two more leftward jumps than rightward jumps. Therefore, the probability of being within three units of the origin after eight jumps is:
[tex]P(within 3 units) = 2 * 0.1094 + 2 * C(8,2) / 256 = 0.3828[/tex]
Therefore, the probability that the bug is within three units of the point of departure after eight jumps is 0.3828.
To learn more about probability visit;
https://brainly.com/question/30034780
#SPJ1
What would the number be if the number is even, less than -12 and the absolute value of the number is between 9 and 15
The number if the number is even, less than -12 and the absolute value of the number is between 9 and 15 is 14
What is Algebra?Algebra is the study of abstract symbols, while logic is the manipulation of all those ideas.
The acronym PEMDAS stands for Parenthesis, Exponent, Multiplication, Division, Addition, and Subtraction. This approach is used to answer the problem correctly and completely.
We are given that;
Number is even
Number is less than -12
Number is between 9 and 15
Now,
If the number is even and less than -12, the only possibility within the given constraints is -14.
Since the absolute value of -14 is 14, which is between 9 and 15, it satisfies the additional condition that the absolute value of the number is between 9 and 15.
Therefore, by algebra the answer will be 14.
More about the Algebra link is given below.
brainly.com/question/953809
#SPJ1
Six hours after it started raining the of rain was 37 millimeters what the functions notation
The function notation for the amount of rainfall after 6 hours of raining is f(t) = 37.
Let's define the function as follows:
f(t) = r
where t represents the time elapsed since the rain started, f(t) represents the amount of rainfall at time t, and r represents the amount of rainfall in millimeters.
According to the problem statement, six hours after it started raining, the amount of rain was 37 millimeters. We can use this information to find the value of r:
f(6) = 37
This means that at time t=6, the amount of rainfall is 37 millimeters.
Now we can write the function in terms of the specific value of r:
f(t) = 37
This means that the amount of rainfall is constant and equal to 37 millimeters for all values of t.
To know more about function here
https://brainly.com/question/28193995
#SPJ4
CHALLENGE The sum of three consecutive terms of an arithmetic sequence is 6 . The product of the terms is -42. Find the terms.
The first step is to recall the equation for an arithmetic sequence: an = a1 + (n - 1)d, where a1 is the first term, an is the nth term, and d is the common difference.
Given the sum of three consecutive terms of the sequence, we know that a3 + a2 + a1 = 6. We can also recall that the product of the terms is a1 x a2 x a3 = -42.
Now, using the two equations, we can solve for the three terms:
a3 = (6 - a2 - a1)/2,
a2 = 6 - a1 - 2a3,
a1 = 6 - a2 - 2a3
Substituting the second and third equation into the first, we get:
a3 = -14/2 = -7
Therefore, the three consecutive terms of the arithmetic sequence are: a1 = -5, a2 = 2, a3 = -7.
For more such questions on Arithmetic sequence, visit:
brainly.com/question/15412619
#SPJ11
a. The function is compressed vertically by a factor of 4 , translated horizontally 2 units to the left, and is reflected with respect to the x-axis.
The function is transformed through a series of transformations, including compression, translation, and reflection.
The is done vertically by a factor of 4, meaning that the function is made smaller in the y-direction. The translation is done horizontally by moving the function 2 units to the left. The reflection is done with respect to the x-axis, meaning that the function is flipped across the x-axis.
The resulting function can be represented by the equation y = -4f(x + 2), where f(x) is the original function. The negative sign in front of the 4 indicates the reflection with respect to the x-axis, the 4 indicates the vertical compression, and the (x + 2) indicates the horizontal translation to the left.
A new function that is compressed, translated, and reflected is produced after the function has undergone a number of modifications overall.
To know more about quadratic function below link :
https://brainly.com/question/22964920
#SPJ11
Find the average rate of change of the function from
x1 to x2
f(x) = 3x from x1 = 0 to x2 = 5
f(x) = x2 + 2x from x1 = 3 to
x2 = 5
f(x) = square root of x from x1 = 4 to x2
= 9
Interpret slope as a ra
The average rate of change of f the first function is 3, the average rate of change of the second function is 10, and the average rate of change of the third function is 0.2.
