Answer:
(z−5)(z−5)
Step-by-step explanation:
Let's factor z2−10z+25
z2−10z+25
The middle number is -10 and the last number is 25.
Factoring means we want something like
(z+_)(z+_)
Which numbers go in the blanks?
We need two numbers that...
Add together to get -10
Multiply together to get 25
Can you think of the two numbers?
Try -5 and -5:
-5+-5 = -10
-5*-5 = 25
Fill in the blanks in
(z+_)(z+_)
with -5 and -5 to get...
(z-5)(z-5)
Answer: (Z - 5) (Z - 5)
Step-by-step explanation: Just confirming what the other person wrote :)
I need help with this
Answer:
86.55 ft
Step-by-step explanation:
First find the perimeter for 3 sides of the rectangle that are solid
24+15+24 = 63
The we find the circumference for 1/2 of the circle
C = pi d
The diameter is 15 and pi = 3.14
But we only want 1/2
1/2 C = 1/2 pi d
= 1/2 ( 3.14) * 15
=23.55
Add the lengths together
23.55+63 =86.55 ft
GUYSSSS what is 30kx-6kx=8 but solve for x
Answer:
x = 1/(3k)
Step-by-step explanation:
30kx-6kx=8
Combine like terms
24 kx = 8
Divide each side by 24k
24kx / 24k = 8/(24k)
x = 1/(3k)
6. Find d.
Please help
Answer:
Step-by-step explanation:
The first thing we are going to do is to fill in the other angles that we need to solve this problem. You could find ALL of them but all of them isn't necessary. So looking at the obtuse angle next to the 35 degree angle...we know that those are supplementary so 180 - 35 = the obtuse angle in the small triangle. 180 - 35 = 145. Within the smaller triangle we have now the 145 and the 10, and since, by the Triangle Angle-Sum Theorem all the angles have to add up to equal 180, then 180 - (10 + 145) = the 3rd angle, so the third angle is 180 - 155 = 25. Now let's get to the problem. If I were you, I'd draw that out like I did to keep track of these angles cuz I'm going to name them by their degree. In order to find d, we need to first find the distance between d and the right angle. We'll call that x. The reference angle is 35, the side opposite that angle is 12 and the side we are looking for, x, is adjacent to that angle. So we will use the tan ratio to find x:
[tex]tan(35)=\frac{12}{x}[/tex] Isolating x:
[tex]x=\frac{12}{tan(35)}[/tex] so
x = 17.1377 m
Now we have everything we need to find d. We will use 25 degrees as our reference angle, and the side opposite it is 12 and the side adjacent to it is
d + 17.1377, so that is the tan ratio as well:
[tex]tan(25)=\frac{12}{d+17.1377}[/tex] and simplifying a bit:
[tex]d+17.1377=\frac{12}{tan(25)}[/tex] and a bit more:
d + 17.1377 = 25.73408 so
d = 8.59, rounded
URGENT!!! Please help me with this question!!!
Answer:
Step-by-step explanation:
The inscribed angle intersects an arc that is half the measure of the of the arc intersected by the central angle. The inscribed angle's arc measures 36%, and the central angle's arc measure 72%
Answer:
75
%Step-by-step explanation:
The inscribed angle intersects an arc that is half the measure of the of the arc intersected by the central angle.
This table gives a few (x,y) pairs of a line in the coordinate plane.
Answer:
x-intercept → (-5, 0)
Step-by-step explanation:
Let the equation of the line having pairs given in the table is,
y - y' = m(x - x')
m = slope of the line
(x', y') is a point lying on the line.
From the given table,
Two points (33, -22) and (52, -33) lie on the line.
Slope of the line = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
m = [tex]\frac{-33+22}{52-33}[/tex]
m = [tex]-\frac{11}{19}[/tex]
Equation of the line passing through (33, -22) and slope = [tex]-\frac{11}{19}[/tex] will be,
y + 22 = [tex]-\frac{11}{19}(x - 33)[/tex]
For x-intercept y = 0,
0 + 22 = [tex]-\frac{11}{19}(x-33)[/tex]
-38 = x - 33
x = -38 + 33
x = -5
Therefore, x-intercept of the line is (-5, 0).
