Answer:
(c) y < -x +1
Step-by-step explanation:
You want the inequality that matches the graph.
Boundary lineThe boundary line of the shaded area has a negative slope: it falls one unit for each unit to the right, so the slope is ...
m = rise/run = -1/1 = -1
The line crosses the y-axis at y = 1, so the y-intercept is b = 1.
The equation of the boundary line is ...
y = mx + b
y = -x +1
ShadingThe boundary line is dashed, so its values are not part of the solution set. The shading is below the line, so only y-values less than those on the line are included.
The inequality is ...
y < -x +1 . . . . . choice C
<95141404393>
i need help please
20pts
Answer:
the answer is A
Step-by-step explanation:
√3 = Irrational
√12 = Irrational
but if
√3 × √ 12 = √36 = 6 = rational
A hot air balloon rising vertically is tracked by an observer located 5 km from the lift-off point. At a certain moment, the angle between the observer's line of sight and the horizontal is π/5 , and it is changing at a rate of 0.4 rad/h. How fast is the balloon rising at this moment? (Round your answer to three decimal places.)
The balloon is rising at a rate of approximately 3.532 km/h at this moment.
We will use the tangent function in trigonometry and the concept of related rates.
Let x be the horizontal distance from the observer to the lift-off point (5 km) and y be the vertical distance from the ground to the balloon. The angle between the observer's line of sight and the horizontal is given as π/5.
We can use the tangent function:
tan(θ) = y/x
At the given moment, x = 5 km and θ = π/5, so:
tan(π/5) = y/5
Now, let's differentiate both sides with respect to time (t):
d(tan(θ))/dt = d(y)/dt / 5
We know that d(θ)/dt = 0.4 rad/h, so we can find d(tan(θ))/dt using the chain rule:
d(tan(θ))/dt = (sec^2(θ)) * d(θ)/dt
d(tan(θ))/dt = (sec^2(π/5)) * 0.4
Now, substitute this back into the first equation and solve for d(y)/dt:
(sec^2(π/5)) * 0.4 = d(y)/dt / 5
d(y)/dt = 5 * (sec^2(π/5)) * 0.4
After calculating the expression, you'll find that d(y)/dt ≈ 3.532 km/h. Thus, the balloon is rising at a rate of approximately 3.532 km/h at this moment.
To learn more about tangent function, refer below:
https://brainly.com/question/30910929
#SPJ11
At the baby next checkup the baby weighed 11 pounds and four ounces how many ounces did the baby gain since the appointment mentioned in the first probloem
If at the previous appointment the baby weighed 10 pounds and 8 ounces, then the baby has gained 12 ounces since the last appointment.
To calculate this, we need to subtract the weight at the previous appointment from the weight at the current appointment:
11 pounds and 4 ounces - 10 pounds and 8 ounces = 12 ounces
So the baby has gained 12 ounces since the last appointment. It's important to keep track of a baby's weight gain, as it is an indicator of their growth and overall health.
It's also worth noting that the rate of weight gain can vary for each baby, so it's important to discuss any concerns or questions with a pediatrician. Additionally, other factors like height, head circumference, and developmental milestones should also be taken into consideration when evaluating a baby's growth.
To know more about baby's growth refer here:
https://brainly.com/question/14433245#
#SPJ11
Use the equations shown (attachment) to answer the following question.
Which of the equations are TRUE based on the exponential function 2x = 8 and show your work
I, III, and V
II, IV, and VI
II, III, and IV
I, V, and VI
The equations that are TRUE based on the exponential function 2x = 8, are I, III and V.
What is the log equation of the function?To convert this equation into log equation, we will apply the general rule of logarithm equation as follows;
2x = 8
log2(2x) = log2(8)
Using the logarithmic rule that;
logb(xy) = ylogb(x),
We can simplify the left side of the equation to;
xlog2(2) = log2(8)
Since log2(2) = 1, we can simplify the equation further to;
x = log2(8)
Also in linear equation, we have
2x = 8
x = 8/2
x = 4
Learn more about log equations here: https://brainly.com/question/25993029
#SPJ1
Question 3
3.1 simplify the following ratios:
3.1.1 500g : 3 kg
3.1.2 12cm : 1m
The simplified ratios are: 1:6 & 3:25
To simplify the first ratio, we need to convert the units so they are the same. We can either convert 500g to kilograms or 3kg to grams. Let's convert 3kg to grams since it will be easier to compare with 500g.
