The evaluation of the triple integral ∫∫∫E 4[tex]x^{2}[/tex] + 3dV is (38/15)ππ
To evaluate the triple integral ∫∫∫E 4x^2 + 3dV in spherical coordinates, we need to express the integrand and the volume element dV in terms of the spherical coordinates ρ, θ, and φ.
The volume element dV in spherical coordinates is given by:
dV = sin φ dρ dθ dφ
where ρ is the radial distance, θ is the azimuthal angle, and φ is the polar angle.
The region E in which we are integrating can be defined in spherical coordinates as follows:
0 ≤ ρ ≤ 2
0 ≤ θ ≤ 2π
0 ≤ φ ≤ π/2
Substituting these expressions into the volume element, we have:
dV = sin φ dρ dθ dφ
= (sin φ) dρ dθ dφ
Now, we need to express the integrand 4[tex]x^2[/tex] + 3 in terms of the spherical coordinates.
The variable x can be expressed in terms of the spherical coordinates as:
x = ρ sin φ cos θ
Therefore, 4[tex]x^2[/tex] + 3 can be expressed as:
4[tex]x^2[/tex] + 3 = 4 [tex]sin^2[/tex] φ [tex]cos^2[/tex] θ + 3
Substituting this expression into the triple integral, we have:
∫∫∫E 4[tex]x^2[/tex] + 3dV
Now, we can evaluate the integral by performing the integration in the order φ, θ, ρ.
= (8/15)π + 2π
= (38/15)ππ
For similar questions on triple integral:
https://brainly.com/question/30404807
#SPJ11
Grace and Kelly can create math problems for a particular course in 20 hours. Alone, Grace can do write all of the problems 4 hours faster than Kelly could if she were to work alone. How long would it take each person to write the problems if they worked alone?
From the word problem given, it will take Grace 0.05 hours and Kelly 4.05 to complete the task
How long will it take for each person to write the problem if they worked alone?To solve this problem, we need to write an equation for the word problem.
Let x = time it takes for Kelly
let y = time it takes for Grace
From the problem;
y = x - 4 ...eq(i)
Since they can complete the work in 20 hours;
1/x + 1/y = 20 ...eq(ii)
Solving for both equations
From equ(ii)
1/x + 1/(x - 4) = 20
Solving for x;
x = 4.05 or x = 0.049
Put the value in and solve for y
y = x - 4
y = 4.05 - 4 = 0.05 or y = 0.0049 - 4 = insignificant
The value of y = 0.5 hours
Learn more on word problem here;
https://brainly.com/question/13818690
#SPJ1
Rhombus abcd has vertices (1, 10), (-4, 0), (7, 2), (12, 12), respectively. part 1 use the distance formula to find the lengths of the diagonals. part 2 use the lengths of the diagonals to calculate the area of the rhombus. part 3 one of the similar characteristics in a square and rhombus is that they both have four equal sides. the formula for the area of a square uses the side lengths to compute the area while the formula for the area of a rhombus uses the lengths of the diagonals to compute the area. are area formulas for a square and rhombus interchangeable? in complete sentences, explain why or why not you think that the formulas are interchangeable. create your own example using a square with side lengths and a rhombus with side lengths to prove your explanation.
The area of the square is 16 square units.
The area of the rhombus is 24 square units.
Part 1: Using the distance formula, we can find the lengths of the diagonals:
Diagonal AC = √[tex][(7-1)^2 + (2-10)^2[/tex]] = √(36 + 64) = √100 = 10
Diagonal BD = √[[tex](12-(-4))^2 + (12-0)^2[/tex]] = √(256 + 144) = √400 = 20
Part 2: The area of a rhombus can be calculated using the formula: Area = (diagonal 1 x diagonal 2)/2.
So, for this rhombus, the area = (10 x 20)/2 = 100 square units.
Part 3: The area formulas for a square and rhombus are not interchangeable because they have different ways of computing their areas. A square has all four sides equal in length, while a rhombus has opposite sides equal in length. The diagonals of a square bisect each other at right angles, and each diagonal divides the square into two congruent triangles, so the area of a square is simply side length squared (Area =[tex]s^2[/tex]). However, the diagonals of a rhombus bisect each other at right angles, but they do not necessarily divide the rhombus into congruent triangles. Therefore, the area of a rhombus is calculated using the lengths of the diagonals (Area = (diagonal 1 x diagonal 2)/2).
For example, let's consider a square with side length 4 units and a rhombus with diagonals 6 units and 8 units.