The average rate of change of a function from x1 to x2 can be calculated using the formula:
Average rate of change = (f(x2) - f(x1))/(x2 - x1)
For the first function, f(x) = 3x, we can plug in the values of x1 = 0 and x2 = 5 to get:
Average rate of change = (f(5) - f(0))/(5 - 0) = (15 - 0)/5 = 3
For the second function, f(x) = x2 + 2x, we can plug in the values of x1 = 3 and x2 = 5 to get:
Average rate of change = (f(5) - f(3))/(5 - 3) = (25 + 10 - 9 - 6)/2 = 10
For the third function, f(x) = square root of x, we can plug in the values of x1 = 4 and x2 = 9 to get:
Average rate of change = (f(9) - f(4))/(9 - 4) = (3 - 2)/5 = 0.2
The slope of a function is interpreted as the average rate of change of the function. Therefore, the slope of the first function is 3, the slope of the second function is 10, and the slope of the third function is 0.2.
Learn more about average rate of change at https://brainly.com/question/30084235
#SPJ11
I NEED HELP ASAP! I give brainlist to whoever answers **ALL** of them (simplest answer possible)
1. Find the perimeter of the base of the treasure chest in feet
2. Find the area of the base of the treasure chest in square feet.
3. Can you use the expression from part c in exercise (#3) to find the surface area of the treasure chest in exercise 2? Explain
4. One cubic inch of sand weighs about 1 ounce. Find the weight of the treasure chest (in pounds) after it is filled with sand. Assume that the chest weighs 20 pounds when empty.
*There are 16 ounces in a pound
The answers to each question are:
1. the perimeter is 10 ft.
2. the area of the chest’s base is 6,
3. This wouldn’t work.
4. The chest weighs 956 pounds when filled with sand
What is surface area?
The space occupied by a two-dimensional flat surface is called the area. It is measured in square units. The area occupied by a three-dimensional object by its outer surface is called the surface area.
1. The base of the treasure chest is the bottom edge
Because most chests are rectangles, we can assume that the base is also a rectangle
This means that the perimeter would be 3+3+2+2, which is 10 ft
2.
To find the area of the chest’s base, you must multiply 3 by 2
3*2 is 6, so the answer is 6 feet squared
3.
It looks like it is asking if you can find the surface area by multiplying the base by one of the side lengths (again, not sure which one because it’s not labeled)
This wouldn’t work regardless of the side length, however, because base times height is equal to the volume of the chest and not the surface area
4. To do this, it would be easier to find how much sand can fit in the chest, and then do weight after you have that figure
There are 12 inches in a foot, so the measurements of how much sand can fit in the chest could be found by multiplying 12 by the side length
This would leave you with measurements of 36, 24 and 24
Volume is base * height, so first multiply the two base measurements (36 and 24)
This leaves you with 624
Multiply that by height (24) and you get 14,976 cubic inches of sand
Because each cubic inch of sand weighs about 1 ounce, we know that the weight of the sand is 14,976 ounces
To find out how much that is in pounds, divide 14,976 by 16
This leaves you with 936 lbs
Add the additional 20 that comes from the chest and you get 956 lbs total
The chest weighs 956 pounds when filled with sand
Hence, the answers to each question are:
1. the perimeter is 10 ft.
2. the area of the chest’s base is 6,
3. This wouldn’t work.
4. The chest weighs 956 pounds when filled with sand
To know more about surface area visit :
https://brainly.com/question/16519513
#SPJ1
A direct variation includes the points (-6, 18) and (-4, n). Find n.
Write and solve a direct variation equation to find the answer.
The value of n will be 12.
What is direct variation ?One definition of direct variation is the relationship between two variables when one is a fixed multiple of the other. They are said to be in proportion, for instance, when one variable affects the other. The equation has the form b = ka if b is directly proportional to a. (where k is a constant)
The direct variation includes the points (-6, 18) and (-4, n).
We know that, direct variation = b= ka
where, a is the x coordinate, b is the y coordinate and k is the constant.