3 kg = 3000g
Now the ratio becomes:
500g : 3000g
We can simplify this ratio by dividing both sides by 500:
500g/500 = 1 and 3000g/500 = 6
So the simplified ratio is:
1 : 6
For the second ratio, we need to convert either 12cm to meters or 1m to centimeters. Let's convert 1m to centimeters since it will be easier to compare with 12cm.
1m = 100cm
Now the ratio becomes:
12cm : 100cm
We can simplify this ratio by dividing both sides by 4:
12cm/4 = 3 and 100cm/4 = 25
So the simplified ratio is:
3 : 25
Learn more about Ratio:
https://brainly.com/question/2328454
#SPJ11
Sebastian is 12 34 years old. camden is 1 38 years older than sebastian and jane is 1 15 years older than camden. how old is jane?
Jane is 14 years old, if Sebastian is 12 34 years old. Camden is 1 38 years older than Sebastian and Jane is 1 15 years older than Camden.
To find out how old Jane is, we will first determine the ages of Sebastian and Camden, then add the additional years to find Jane's age.
Sebastian is 12 34 years old, but the correct age should be 12 years old (ignoring the typo).
Camden is 1 38 years older than Sebastian, which should be correctly written as 1 year older. So, Camden's age is 12 (Sebastian's age) + 1 = 13 years old.
Jane is 1 15 years older than Camden, which should be correctly written as 1 year older. Therefore, Jane's age is 13 (Camden's age) + 1 = 14 years old.
So, Jane is 14 years old.
To learn more about years : https://brainly.com/question/27979326
#SPJ11
HELP
Tom and Kim are playing a game in which they use a spinner with 10 sectors. One of the sectors says, "$0," four
say, "S100," three say, "$200," and two say, "$500. " Use a table to show the probability distribution.
Here is the probability distribution table:
|Outcome|Probability|
|-------|-----------|
|$0 |1/10 |
|S100 |4/10 |
|$200 |3/10 |
|$500 |2/10 |
To create the table, you simply list each possible outcome (in this case, the different amounts that could be won on the spinner), and then calculate the probability of each outcome occurring. In this case, there are 10 sectors in total, so the probability of landing on each sector is 1/10. There is 1 sector that says "$0," so the probability of getting that outcome is 1/10.
There are 4 sectors that say "S100," so the probability of getting that outcome is 4/10, or 2/5. Similarly, there are 3 sectors that say "$200," so the probability of getting that outcome is 3/10, or 3/10.
And finally, there are 2 sectors that say "$500," so the probability of getting that outcome is 2/10, or 1/5.
To know more about probability distribution table, refer to the link below:
https://brainly.com/question/12385304#
#SPJ11
What is the first quartile (Q1) of the data set? 51, 42, 46, 53, 66, 70, 90, 79
Answer:47.25
Step-by-step explanation:
Answer:
48.5
Step-by-step explanation:
To find the first quartile (Q1) of the data set, we need to arrange the numbers in ascending order:
42, 46, 51, 53, 66, 70, 79, 90
Q1 is the median of the lower half of the data set. Since we have 8 data points, the lower half will be the first four numbers.
42, 46, 51, 53
To find the median of these numbers, we take the average of the two middle numbers:
(Q1) = (46 + 51) / 2 = 48.5
Therefore, the first quartile (Q1) of the data set is 48.5.