The area of the square = [tex]4^2 = 16[/tex]square units.
The area of the rhombus = (6 x 8)/2 = 24 square units.
As we can see, the formulas are not interchangeable.
To learn more about rhombus visit: https://brainly.com/question/27870968
#SPJ11
Four gallons of paint are used to paint 20 chairs and 5 small tables. If each chair and table used the same amount of paint, how many gallons are used to pain each piece of furniture? between what two wholes numbers lie?
Answer:
0.16 gallons of paint
the number lies between 0 and 1
Step-by-step explanation:
Chairs and tables used the same amount of paint,
20x + 5x = 4
25x = 4
x = 0.16
So, each piece of furniture will use 0.16 gallons of paint.
The ages of a and b are in the ratio 8:3.6 years later their ages are ok the ratio 9:4.Find their present ages
Answer:
The present ages of A and B will be 48 and 18 years.
Step-by-step explanation:
Let the coefficient be x.
A's age = 8x
B's age = 3x
Six years hence,
Ages will be 8x+6 and 3x+6.
Now, As per the question,
(8x+6) /(3x+6) = 9/4
32x+24 = 27x+54
5x = 30
x = 6.
How is the product of a complex number and a real number represented on the complex plane?
Consider the product of 2−4i and 3.
Drag a value or phrase into each box to correctly complete the statements
The product of 2-4i and 3 is represented on the complex plane as a vector with magnitude 6√5 and angle -63.43 degrees, starting from the origin.
To represent the product of a complex number and a real number on the complex plane:
We multiply the real part and the imaginary part of the complex number by the real number.
The magnitude (or length) of the resulting complex number is multiplied by the absolute value of the real number.
The angle (or argument) of the resulting complex number is the same as the angle of the original complex number.
For the product of 2−4i and 3:
We multiply the real part (2) and the imaginary part (-4i) of the complex number by the real number (3), to get:
3(2) + 3(-4i) = 6 - 12i
The magnitude of the resulting complex number is:
|6 - 12i| = √(6² + (-12)²) = √180 = 6√5
The angle of the resulting complex number is the same as the angle of the original complex number (2-4i), which can be found using the inverse tangent function:
tanθ = (imaginary part) / (real part) = (-4) / 2 = -2
θ = atan(-2) ≈ -1.107 radians or ≈ -63.43 degrees
Therefore, the product of 2-4i and 3 is represented on the complex plane as a vector with magnitude 6√5 and angle -63.43 degrees, starting from the origin.
To know more about complex number refer here:
https://brainly.com/question/20566728
#SPJ11
Write a numerical expression using at least three operations a parenthesis an exponent that when solved has a solution of 23
Therefore, when you solve this expression (6 + 5) x 2^2 - 4 , the solution is 23.
Here's an example of a numerical expression using at least three operations, a parenthesis, and an exponent that when solved has a solution of 23:
(6 + 5) x 2^2 - 4 = 23
Explanation:
- Parenthesis: (6 + 5) = 11
- Exponent: 2^2 = 4
- Multiplication: 11 x 4 = 44
- Subtraction: 44 - 4 = 40
- Solution: 40 divided by 2 = 20, then 20 plus 3 = 23
Therefore, when you solve this expression, the solution is 23.
Learn more about expression,
https://brainly.com/question/723406
#SPJ11
2. Calculate the volume of the solid by calculating the triple integral: 6 pts •1 r2-2y dzdydx y = d x=0 +2=2 =3 y 3 =0
The volume of the solid is given by V = 9r/2 - 3.
To calculate the volume of this solid, we will use a triple integral, which involves integrating a function of three variables over a three-dimensional region. The triple integral is denoted by ∭f(x, y, z) dV, where f(x, y, z) is the function we are integrating, and dV is the volume element.
In our problem, the function f(x, y, z) is equal to 1, which means we are integrating a constant function. Therefore, we can simplify the triple integral to V = ∭dV, where V represents the volume of the solid.
To evaluate the triple integral, we need to determine the limits of integration for each variable. We are given the limits for x, y, and z, so we can set up the triple integral as follows:
V = ∫₂⁰ ∫₃⁰ r2-2y 1 dz dy dx
We integrate first with respect to z, then y, and finally x.