So, For (-6, 18),
we have, 18 = -6k
So, k = -3
Now, For (-4, n),
we have, n = -4k
n = -4×-3 ( putting k= -3)
= 12
To learn more about Direct variation, visit the link:
https://brainly.com/question/2098610
#SPJ1
I need help with this problem please and thank you also with work shown please
The circumcenter of the triangle formed by the vertices is found as (2 , 5).
Explain about the circumcenter?The intersection or meeting of three perpendicular bisectors from such a triangle's sides is known as the circumcenter. The point of concurrence of a triangle is another name for a triangle's circumcenter.
Given points are,
A = (-2, 5),
B = (2, 1),
C = (5, 5)
We must solve either two bisector equations then determine the intersection locations in order to determine the circumcenter.
Mid point of AB = [(-2 + 2)/2, (5 + 1)/2] = (0,3)
Slope of AB = [(1 - 5)/(2 + 2)] = -1
The negative reciprocal of a given slope is the slope of the bisector.
Hence, the perpendicular bisector's slope equals 1.
Formula of AB with coordinates (0, 3) and slope (1),
(y – 3) = 1(x – 0)
x – y = -3 eq…(1)
Similarly, for AC
Mid point of AC = [(-2 + 5)/2, (5 + 5)/2] = (1.5, 5)
Slope of AC = [(5-5)/(5+2)] = 0
The negative reciprocal of a given slope is the slope of the bisector.
Hence, the perpendicular bisector's slope equals 0
Equation of AC at coordinates (1.5,5) and slope (0),
(y – 5) = 0(x – 1.5)
y = 5 ....eq 2
Solve eq (1) and (2),
x – y = -3
x - 5 = -3
x = 2
Thus, the circumcenter of the triangle formed by the vertices is found as (2 , 5).
know more about the circumcenter
https://brainly.com/question/1851668
#SPJ1
Find the final amount for an investment of $5,000 over 5 years at an annual interest rate of 6% if the interest is compounded quarterly.
Therefore, the final amount for an investment of $5,000 over 5 years at an annual interest rate of 6% if the interest is compounded quarterly is $6,734.27.
What variables affect interest rates?SI unit is defined as (P, R, and T) / 100.
SI stands for Straightforward Interest in this instance. P represents the principal (loaned or invested), and R represents the interest rate.
To solve this problem, we need to use the formula for compound interest:
A = P (1 + r/n)^(nt)
Where:
A = the final amount
P = the principal amount (initial investment)
r = the annual interest rate (as a decimal)
n = the number of times the interest is compounded per year
t = the time (in years)
Here, we have:
P = $5,000
r = 6% = 0.06 (annual interest rate)
n = 4 (compounded quarterly)
t = 5 years
Plugging these values into the formula, we get:
A = 5000 (1 + 0.06/4)^(4*5)
A = 5000 (1.015)^20
A = 5000 (1.349858807)
A = $6,734.27 (rounded to the nearest cent)
Therefore, the final amount for an investment of $5,000 over 5 years at an annual interest rate of 6% if the interest is compounded quarterly is $6,734.27.
To know more about interest rate visit:
https://brainly.com/question/13324776
#SPJ1
Find the mean, median and mode of the data choose the measure. That best represents the data. Explain your reasoning
For the given observations 48, 12, 11, 45, 48, 48, 43, 32, the values are -
Mean = 37.5 , Median = 44, and Mode = 48
The median is the best measure for the data.
What is mean?
In statistics, in addition to the mode and median, the mean is one of the metrics of central tendency. Simply put, the mean is the average of the values in the given collection. It indicates that values in a particular data collection are distributed equally. The three most frequently employed metrics of central tendency are the mean, median, and mode.
To find the measure that best represents the given data, we can calculate the mean, median, and mode and choose the measure that gives us the most representative value.
Mean -
To find the mean of the data, we add up all the values and divide by the total number of values -
Mean = (48 + 12 + 11 + 45 + 48 + 48 + 43 + 32) / 8 = 37.5
Median -
To find the median of the data, we arrange the values in order from smallest to largest and then find the middle value.
If there are an even number of values, we take the average of the two middle values.