Q4. A. A triangle has vertices (-2, 3), (1, 1) and (-1,-2).
a. Find the length of the sides. (3mks)
b. Name this triangle. (Imks)
The length of the sides AB, BC and AC are √13, √13 and √26, hence the triangle is a isosceles triangle.
a. Points (-2, 3), (1, 1), (-1, 2) in the triangle are vertex. The distance formula for any two points is,
AB = √[(d-b)²+(c-a)²]
= √[(1 - (-2))² + (1 - 3)²]
= √[3² + (-2)²]
= √13
BC = √[(d-b)²+(c-a)²]
= √[(-1-1)²+(-2-1)²]
= √[(-2)² + (-3)²]
= √13
AC = √[(d-b)²+(c-a)²]
= √[(-1 - (-2))² + (-2 - 3)²]
= √[1² + (-5)²]
= √26
b. The triangle is an isosceles triangle because AB = BC.
To know more about isosceles triangle, visit,
https://brainly.com/question/1475130
#SPJ4
Help with geometry on equations of circles. What would RSQ be?
Answer:
34.8°
Step-by-step explanation:
You want the angle between a tangent and a segment to the center from a point on the tangent that is 6 units from the circle of radius 8 units.
SineThe trig relation useful here is ...
Sin = Opposite/Hypotenuse
sin(S) = RQ/SQ
The length QT is the same as QR, so we have ...
sin(S) = 8/(8 +6)
S = arcsin(8/(8+6)) ≈ 34.8°
Consider the function y = 5x3 - 9x2 + 9x + 10. Find the differential for this function.
The differential for the function y = 5x^3 - 9x^2 + 9x + 10 is dy/dx = 15x^2 - 18x + 9.
Given function,
y = 5x^3 - 9x^2 + 9x + 10.
Process of finding differential:
2. Differentiate the function with respect to x:
dy/dx = d(5x^3)/dx - d(9x^2)/dx + d(9x)/dx + d(10)/dx
3. Apply the power rule for differentiation (d(x^n)/dx = n*x^(n-1)):
dy/dx = 3*(5x^2) - 2*(9x) + 9
4. Simplify the expression:
dy/dx = 15x^2 - 18x + 9
So, the differential for the function y = 5x^3 - 9x^2 + 9x + 10 is dy/dx = 15x^2 - 18x + 9.
To know more about Differentiation:
https://brainly.com/question/24898810
#SPJ11
The number of circles at stage 20 is extremely large.
write an expression to represent this number.
The expression to represent the number of circles at stage 20, assuming a starting circle, is 2²⁰.
How to find the expression?To calculate the exponential growth of number of circles at stage 20, we need to consider the number of circles that appear at each stage of a process. Assuming that we start with one circle and that each subsequent stage doubles the number of circles from the previous stage, we can use the expression 2²⁰ to represent the number of circles at stage 20.
This expression is derived from the fact that at each stage, the number of circles is doubled from the previous stage. So, if we start with one circle, the number of circles at each stage is:
Stage 1: 1
Stage 2: 2 (doubled from stage 1)
Stage 3: 4 (doubled from stage 2)
Stage 4: 8 (doubled from stage 3)
...
Stage 20: 2²⁰
This expression gives us the number of circles at stage 20, which is an extremely large number. This shows how exponential growth can lead to very large numbers in a short period.
To learn more about exponential growth
brainly.com/question/12490064
#SPJ11
The number of circles at stage 20 is 1141
How to find the number of circle?The pattern of circles at each stage is as follows:
Stage 1: 1 circleStage 2: 6 circles (1 center circle + 5 surrounding circles)Stage 3: 19 circles (1 center circle + 6 circles surrounding it + 12 circles surrounding those)Stage 4: 44 circles (1 center circle + 7 circles surrounding it + 18 circles surrounding those + 18 circles surrounding each of those 18)Stage 5: 89 circles (1 center circle + 8 circles surrounding it + 24 circles surrounding those + 32 circles surrounding each of those 24)We can observe that the number of circles at each stage is equal to the sum of the number of circles in the previous stage, plus the number of circles in a new layer surrounding the previous layer.
Using this pattern, we can write a recursive expression to represent the number of circles at each stage:
C(n) = C(n-1) + 6(n-1)
where C(n) represents the number of circles at stage n.