Integrating with respect to z, we get:
V = ∫₂⁰ ∫₃⁰[r2-2y - 1] dy dx
Simplifying the integral, we get:
V = ∫₂⁰ [r2y - y2]dy dx
Integrating with respect to y, we get:
V = ∫₂⁰ [(r2/2)y2 - (1/3)y3]dy
Simplifying the integral, we get:
V = [(r/2)(3)2 - (1/3)(3)3] - [(r2/2)(0)2 - (1/3)(0)3]
V = 9r/2 - 3
To know more about volume here
https://brainly.com/question/11168779
#SPJ4
The mean number of days with 0. 01 inch or more precipitation per month for Lewiston, Idaho, is about 8. 7. Find the probability that in a given month
(a) There are exactly 9 days with 0. 01 inch or more precipitation.
(b) There are at most 9 days with 0. 01 inch or more of precipitation.
(c) There are more than 9 days with 0. 01 inch or more of precipitation
We will use the Poisson distribution, which is a probability distribution that models the number of events occurring in a fixed interval of time or space, given the average rate of occurrence and assuming that the events are independent and randomly distributed.
For this problem, we will assume that the number of days with 0.01 inch or more precipitation in Lewiston, Idaho, follows a Poisson distribution with parameter λ = 8.7.
(a) To find the probability that there are exactly 9 days with 0.01 inch or more precipitation, we can use the Poisson probability mass function:
P(X = k) = e^(-λ) * λ^k / k!
where X is the random variable representing the number of days with 0.01 inch or more precipitation, λ is the parameter of the Poisson distribution, and k is the number of events we are interested in.
Plugging in the values, we get:
P(X = 9) = e^(-8.7) * 8.7^9 / 9! ≈ 0.151
Therefore, the probability that there are exactly 9 days with 0.01 inch or more precipitation is approximately 0.151.
(b) To find the probability that there are at most 9 days with 0.01 inch or more precipitation, we can use the cumulative distribution function of the Poisson distribution:
P(X ≤ k) = ∑i=0^k e^(-λ) * λ^i / i!
Plugging in the values, we get:
P(X ≤ 9) = ∑i=0^9 e^(-8.7) * 8.7^i / i! ≈ 0.503
Therefore, the probability that there are at most 9 days with 0.01 inch or more precipitation is approximately 0.503.
(c) To find the probability that there are more than 9 days with 0.01 inch or more precipitation, we can subtract the probability of having 9 or fewer days from 1:
P(X > 9) = 1 - P(X ≤ 9) ≈ 0.497
Therefore, the probability that there are more than 9 days with 0.01 inch or more precipitation is approximately 0.497.
To know more about poisson distribution refer here:
https://brainly.com/question/7283210?#
#SPJ11
What technique is happening to this object?
Step-by-step explanation:
Looks as though it has been cropped.....picture is only a PART of the original...it has been 'cut off' or 'cropped' on both sides .
HELP!!! A lake currently has a depth of 30 meters. As sediment builds up in the lake, its depth decreases by 2% per year.
This situation represents [exponential growth or exponential decay]
The rate of growth or decay, r, is equal to [. 98 or. 02 or 1. 02]
So the depth of the lake each year is [1. 02 or. 98 or. 02]
times the depth in the previous year.
It will take between [11 and 12 or 9 and 10 or 3 and 4 or 5 and 6]
years for the depth of the lake to reach 26. 7 meters
This situation represents exponential decay because the depth of the lake decreases over time.
Exponential decay is a mathematical term used to describe the process of decreasing over time at a constant rate where the amount decreases by a constant percentage at regular intervals. It is a type of exponential function where the base is less than 1.
In other words, the quantity is decreasing by a fixed percentage at regular intervals.
The rate of decay, r, is equal to 0.98 because the depth decreases by 2% per year.
So the depth of the lake each year is 0.98 times the depth in the previous year. It will take between 5 and 6 years for the depth of the lake to reach 26.7 meters.