Answer:
-5,0
Step-by-step explanation:
khan academy
Sarah has been training for a marathon, which will cover a distance of 42.195 km. In training
she has consistently run 1km each 6 minutes. How long will it take Sarah to complete the
Marathon if she runs at this pace consistently throughout the race?
Answer:
4 hours 21 minutes 17 seconds.
Step-by-step explanation:
1km = 6 minutes
42.195km = ?
42.195 × 6 = 253 minutes 17 seconds = 4 hours 21 minutes 17 seconds.
Answer:
4 hours 21 minutes 17 seconds.
Step-by-step explanation:
Please answer the following questions
Step-by-step explanation:
sorry I can only explain as there are no labels to each diagram
The first diagram is single and can solved using triangular formular given as 1/2 ×base × height
A = 1/2 × 5 × 12
A = 30cm^2..
as for the second one...it consist of 2 diagrams which will be solved separately before adding ...it can simply be done using Pythagoras theorem..
To get the smaller part ...out tita is 45degrees while our adjacent is 4 and opposite is x we are to find x which is the height...
using SOH CAH TOA...
WE HAVE TAN45= opp/adj
Tan45= x/ 4
Tan 45 =1 ...so
1 = x/ 4
and x= 4 ...
so...having our height as 4 and base as 4 ..
Area of smaller triangle become 1/2 × 4 × 4
A = 8cm^2 ...
......SOLVING FOR THE SECOND DIAGRAM ..
WE HAVE the height as ( dotted spot + undotted spot ) = 4 + 4 = 8cm
and our base can be gotten from
Tan45 = opp / adj
1 = 8/x ..
x = 8cm ....so the base is 8 and the height is 8
..
The Area becomes 1/2 × 8×8 = 32cm ...
Total area becomes 32cm + 8cm = 40cm^2
which expression is equal to 5√2/√13
1. √65/2
2.√26/13
3.5√25/13
4.5√26/√13
Answer:
5√26/13
Step-by-step explanation:
5√2/√13 multiply the nominator and denominator by √13 to rationalize the denominator
5√2√13/√13√13 ( √13×√13=13)
5√26/13
there is answer in multiple choice but this is the correct one
10.Given the following, including the fact
that ∠ABC and ∠CBD are supplementary,
what is the value of m ∠ABC and m ∠ABC?
m ∠DBC=x−10
m ∠ABC=x+30.
Answer:
m ∠DBC=80−10=70
m ∠ABC=80+30=110
Step-by-step explanation:
m ∠DBC+m ∠ABC=180
( x−10)+(x+30.)=180
2x+20=180
2x=180-20
2x=160
x=80
>>m ∠DBC=80−10=70
>>m ∠ABC=80+30=110
Answer:
[tex]\boxed{<DBC = 70 degrees}\\\boxed{<ABC = 110 degrees}[/tex]
Step-by-step explanation:
∠ABC and ∠DBC are supplementary which means that the sum of these two angles is equal to 180.
∠ABC + ∠DBC = 180
Given that: ∠ABC = x+30 and ∠DBC = x - 10
So,
=> x+30+x-10 = 180
=> 2x+20 = 180
=> 2x = 180-20
=> 2x = 160
Dividing both sides by 2
=> x = 80
Now, Finding measures of the angles.
=> ∠DBC = x-10 = 80-10 = 70 degrees
=> ∠ABC = x+30 =80+30 = 110 degrees
someone please help!!
Each tick on the graph represents a single unit.
Thus, counting the ticks, we see that the graph starts at x=2. We also see that the graph ends at x=5.
Thus, the domain is [tex]2 \leq x \leq 5[/tex]
Let me know if you need any clarifications, thanks!
Which is the length of the hypotenuse of the right triangle? Round your answer to the nearest tenth of a centimeter. Hint: Pythagorean Theorem: a^2+ b^2 = c^2
Answer:
[tex]c =\sqrt{a^{2}+b^{2} }[/tex]
Step-by-step explanation:
You clear c, wich is the hypotenuse
[tex]c =\sqrt{a^{2}+b^{2} }[/tex]
Aminah had $120. She spent 20%of the money of food and 25% of the remaining on clothes. What percent of the money did she saved? How much money did she have left?
Answer:
She saved $48; She had $72 remaining
Step-by-step explanation: She started off with $120. 20% of $120= $24, 25% of $96= $24. $24 + $24= $48. $120(total) - $48(total money saved) = $72(money left).