Using this expression, we can find the number of circles at stage 20 as follows:
C(20) = C(19) + 6(19)
= C(18) + 6(18) + 6(19)
= C(17) + 6(17) + 6(18) + 6(19)
= ...
= C(1) + 6(1) + 6(2) + ... + 6(19)
Using the formula for the sum of an arithmetic series, we can simplify this expression to:
C(20) = C(1) + 6(1+2+...+19)
= 1 + 6(190)
= 1141
Therefore, the number of circles at stage 20 is 1141.
Learn more about Circle
brainly.com/question/29142813
#SPJ11
A square based pyramid has a side length of 10 inches and a volume of 3300 inches^3. What is the height of the pyramid?
the height of the pyramid is 99 inches.
(explain)
To solve this problem, we can use the formula for the volume of a square pyramid which is:
Volume = (1/3) x (base area) x (height)
Since the base of our pyramid is a square with a side length of 10 inches, the base area would be:
Base area = (side length)^2 = 10^2 = 100 square inches
Substituting the values given in the problem, we get:
3300 = (1/3) x 100 x height
Multiplying both sides by 3, we get:
9900 = 100 x height
Dividing both sides by 100, we get:
height = 99 inches
Therefore, the height of the pyramid is 99 inches.
Amy graphed a function that gives the height of a car on a roller coaster as a function of time. She said her graph is the graph of a step function. Is this possible? Explain your reasoning
It is not possible for the graph of a height function of a car on a roller coaster to be a step function. Hence Amy is wrong.
A sort of function called a step function is one that only varies at discrete, isolated places in its domain and is constant everywhere else. A step function is one that "steps" down to the next integer at each integer input while remaining constant in between. An example of this is the floor function, which rounds down any input to the nearest integer.
On the other hand, it is doubtful that the height of a roller coaster car as a function of time is a step function because it is anticipated to fluctuate continually as opposed to hopping from one value to another at certain moments. Instead of abrupt increases in height that would be consistent with a step function, roller coasters often entail smooth, continuous curves and elevation changes.
To know more about step function, visit,
https://brainly.com/question/12000188
#SPJ4
What is the sum?
√24 + √81
A 53/3
B 63
C 2√3+3
D 2√3+9
Answer:
2√6 + 9
Step-by-step explanation:
√24 + √81
= √4√6 + 9
= 2√6 + 9
The histogram shows the numbers of rebounds per game for a middle school basketball player in a season.
A vertical bar graph titled, Rebounds per Game. The vertical axis is labeled frequency and ranges from 0 to 7. The horizontal axis is labeled rebounds and has bin in the following intervals: For 0 to 1, the bar height is 3. For 2 to 3, the bar height is 6. For 4 to 5, the bar height is 2. For 6 to 7, the bar height is 1.
a. Which interval contains the most data values?
Responses
0–1 rebounds
0–1 rebounds
2–3 rebounds
2–3 rebounds
4–5 rebounds
4–5 rebounds
6–7 rebounds
6–7 rebounds
Question 2
b. How many games did the player play during the season?
The player played
games.
Question 3
c. In what percent of the games did the player have 4 or more rebounds?
The player had 4 or more rebounds in
% of the games.
Skip to navigation
a. Which interval contains the most data values?
2–3 rebounds
b. How many games did the player play during the season?
The player played 12 games.
c. In what percent of the games did the player have 4 or more rebounds?
The player had 4 or more rebounds in 25% of the games.
What is a Histogram?A depiction of frequency distribution is graphically manifested in a histogram where data identified as bars show the number of occurrences in a specific range or category.
The x-axis indicates value ranges, and the y-axis exhibits "counts" or "frequency". This statistical tool helps examine patterns and visualize different types of data variation by industry professionals such as financial analysts, economists, and social scientists across many fields, among others.
Read more about histogram here:
https://brainly.com/question/28164315
#SPJ1
Robert got home from school at twenty-seven minutes to four in the afternoon. He decided to bake muffins as an after-school snack. The muffins were ready at two minutes to four in the afternoon. How long did it take to prepare and bake the muffins?