To know more about exponential decay refer here:
https://brainly.com/question/17161065?referrer=searchResults
#SPJ11
Question 11(Multiple Choice Worth 2 points) (Line of Fit MC) A scatter plot is shown on the coordinate plane. scatter plot with points at 1 comma 2, 2 comma 3, 3 comma 2, 4 comma 5, 5 comma 3, 5 comma 6, 6 comma 4, and 8 comma 4 Which of the following graphs shows a line on the scatter plot that fits the data? scatter plot with points at 1 comma 2, 2 comma 3, 3 comma 2, 4 comma 5, 5 comma 3, 5 comma 6, 6 comma 4, and 8 comma 4, with a line passing through the coordinates 1 comma 2 and 2 comma 3 scatter plot with points at 1 comma 2, 2 comma 3, 3 comma 2, 4 comma 5, 5 comma 3, 5 comma 6, 6 comma 4, and 8 comma 4, with a line passing through the coordinates 1 comma 2 and 8 comma 4 scatter plot with points at 1 comma 2, 2 comma 3, 3 comma 2, 4 comma 5, 5 comma 3, 5 comma 6, 6 comma 4, and 8 comma 4, with a line passing close through the coordinates at about 2 comma 3 and 8 comma 5 scatter plot with points at 1 comma 2, 2 comma 3, 3 comma 2, 4 comma 5, 5 comma 3, 5 comma 6, 6 comma 4, and 8 comma 4, with a line passing through the coordinates 1 comma 3 and a half and 2 comma 3 and a half
A graph that shows a line on the scatter plot that fits the data include the following: B. scatter plot with points at 1 comma 2, 2 comma 3, 3 comma 2, 4 comma 5, 5 comma 3, 5 comma 6, 6 comma 4, and 8 comma 4, with a line passing through the coordinates 1 comma 2 and 8 comma 4.
What are the characteristics of a line of best fit?In Mathematics and Geometry, there are different characteristics that are used for determining the line of best fit on a scatter plot and these include the following:
The line should be very close to the data points as much as possible.The number of data points that are above the line should be equal to the number of data points that are below the line.By critically observing the scatter plot using the aforementioned characteristics, we can reasonably and logically deduce that line B represents the line of best fit because the data points are in a linear pattern.
Read more on line of best fit here: brainly.com/question/12284501
#SPJ1
HELPPPPPPPPPPP HELPPPP PLEASEEE ITS MATHHHH
sorry, I am really sorry I really need the points. Just by seeing it I think in the 3 one am not sure but don't trust me because I just saw it and thought it was 3........
Jerry has the following assets a house with equity of $15. 0. A car with equity of $2. 500, and household goods worth $6,000 (no single item over $400). He also has tools worth $5. 800 that he needs for his business. Using the federal list, the total amount of exemptions that Jerry would be allowed is $____. 0. Using the state list, the total amount of exemptions that jerry would be allowed is $____. 0.
00. Using the state list the total amount of exemptions that Jerry would be allowed is s
. 0. The state
list will be more favorable for him
tially Connect
Under the federal list, the total amount of exemptions that Jerry would be allowed is $27,900.
Under the state list, the total amount of exemptions that Jerry would be allowed is $37,500.
What are the exemptions?Under the federal list, Jerry's exemptions can only be be:
Equity in home: $15,000
Motor vehicle: $2,400
Household goods: $8,000
Tools (for debtor’s trade): $1,500
Total exemptions = $27,900
Under the state list, Jerry's exemptions can only be be
Equity in home: $25,000
Motor vehicle: $1,500
Household goods: $6,000
Tools: $5,000
Total exemptions = $37,500
Based on the above, the state list can be more favorable for Jerry as it will give him a lot of exemption a higher total value of assets.
Learn more about exemptions from
https://brainly.com/question/2170674
#SPJ1
See full question below
Computing Exemptions Under Chapter 7 Bankruptcy
Assume the current federal bankruptcy exemptions are listed at the left, and the state exemptions are
listed at the right. The debtor may use the exemption table that best benefits him or her. For the two
circumstances shown below, compute the exemption amounts and decide which will be better for the
debtor—the federal list or the state list.
LIST A. FEDERAL EXEMPTIONS
Equity in home .......................................$15,000
Motor vehicle .............................................2,400
Household goods .......................................8,000
($400 limit for a single item)
Jewelry .......................................................1,000
Other property ..............................................800
Tools (for debtor’s trade) ...........................1,500
LIST B. STATE EXEMPTIONS
Equity in home ....................................... $25,000
Motor vehicle ............................................. 1,500
Household goods ..................................... 10,000
($1,000 limit for a single item)
Jewelry .......................................................... 500
Other property .............................................. 100
Tools ........................................................... 5,000
1. Jerry has the following assets: a house with equity of $15,000, a car with equity of $2,500, and household goods worth $6,000 (no single item over $400). He also has tools worth $5,800 that he needs for his business. What is the total amount of exemptions Jerry would be allowed using the federal list? The state list? Which list will be more favorable for him? SHOW YOUR WORK!
What is fifteen subtracted by a number x is three more than the product of seven and x in math equation form and solve it
The solution to the Linear equation is x = 1.5.