11, 12, 32, 43, 45, 48, 48, 48
There are eight values in the data set, so the median is -
(43 + 45) / 2
88 / 2
44
Mode -
To find the mode of the data, we look for the value that occurs most frequently.
In this case, 48 occurs three times, which is more than any other value, so the mode is 48.
Conclusion:
In this data set, the mean is 37.5, the median is 44, and the mode is 48. Since the data set has some values that are higher than the others, such as 48 occurring three times, the mean may be influenced by these outliers.
In this case, the median is a better measure of central tendency because it is not influenced by outliers.
Therefore, the median is the measure that best represents the data.
To learn more about mean from the given link
https://brainly.com/question/26941429
#SPJ1
Write the following as an inequality
6 Is greater than w, and 1 is less than or equal to w
Use w only once in the inequality
It is reported that a survey had a standard error of the mean of 20, and it is assumed that the population standard deviation is 500. Using this information, determine the size of the sample that was used in this survey.
To have a full mark, you NEED to show your calculation and solution (with all the STEPS) in the midterm exam file posted under Assessment-Assignment (Similar to Weekly Quizzes).
Do NOT use EXCEL
a) 500
b) 300
c) None of the answers are correct
d) 200
e) 400
It is reported that a survey had a standard error of the mean of 20, and it is assumed that the population standard deviation is 500. The size of the sample that was used in this survey is 625., So the answer is c) None of the answers are correct.
The size of the sample used in the survey can be determined using the formula for standard error of the mean:
Standard error of the mean = (Population standard deviation) / (Square root of sample size)
Rearranging the formula to solve for sample size, we get:
Sample size = (Population standard deviation / Standard error of the mean)^2
Plugging in the given values:
Sample size = (500 / 20)^2
Sample size = 25^2
Sample size = 625
Therefore, the size of the sample used in the survey is 625.
The correct answer is c) None of the answers are correct, as 625 is not one of the given options.
Learn me about confidence interval here: brainly.com/question/17097944.
#SPJ11
You told your friend that you could eat
of a large pizza. If you only ate
of what you said you could eat, what fraction of a large pizza did you eat?
I told my friend that I can eat 58 of a large pizza. If I only ate 12 of what I said, I can eat, then the fraction of large pizza eaten is [tex]\frac{6}{29}[/tex]
The portion of pizza supposed to be eaten was 58 while actually eaten slices of pizza is 12. The computation of the fraction of large pizza did you eat is given below:
= Ate portion ÷ large pizza
= [tex]\frac{12}{58}[/tex]
= [tex]\frac{6}{29}[/tex]
Hence, the fraction of large pizza did you eat is 6 ÷ 29
The question is incomplete the complete question would be "You told your friend that you could eat 58 of a large pizza. If you only ate 12 of what you said you could eat, what fraction of a large pizza did you eat?"
Learn more about fraction at:
brainly.com/question/10354322
#SPJ4
please help urgenttttt!
Same-side interior angles are a pair of angles formed when two parallel lines are intersected by a third line, known as a transversal.
In this case, the same-side interior angles are the angles that are on the same side of the transversal and between the two parallel lines. They are called "interior" because they are inside the two parallel lines.
If you take any two same-side interior angles, they will add up to 180 degrees, meaning that they are supplementary.
The same side interior angles for this problem are given as follows:
4x - 23.2x + 5.As the same side interior angles are supplementary, the value of x is obtained as follows:
4x - 23 + 2x + 5 = 180.
More can be learned about same side interior angles at https://brainly.com/question/16959398
#SPJ1
Write an equation in slope intercept form from the linear inequality graphed below.
Given the slope of the line and the intercept it forms with the y-axis, one of the mathematical forms used to derive the equation of a straight line is called the slope intercept form. Y = mx + b, where m is the slope of the straight line and b is the y-intercept, is the slope intercept form.
The equation of the line, as determined by the slope-intercept formula, is: y = mx + b, where m is the line's slope and b is its y-intercept. As x and y represent each point on the line, they must be maintained as variables when using the formula above.
To know more about slope intercept form, visit:
https://brainly.com/question/30216543
#SPJ1
Please help me with this math thank u
Please use wilcoxcon rank test where appropriate and show work, thank you.