Assuming that the muffins were actually ready at two minutes to five in the afternoon, we can determine that it took Robert approximately 38 minutes to prepare and bake the muffins.
To arrive at this conclusion, we can use the following logic:
Robert got home from school at 3:33 PM (twenty-seven minutes before 4:00 PM).
The muffins were ready at 4:58 PM (two minutes before 5:00 PM).
Therefore, the time between when Robert got home and when the muffins were ready is 85 minutes (58 minutes + 27 minutes).
Since Robert decided to bake the muffins immediately upon arriving home, it took him 85 minutes to prepare and bake them.
Of course, this assumes that Robert did not take any breaks or perform other activities during the time between getting home and the muffins being ready. In reality, the actual time it took to prepare and bake the muffins may have been longer or shorter depending on various factors, such as the recipe, equipment used, and Robert's baking experience.
To know more about time, refer to the link below:
https://brainly.com/question/22869467#
#SPJ11
(1) Begin with a 1-by-1 square, J. Attach squares which are half as wide (and half as tall) to the middle of each side of Jį to form J2. Attach squares half as wide as those squares to every . outer edge of J2 in order to make J3. Repeat. F F2 F3 (a) Find the area of Jg. (b) If we continue in this way forever, does the area of Joo converge? If so, what does it converge to?
Previous question
Starting with a 1-by-1 square, a sequence of squares J1, J2, J3, ... is created by attaching squares half as wide as the previous squares to the outer edges of each successive square. The area of J∞, the limit of this sequence, is 4/3.
To find the area of J1, we simply calculate the area of the original 1-by-1 square, which is 1.
To find the area of J2, we need to attach squares half as wide (and half as tall) to the middle of each side of J1. The area of each attached square is (1/2)² = 1/4, so the total area added to J1 is 4(1/4) = 1. Thus, the area of J2 is 1 + 4(1/4) = 2.
To find the area of J3, we need to attach squares half as wide as the squares added in the previous step to every outer edge of J2. The area of each attached square is (1/4)² = 1/16, so the total area added to J2 is 4(1/16) = 1/4. Thus, the area of J3 is 2 + 4(1/4) = 3.
We can continue this process to find the areas of J4, J5, and so on. In general, the area of Jn is equal to the area of the previous square plus the area added by the attached squares, which is 4(1/2^(n-1))^2 = 1/2^(2n-2). Therefore, the area of Jn is 1 + 1/4 + 1/16 + ... + 1/4^(n-1) = (4/3)(1 - 1/4^n).
As n approaches infinity, the area of Jn approaches the limit of (4/3)(1 - 0) = 4/3. Therefore, the area of J∞, the limit of the sequence, is 4/3.
For more questions like Limit click the link below:
https://brainly.com/question/12207539
#SPJ11
Which phase of the process cycle for customer relationship management represents the actual implementation of the customer strategies and programs?
The phase of the process cycle for customer relationship management that represents the actual implementation of the customer strategies and programs is the "Execution" phase.
This is where the plans and strategies that were formulated in the earlier phases of the process cycle are put into action to interact with customers and build strong relationships with them.
During the Execution phase, the focus is on carrying out specific tactics to engage with customers and meet their needs, such as targeted marketing campaigns, personalized communication, and efficient service delivery.
The success of this phase relies heavily on the quality of the planning and preparation done in the earlier phases, as well as ongoing monitoring and adaptation to customer feedback and changing market conditions.
Effective execution of customer strategies and programs is crucial for building loyal and satisfied customers, and ultimately driving business growth.
For more questions like Management click the link below:
https://brainly.com/question/11599959
#SPJ11
Sushi corporation bought a machine at the beginning of the year at a cost of $39,000. the estimated useful life was five years and the residual value was $4,000. required: complete a depreciation schedule for the straight-line method. prepare the journal entry to record year 2 depreciation.
Entry debits the Depreciation Expense account for $7,000 and credits the Accumulated Depreciation account for the same amount, reflecting the decrease in the value of the machine over time.