The percentage is calculated by dividing the required value by the total value and multiplying by 100.
Required percentage value = a
total value = b
Percentage = a/b x 100
The amount of money left is $72
What is a percentage?The percentage is calculated by dividing the required value by the total value and multiplying by 100.
Example:
Required percentage value = a
total value = b
Percentage = a/b x 100
Example:
50% = 50/100 = 1/2
25% = 25/100 = 1/4
20% = 20/100 = 1/5
10% = 10/100 = 1/10
We have,
Amount = $120
Amount spend on food.
= 20% of 120
= 20/100 x 120
= $24
Amount remaining.
= 120 - 24
= $96
Amount spend on clothes.
= 25% of 96
= 1/4 x 96
= $24
Amount remaining.
= 96 - 24
= $72
Thus,
The amount of money left is $72
Learn more about percentages here:
https://brainly.com/question/11403063
#SPJ5
HELP BRAINLIEST UP FOR GRABS Jenny has some tiles in a bag. The tiles are of three different colors: purple, pink, and orange. Jenny randomly pulls a tile out of the bag, records the color, and replaces the tile in the bag. She does this 50 times. The results are recorded in the given table: Color of Tile Purple Pink Orange Number of times the tile is drawn 6 18 26 What is the experimental probability that Jenny will pull out a purple tile? fraction 6 over 50 fraction 44 over 50 fraction 6 over 44 fraction 18 over 44
Answer:
Step-by-step explanation:
Thank you for providing the details of the question.
Unfortunately none of the results you have to choose from will give you 44%
The problem resembles the first probability question you were likely asked. "What is the probability of getting a heads on every throw of a fair coin?" The answer is 1/2 no matter how many times you throw the coin or what has happened before any point in the throws.
The answer should be 6/50. If this turns out not to be the answer and you have an instructor your safest course of action is to ask how 44% was obtained. Tell me in a comment.
Answer:
fraction 6 over 50
Step-by-step explanation:
In the question it says she pulls a tile out of the bag and records the color 50 times which means she pulled out 50 tiles.
Now the table says that she recorded 6 purple tiles.
Probability is equal to [tex]\frac{number of favorable outcomes}{number of possible outcomes}[/tex]
Number of favorable outcomes here is the number of purple tiles she pulled out (6) since we want to find the probability of choosing a purple tile and the number of possible outcomes is the total number of tiles she pulled out (50)
So the probability = [tex]\frac{6}{50}[/tex]
Multiply the polynomial
(4x2-4)(2x+1)
PLEASE HELP!!! ASAP!!!
Answer:
4(2x^3+ x^2-2x-1)
Step-by-step explanation:
the explanation is given above in the picture
pls do mark me the brainliest.
Answer:
4(2x^3+x^2-2x-1)
Step-by-step explanation:
Mulitply each term:
8x^3+4x^2-8x-4
Now simplify: 4(2x^3+x^2-2x-1)
Please mark me brainliest!!
WILL MARK BRAINLIEST!!! PLZ HELP!!! Which graph best represents the function f(x) = (x + 1)(x − 1)(x − 4)? I think it's D, but im not sure
Answer:
D
Step-by-step explanation:
Find the x intercepts from the equation and apply them to the graphs. It matches up with D. Your thought is correct
Answer:
[tex]\boxed{\mathrm{D}}[/tex]
Step-by-step explanation:
[tex]y= (x + 1)(x - 1)(x - 4)[/tex]
Let x = 0, find the y-intercept.
[tex]y= (0 + 1)(0 - 1)(0 - 4)[/tex]
[tex]y= ( 1)(- 1)(- 4)[/tex]
[tex]y=4[/tex]
The function crosses the y-axis at 4.
The only graph that shows this is graph D.
Which expression is equal to 5(2x^2-1)+3(7x^2+1)
Answer:
31x² - 2
Step-by-step explanation:
5(2x²-1)+3(7x²+1) = 5*2x² - 5*1 + 3*7x² + 3 = 10x² - 5 + 21x² + 3 = 31x² - 2
Find the length of the side labeled x. Round intermediate values to the nearest tenth. Use the rounded values to calculate the next value. Round your final answer to the nearest tenth.