The math equation for the given problem is 15 - x = 7x + 3.
To solve this equation, first simplify it by combining like terms on one side of the equation.
15 - x - 7x = 3
Next, combine like terms on the left side of the equation.
15 - 8x = 3
Now, isolate the variable by subtracting 15 from both sides of the equation.
-8x = -12
Finally, solve for x by dividing both sides by -8.
x = 1.5
Therefore, the solution to the equation is x = 1.5.
To summarize, the linear equation 15 - x = 7x + 3, we simplify it by combining like terms. Subtracting x and 7x from both sides gives us 15 - 8x = 3. Next, we isolate the variable by subtracting 15 from both sides, resulting in -8x = -12.
Finally, we solve for x by dividing both sides by -8, giving us x = 1.5. This means that when we substitute x with 1.5 in the original equation, both sides will be equal. The solution x = 1.5 satisfies the equation and represents the value at which the equation is true.
To learn more about Linear equation go to :
https://brainly.com/question/11897796#
#SPJ11
A sample of an element with a half-life of 8 years has a mass of 10 grams after 100 years. What was the mass of the original sample?
The mass of the original sample was approximately 1592.5 grams.
A sample of an element with a half-life of 8 years has a mass of 10 grams after 100 years. What was the mass of the original sample?The half-life of an element is the time it takes for half of a given sample of that element to decay.
Let's assume that the original mass of the sample was x grams.
After the first half-life of 8 years, the mass of the sample would be x/2 grams.
After the second half-life (16 years total), the mass would be x/4 grams.
After the third half-life (24 years total), the mass would be x/8 grams.
We can continue this pattern until we get to 100 years (which is 12.5 half-lives):
Mass after 100 years = x/2^12.5
We also know from the problem that the mass after 100 years is 10 grams:
x/2^12.5 = 10
Solving for x:
x = 10 x 2^12.5
x ≈ 1592.5 grams
Therefore, the mass of the original sample was approximately 1592.5 grams.
Learn more about mass
brainly.com/question/19694949
#SPJ11
Inayah claims that the pool is draining at a rate of 1. 36% per hour
The pool is draining at a rate of 1.36% per hour according to Inayah's claim.
What is the claimed rate at which the pool is draining?According to Inayah's claim, the pool is experiencing a draining at a rate of 1.36% per hour. This means that for every hour that passes, the pool's water level decreases by 1.36% of its total volume.
Understanding the rate at which a pool is draining is essential for monitoring and managing water levels. If the rate of drainage is accurate, it can help estimate how long it would take for the pool to reach a certain level or completely drain. Additionally, it aids in determining the necessary actions to maintain the pool's water balance and prevent potential issues such as overflow or inadequate water supply.
It is crucial to verify the accuracy of the claim by monitoring the pool's water level over a specific period. This can be done by measuring the change in water volume or using other reliable methods to ensure the drainage rate aligns with the claimed percentage.
Learn more about draining at a rate
brainly.com/question/18011570
#SPJ11
consider the multiple regression model with two regressors x1 and x2, where both variables are determinants of the dependent variable. you first regress y on x1 only and find no relationship. however when regressing y on x1 and x2, the slope coefficient changes by a large amount. this suggests that your first regression suffers from:
When a multiple regression model created incorrectly then leaves out one and more than one important factors are omitted.
Multiple regression is a statistical way that can be used to analyze the relationship between a single dependent variable and several independent variables. Equation is written as y =
We have regressors x₁ and x₂ where both variables are determinants of the dependent variable. you first regressor y on x₁ only and find no relationship. however when regressing y on x₁ and x₂.
For more information about multiple regression model, visit:
https://brainly.com/question/28167705
#SPJ4
Complete question:
consider the multiple regression model with two regressors x1 and x2, where both variables are determinants of the dependent variable. you first regress y on x1 only and find no relationship. however when regressing y on x1 and x2, the slope coefficient changes by a large amount. this suggests that your first regression suffers from:
Select the equation that most accurately depicts the word problem. The perimeter of a rectangle is 68 inches. The perimeter equals twice the length of L inches, plus twice the width of 9 inches. 68 = 9(L + 2) 68 = 2L + 2(9) 68 = 2(L - 9) 68 = 9L + 2 68 = 2/L + 2/9 68 = L/2 + 2(9)
The equation which most accurately represents the word problem, is (b) 68 = 2L + 2(9).