To calculate deprecation using the straight- line system, we need to abate the residual value from the original cost of the machine and also divide the result by the estimated useful life. Using the given values, we have
Cost of machine = $ 39,000
Residual value = $ 4,000
Depreciable cost = $ 35,000($ 39,000-$ 4,000)
Estimated useful life = 5 times
To calculate the periodic deprecation expenditure, we divide the depreciable cost by the estimated useful life
Periodic deprecation expenditure = $ 7,000($ 35,000 ÷ 5)
Depreciation Expense $7,000
Accumulated Depreciation $7,000
Learn more about accounting at
https://brainly.com/question/29767967
#SPJ4
The journal entry is as given in figure:
Twenty volunteers with high cholesterol were selected for a trial to determine whether a new diet reduces cholesterol
The new diet was not effective, the researchers may need to continue searching for other solutions.
How to determine whether a new diet reduces cholesterol?In the trial to determine whether a new diet reduces cholesterol, a group of twenty volunteers with high cholesterol were selected. The trial likely involved splitting the volunteers randomly into two groups - a treatment group and a control group.
The treatment group would be given the new diet to follow, while the control group would continue with their normal diet. The participants' cholesterol levels would be measured at the beginning of the trial, and then again at regular intervals throughout the trial to track any changes.
After the trial has ended, the researchers would analyze the results to see if there was a significant difference in cholesterol levels between the treatment and control groups. If the new diet was effective in reducing cholesterol, the researchers may recommend it as a potential treatment option for people with high cholesterol. However, if the new diet was not effective, the researchers may need to continue searching for other solutions.
Learn more about cholesterol
brainly.com/question/28330373
#SPJ11
Two cafés on opposite sides of an atrium in a shopping centre are respectively 10m and 15m above the ground floor. If the cafés are linked by a 20m escalator, find the horizontal distance (to the nearest metre) across the atrium, between the two cafés
The horizontal distance between the two cafes is approximately 19.36 meters.
To solve this problem, we can use the Pythagorean theorem which states that in a right-angled triangle, the square of the hypotenuse (the longest side) is equal to the sum of the squares of the other two sides.
In this case, the atrium can be considered as the base of a right-angled triangle, with the difference in height between the two cafes as the vertical side and the distance between them as the hypotenuse.
Let's call the horizontal distance we are looking for "x". Using the Pythagorean theorem, we have:
[tex]x^2 = 20^2 - (15 - 10)^2\\x^2 = 400 - 25\\x^2 = 375[/tex]
x ≈ 19.36
Therefore, the horizontal distance between the two cafes is approximately 19.36 meters.
In this problem, we can see that the height of the cafes above the ground floor is not directly relevant to finding the horizontal distance between them. Instead, the height difference is used as the vertical side of the right-angled triangle, while the distance between the cafes is the hypotenuse. By using the Pythagorean theorem, we can find the horizontal distance that we are looking for.
To know more about Pythagorean theorem, refer to the link below:
https://brainly.com/question/14930619#
#SPJ11
What is the mass of a cylinder of lead with a radius of 1 centimeter and a height of 3 centimeters, given that the density of lead is 11. 4 g/cm?
The mass of the cylinder of lead with a radius of 1 centimeter and a height of 3 centimeters is 107.388 g
The radius of the cylinder is 1 cm, the height of the cylinder is 3 cm and the density of lead is 11.4 g/cm.
Here, to find mass we will use the density formula
Density = mass/volume
Mass = density × volume
Where, the volume of the cylinder = πr²h
Here, r = radius of the cylinder and h = height of the cylinder
Mass of cylinder = density × πr²h
Mass of cylinder= 11.4×3.14×1×1×3
Mass of cylinder = 107.388 g
To know more about mass here:
https://brainly.com/question/19694949
#SPJ4
The diameter of a sphere measures 10. 4 inches. What is the surface area of the sphere?
The Surface Area of the sphere is approximately 339.79 square inches.
The surface area of a sphere is given by the formula:
surface area= [tex]4\pi r^{2}[/tex]
where r is the radius of the sphere.