Answer:
11.7
Step-by-step explanation:
Let H be the heipotenys of the big triangle:
sin68° = 26/H H= 26/sin68°H= 28.04
Let's calculate the third side using the pythagorian theorem:
H²= 26²+ d²(the third side)
d² = 28.04²-26²= 110.24
d= 10.49
let's calculate x now
tan42°= 10.49/xx= 10.49/tan42°x= 11.65 ≈ 11.7
I need help ASAP thank you!! Sorry if you can’t see it but you can zoom in:)
Answer:
432 aquariums
Step-by-step explanation:
To determine the number of aquariums the factory made, find the volume of 1 aquarium, then divide the total volume of water required.
Solution:
Volume of triangular prism aquarium = triangular base area × length of triangular prism
Volume = ½*b*h*l
Where,
b = 8 ft
h = 4 ft
l = 3 ft
Volume = ½*8*4*3 = 4*4*3
Volume = 48 ft³
Number of aquarium made = Volume of water required ÷ volume of 1 aquarium
= 20,736 ÷ 48 = 432 aquariums
Stephanie left Riverside, California, driving her motorhome north on Interstate 15 towards Salt Lake City at a speed of 56 miles per hour. Half an hour later, Tina left Riverside in her car on the same route as Stephanie, driving 70 miles per hour. Solve the system {56s=70ts=t+12 for t to find the value of s, the number of hours Stephanie will have driven before Tina catches up to her.
Answer:
The number of hours Stephanie will have driven before Tina catches up to her is 2.5 hours
Step-by-step explanation:
Given:
56s=70t
s=t+1/2
Solution
56s=70t
s=t+1/2
Substitute s=t+1/2 into 56s=70t
56s=70t
56(t+1/2)=70t
56t+28=70t
28=70t - 56t
28=14t
Divide both sides by 14
28/14=14t/14
2=t
t=2
Recall,
s=t+1/2
s=2+1/2
=4+1/2
s=5/2
Or
s=2.5 hours
What is the standard form of (1+2sgrt-3)/(1+sgrt-3)?
Answer:
[tex]\large \boxed{\sf \ \ \dfrac{5-\sqrt{3}}{2} \ \ }[/tex]
Step-by-step explanation:
Hello,
[tex]\dfrac{1+2\sqrt{3}}{1+\sqrt{3}}=\dfrac{(1+2\sqrt{3})(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})}\\\\ \text{... to eliminate the root in the denominator ...} \\\\=\dfrac{1-\sqrt{3}+2\sqrt{3}-2*3}{(1-3)}\\\\=-\dfrac{1+\sqrt{3}-6}{2}\\\\=-\dfrac{\sqrt{3}-5}{2}\\\\=\dfrac{5-\sqrt{3}}{2}\\[/tex]
Do not hesitate if you have any question
3x-y+2=0 in rectangle form
Complete Question:
Convert 3x-y+2=0 in rectangle form to polar form
Answer:
r ( 3cosθ - sinθ) = -2
Step-by-step explanation:
The equation so given is already in rectangular form, the task is to convert it to polar form.
3x - y + 2 = 0
To transform an equation from the rectangular to the polar coordinate:
x = r cosθ
y = r sinθ
Substitute the representations for x and y into the given equation:
3(r cosθ) - (r sinθ) + 2 = 0
3rcosθ - rsinθ = -2
The polar representation of the equation then becomes:
r ( 3cosθ - sinθ) = -2
Two functions f and g are defined on set R of real numbers by:
f: x
→
x2 – 2x – 1
g: x
→
x – 1
find the value of x for which f(x) = g(x) – 2
Answer:
x = 1, x = 2
Step-by-step explanation:
Given
f(x) = g(x) - 1, that is
x² - 2x - 1 = x - 1 - 2
x² - 2x - 1 = x - 3 ( subtract x - 3 from both sides )
x² - 3x + 2 = 0 ← in standard form
(x - 2)(x - 1) = 0 ← in factored form
Equate each factor to zero and solve for x
x - 1 = 0 ⇒ x = 1
x - 2 = 0 ⇒ x = 2
What is the measure of ∠XBC? m∠XBC = m∠BAC + m∠BCA 3p – 6 = p + 4 + 84 3p – 6 = p + 88 2p – 6 = 88 2p = 94 m∠XBC
Find z0.05. -1.645 0.4801 0.5199 1.645
Answer:
z(0.05) = -1.645
Step-by-step explanation:
z(0.05) = -1.645 is the left tail of the normal probability curve with 5% of the area under the curve.