An arterial blood gas analysis was performed on healthy and ill foals examined at a veterinary teaching hospital to determine agreement between direct measurements of partial pressure of exhaled carbon dioxide (PaCO2) with indirect measurement through a sidestream capnograph inserted into the naris of the foal (PETCO2). Difference between PaCO2 and PETCO2 was calculated for each of the 10 healthy foals and 21 ill foals in study.
(a) Create a stem-and-leaf display for the observed differences PaCO2 - PETCO2 of the 10 healthy foals: -3.5 2.6 1.7 -3.6 -2.8 0.8 3.7 -0.2 -3.1 6.3
(b) Find the five-number summary (minimum, lower quartile, median, upper quartile and maximum) for the data in part (a).
(c) Perform a signed rank test for difference in distribution between PaCO2 and PETCO2 among healthy foals at 5% significance level.
(d) The sample mean and sample standard deviation of PaCO2 - PETCO2 for the 21 ill foals were -2.35 and 4.98, respectively. Is there any difference in population mean between PaCO2 and PETCO2 among ill foals? Use t-tools to answer this question at 5% alpha level.
(e) Provide a 90% confidence interval for the difference in population mean between PaCO2 and PETCO2 among ill foals.
The 90% confidence interval for the difference in population mean between PaCO2 and PETCO2 among ill foals is (-3.61, -1.09).
(a) Stem-and-leaf display for the observed differences PaCO2 - PETCO2 of the 10 healthy foals:
Stem | Leaf
-3 | 5, 6
2 | 6
1 | 7
-3 | 6
-2 | 8
0 | 8
3 | 7
-0 | 2
-3 | 1
6 | 3
(b) Five-number summary (minimum, lower quartile, median, upper quartile and maximum) for the data in part (a):
Minimum = -3.6, Lower Quartile = -3.1, Median = -0.2, Upper Quartile = 3.7, Maximum = 6.3
(c) Signed rank test for difference in distribution between PaCO2 and PETCO2 among healthy foals at 5% significance level:
The null hypothesis is that the PaCO2 and PETCO2 among healthy foals follow the same distribution. Using a Wilcoxon signed rank test, the p-value is 0.80 and is greater than 0.05 (alpha), therefore, there is no significant difference in distribution between PaCO2 and PETCO2 among healthy foals.
(d) Is there any difference in population mean between PaCO2 and PETCO2 among ill foals? Use t-tools to answer this question at 5% alpha level:
Using a two-sample t-test, the p-value is 0.00 and is less than 0.05 (alpha), therefore, there is a significant difference in population mean between PaCO2 and PETCO2 among ill foals.
(e) Provide a 90% confidence interval for the difference in population mean between PaCO2 and PETCO2 among ill foals:
The 90% confidence interval for the difference in population mean between PaCO2 and PETCO2 among ill foals is (-3.61, -1.09).
Learn more about Wilcoxon signed rank test
brainly.com/question/29772048
#SPJ11
There are 486 elephants and they are decreasing at a rate of 3% per year, how
many will there be in 20 years?
Therefore , the solution of the given problem of percentage comes out to be 20 years there will be roughly 265 elephants.
Explain percentage.A percentage in statistics is a number or a number that is represented as a portion of 100. Additionally, "pct.," "pct," and "pc" are infrequently employed. However, the "%" symbol is frequently used to indicate it. The percentage sum is flat; there are no dimensions. Since 100 is the numerator of percentages, they are really just integers. The percent symbol (%) or the word "percent" must come before a number to denote that it is a percentage.
Here,
Elephant population after each year is 97% of the population after the preceding year if the population is declining at a rate of 3% per year.
We can use the following equation to determine the number of elephants in 20 years:
Population after 20 years is equal to the initial population multiplied by (1 - rate of decline/100) years.
Inputting the numbers provided yields:
=> 20-year population = 486 * (1 - 3/100)
=> 20 People after 20 years= 486*0.97.
=> 20 Years Later, Number = 486 x 0.5459
=> 20 years later, the population is 265,26.
Consequently, in 20 years there will be roughly 265 elephants.
To know more about percentage visit:
https://brainly.com/question/28269290
#SPJ1