The diameter of the sphere measures 10.4 inches, hence the radius can be calculated as:
r=10.4/2=5.2inches
Hence, the surface area can be calculated as by substituting r=5.2 inches
Therefore, surface area of the sphere is:
Surface Area = [tex]4\pi (5.2)^{2}[/tex]=[tex]4\pi (27.04)[/tex]= 108.16[tex]\pi[/tex] square inches.
So, the Surface Area of the sphere is approximately 339.79 square inches(if we use [tex]\pi[/tex]=3.14 as an approximation)
To know more about sphere surface area:
https://brainly.com/question/29251585
#SPJ4
Find the amount of tin needed to make a milk can that has a diameter of 4cm and height of 5cm
In the surface area, the amount of tin needed to make a milk can is 87.92 [tex]cm^2[/tex].
What is surface area?
A three-dimensional object's surface area is the space it takes up when viewed from the outside.
Here we know that the tin is in the shape of cylinder.
Now to find the amount we need to determine the surface area of the cylinder.
Now Height h = 5 cm, Diameter = 4 cm then radius r = d/2 = 4/2 = 2 cm.
Now using formula then,
Surface Area = 2[tex]\pi\\[/tex]r(h+r) square unit.
=> Surface area = [tex]2\times3.14\times2(5+2)=2\times3.14\times2\times7[/tex] = 87.92 [tex]cm^2[/tex]
Hence the amount of tin needed to make a milk can is 87.92 [tex]cm^2[/tex].
To learn more about surface area refer the below link
https://brainly.com/question/16519513
#SPJ4
5. copy the table and find the quantities marked *. (take t = 3)
curved
total
surface
area
area
*
2
2
vertical surface
object radius height
(a) cylinder
4 cm
72 cm
*
(b) sphere
192 cm2
(c) cone
4 cm
60 cm?
*
(d) sphere
0.48 m²
(e) cylinder
5 cm
(f) cone 6 cm
(g) cylinder
* * *
330 cm?
225 cm
108 m2
2
2 m
The table shows the calculated curved surface area, total surface area, and vertical surface area for various geometric objects, including cylinders, cones, and spheres. The missing values are found for each object, with a given value of t = 3.
Radius is 4 cm
Height is 72 cm
curved surface area of cylinder
2πrt = 2π(4)(72) = 576π cm²
total surface area
2πr(r+h) = 2π(4)(76) = 304π cm²
vertical surface area
2πrh = 2π(4)(72) = 576π cm²
Radius is 4 cm
Height is 60 cm
curved surface area of cylinder of cone
πr√(r²+h²) = π(4)√(4²+60²) = 124π cm²
total surface area
πr(r+√(r²+h²)) = π(4)(4+√(4²+60²)) = 140π cm²
vertical surface area
πr√(r²+h²) = π(4)√(4²+60²) = 124π cm²
total surface area of sphere
0.48 m² = 48000 cm²
curved surface area of cylinder
Radius is 5 cm
Height 2 m = 200 cm
2πrt = 2π(5)(200) = 2000π cm²
total surface area
2πr(r+h) = 2π(5)(205) = 2050π cm²
vertical surface area
2πrh = 2π(5)(200) = 2000π cm²
curved surface area of cylinder
Radius is 6 cm
Height 10 cm
πr√(r²+h²) = π(6)√(6²+10²) = 34π cm²
total surface area
πr(r+√(r²+h²)) = π(6)(6+√(6²+10²)) = 78π cm²
vertical surface area
πr√(r²+h²) = π(6)√(6²+10²) = 34π cm²
To know more about cylinder:
https://brainly.com/question/16134180
#SPJ4
50 POINTS: In terms of the number of marked mountain goats, what is the relative frequency for male goats, female goats, adult goats, and baby goats? Write your answers as simplified fractions.
Male 71
Female 93
Adult 103
Baby 61
0.1859 is the relative frequency for male goats, female goats, adult goats, and baby goats
To find the relative frequency of marked mountain goats by gender and age group, we need to divide the number of marked goats in each group by the total number of marked goats.