Answer:1.645
Step-by-step explanation:
Use the zero product property to find the solutions to the equation 2x2 + x - 1 = 2
a) x= -1/2 or x =2
b) x= -2 or x =1/2
c) x= -3/2 or x =1
d) x= 1 or x= 3/2
Answer:
C
Step-by-step explanation:
Given
2x² + x - 1 = 2 ( subtract 2 from both sides )
2x² + x - 3 = 0
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term.
product = 2 × - 3 = - 6 and sum = + 1
The factors are - 2 and + 3
Use these factors to split the x- term
2x² - 2x + 3x - 3 = 0 ( factor the first/second and third/fourth terms )
2x(x - 1) + 3(x - 1) = 0 ← factor out (x - 1) from each term
(x - 1)(2x + 3) = 0
Equate each factor to zero and solve for x
x - 1 = 0 ⇒ x = 1
2x + 3 = 0 ⇒ 2x = - 3 ⇒ x = - [tex]\frac{3}{2}[/tex]
List the coordinates of FOUR vertices that create the feasible region on the graph. Submit your answer in the form of FOUR ordered Pairs (x, y)
Answer:
The coordinates of the vertices are;
(200, 200), (300, 200), (300, 0), (0, 500)
Step-by-step explanation:
The vertices are the corners of a polygon. It is the point where an angle is formed by the intersection of two lines
The feasible region is the solution space of the points of the variables that meet the specification of the problem set by means of a constant or the definition of inequalities or equations
From the graph of the function of inequalities, we have that the four vertices are the four points where the lines bounding the area of the feasible region of the inequalities meet
The coordinates of the vertices are (200, 200), (300, 200), (300, 0), (0, 500).
Find the area of the shape shown below.
Answer:
28
Step-by-step explanation:
We divide the shape covenientely, like this, and area 1 is 4*4=16
area 2=4*4/2=8
area 3= 2*4/2=4
Area total = Area 1 + Area 2 + Area 3=16+8+4=28
Thanks for helping...
Answer:
16
Step-by-step explanation:
Subtracting the given expressions, that is
3b² - 8 - (b(b² + b - 7) ) ← simplify parenthesis
= 3b² - 8 - (b³ + b² - 7b) ← distribute parenthesis by - 1
= 3b² - 8 - b³ - b² + 7b ← collect like terms
= - b³ + 2b² + 7b - 8 ← substitute b = - 3
= - (- 3)³ + 2(- 3)² + 7(- 3) - 8
= - (- 27) + 2(9) - 21 - 8
= 27 + 18 - 21 - 8
= 16
Please answer this fast
Answer:
CD = 2 units
Step-by-step explanation:
in the given right triangle ΔCDE,
By applying tangent rule,
tan(∠E) = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]
= [tex]\frac{\text{CD}}{\text{DE}}[/tex]
tan(30)° = [tex]\frac{\text{CD}}{2\sqrt{3}}[/tex]
[tex]\frac{1}{\sqrt{3}}=\frac{\text{CD}}{2\sqrt{3}}[/tex]
CD = [tex]\frac{2\sqrt{3}}{\sqrt{3}}[/tex]
CD = 2 units
Therefore, CD = 2 unit will be the answer.
The angle of depression from an airplane to the top of an air traffic
control tower is 56 degrees. If the tower is 320 feet tall and the airplane
is flying at an altitude of 7,450 feet, how far away is the airplane from the
control tower?
Round this however you need to.
===========================
Work Shown:
Check out the diagram below. We have the following points
A = base of the towerB = point on the ground directly below the airplaneC = top of the towerD = plane's locationE = point used to form the angle of depressionBased on those points, we know that
AC = 320 = height of towerBD = 7450 = height of planeCE = BD - AC = 7450-320 = 7130 = difference between the two heightsWhich allows us to find the distance from C to D. Focus solely on triangle EDC. Use the sine ratio to find x.
sin(angle) = opposite/hypotenuse
sin(angle EDC) = CE/CD
sin(56) = 7130/x
x*sin(56) = 7130
x = 7130/sin(56)
x = 8600.33397283284 approximately
Make sure your calculator is in degree mode.