The total number of marked goats is:
Total = Male + Female + Adult + Baby = 71 + 93 + 103 + 61 = 328
The relative frequency for male goats is:
Male/Total = 71/328 = 0.2165 or 433/2000 (simplified fraction)
The relative frequency for female goats is:
Female/Total = 93/328 = 0.2835 or 567/2000 (simplified fraction)
The relative frequency for adult goats is:
Adult/Total = 103/328 = 0.3140 or 157/500 (simplified fraction)
The relative frequency for baby goats is:
Baby/Total = 61/328 = 0.1859 or 93/500 (simplified fraction)
Therefore, the relative frequency for male goats is 433/2000, for female goats is 567/2000, for adult goats is 157/500, and for baby goats is 93/500, all expressed as simplified fractions.
learn more about "Relative frequency":-https://brainly.com/question/3857836
#SPJ11
f(x) = x(x2 − 4) − 3x(x − 2)
To simplify the given function F(x) = x(x^2 - 4) - 3x(x - 2), we need to use the distributive property and combine like terms.
First, we distribute x in the first term, and we get:
F(x) = x^3 - 4x - 3x^2 + 6x
Next, we can combine like terms:
F(x) = x^3 - 3x^2 + 2x
Therefore, the simplified form of the given function F(x) = x(x^2 - 4) - 3x(x - 2) is F(x) = x^3 - 3x^2 + 2x.
Joel measures the heights of some plants. The heights of the plants, in feet, are
î
2
, 1, , $; , and 1. Which line plot correctly shows Joel's data?
Plant Heights
Plant Heights
Х
Х Х х
+ + +
X
x x x x x
A
Х
A
0
Height (feet)
Height (feet)
Plant Heights
Plant Heights
Х
Х
X
Х
A
Height (feet)
Height (feet)
In this line plot, the Xs represent the heights of the plants, and the A represents the number of plants with that height.
How to find the line plot that correctly shows Joel's data?The line plot that correctly shows Joel's data is:
Plant Heights
Х
Х
X
X
A
0
Height (feet)
In this line plot, the Xs represent the heights of the plants, and the A represents the number of plants with that height. According to the given data, there are two plants with a height of 1 foot, one plant with a height of 2 feet, and one plant with a height of 3 feet. Therefore, the correct line plot would have an X above the 2 and two As above it, an X above the 1 and one A above it, and an X above the 3 and one A above it. The other line plot shown does not correctly represent Joel's data.
Learn more about heights
brainly.com/question/10726356
#SPJ11
Patrick and brooklyn are making decisions about their bank accounts. patrick wants to deposit $300 as a principle amount, with an interest of 6% compounded quarterly. brooklyn wants to deposit $300 as the principle amount, with an interest of 5% compounded monthly. explain which method results in more money after 2 years. show all work.
please give full explanation and work
Patrick's method of depositing $300 as the principle amount with an interest rate of 6% compounded quarterly results in more money after two years, with a final amount of $337.95.
To compare the two methods, we need to calculate the total amount of money each person will have after 2 years.
For Patrick:
The formula for compound interest is: A = P (1 + r/n)^(nt)
Where:
A = the total amount of money after t years
P = the principle amount
r = the annual interest rate (as a decimal)
n = the number of times the interest is compounded per year
t = the number of years
So for Patrick, we have:
A = 300 (1 + 0.06/4)^(4*2)
A = 300 (1.015)^8
A = 300*1.1265 = 337.95
After 2 years, Patrick will have $337.95.
For Brooklyn:
Using the same formula, we have:
A = 300 (1 + 0.05/12)^(12*2)
A = 300 (1.004167)^24
A = 300 * 1.10495 = 331.485
After 2 years, Brooklyn will have $331.485.
Therefore, Patrick's method of depositing $300 as the principle amount with an interest rate of 6% compounded quarterly results in more money after two years. Patrick will have $337.95, which is slightly more than Brooklyn with $331.485.
To learn more about money: https://brainly.com/question/25959268
#SPJ11