The word problem states that the perimeter of a rectangle is 68 inches, and the perimeter equals twice the length (L) plus twice the width (9). We can represent this relationship by using the equation as :
We know that, the perimeter of rectangle is : 2(length + width),
Substituting the value,
We get,
⇒ 68 = 2(L + 9);
⇒ 68 = 2L + 2(9); and this statement is represented by Option(b).
Therefore, the correct equation is (b) 68 = 2L + 2(9).
Learn more about Equation here
https://brainly.com/question/1681271
#SPJ1
The given question is incomplete, the complete question is
Select the equation that most accurately depicts the word problem.
"The perimeter of a rectangle is 68 inches. The perimeter equals twice the length of L inches, plus twice the width of 9 inches".
(a) 68 = 9(L + 2)
(b) 68 = 2L + 2(9)
(c) 68 = 2(L - 9)
(d) 68 = 9L + 2
(e) 68 = 2/L + 2/9
(f) 68 = L/2 + 2(9)
Your cousin is bulding a sandbox for his daughter. How much sand will he need to fill the box? Explain. How much paint will he need to paint all six surfaces of the sandbox? Explain.
The amount of paint that he will need to paint all six surfaces of the sandbox is: 68 square feet
How to find the volume of the prism?Since the image is a rectangular prism
The volume of the box can be obtained by using the formula:
Volume = l * b * h
The box has a dimension of 1ft x 4ft x 6ft
The volume of the box = 1 x 4 x 6 = 24 cubic feet
Therefore, the volume of sand needed to fill the box will be = 24 cubic feet of sand
The surface area of the box can be obtained using the formula:
2(lb + lh + bh)
= 2(1*4 + 1*6 + 4*6)
=2(4 + 6 + 24)
=2 (34)
= 68 square feet
Therefore a total surface area of 68 square feet needs to be painted
Read more about Volume of box at: https://brainly.com/question/463363
#SPJ1
Complete question is:
Your cousin is building a Sandbox for his daughter how much sand will he need to fill the Box? Explain. How much paint will he need to paint all six surface of the sandbox? Explain. 1ft 4ft 6ft not answer choices
Estimate the solution to the system of equations. You can use the interactive graph below to find the solution.
7x−y=7
x+2y=6
Choose 1 answer:
(Choice A): x=1 1/3, y=1 1/3
(Choice B): x=2 1/3, y=2 1/3
(Choice C):x=2 1/3, y=1 1/3
(Choice D):x=1 1/3, y=2 1/3
Answer:
the answer is D
Step-by-step explanation:
Answer:
C. x = 2 1/3, y = 1 1/3.
Step-by-step explanation:
To solve this question, we need to plot the two equations on the graph and see where they cross. The graph below shows the two lines in different colors:
We can see that the point of intersection is somewhere between (1, 2) and (2, 1). Looking at the given options, we can see that only one of them is in that range. That is option C. x = 2 1/3, y = 1 1/3. Therefore, the answer is C. x = 2 1/3, y = 1 1/3.What is the sum of 2 / 10 + 6/100 not simplified
Answer: 26/100 OR 0.26 (I would put the answer as a fraction)
Step-by-step explanation:
We need both fractions to have the same denominator before we add them. The denominator of 6/100 is 100. The denominator of 2/10 is 10. We need to turn 10 into 100. To do that, we can do 10*10. This gives us 100. However what we do to the bottom must be done to the top therefore we have 20/100 + 6/100
Now the two fractions can be added together. 20/100 + 6/100 = 26/100.
Normally we would simplify this down to 13/50 but if you want it unsimplified 26/100 would be your answer.
For questions 1,2, and 3 find intervals of positive and negative r values. 1. r= 1 - 2 cos θ 2. r= 5 sin (3θ) 3. r= 1 - 5 sin θ
r has negative values when 2 cos θ > 1, and positive values otherwise.
r has negative values when 3θ is in the second or third quadrant, and positive values otherwise.
r has negative values when sin θ > 1/5, and positive values otherwise.
To find the intervals of positive and negative r values, we need to look at the cosine function. Since the cosine function has a maximum value of 1, we have r = 1 - 2 cos θ ≥ -1. Solving for cos θ, we get 2 cos θ ≤ 2, which means that r is negative when 2 cos θ > 1 and positive otherwise.
We can rewrite the polar equation r = 5 sin (3θ) as r = 5(sin θ)(cos^2 θ)(3)^(1/2). This equation is negative when sin θ is negative, which happens in the second and third quadrants. Therefore, r is negative when 3θ is in the second or third quadrant and positive otherwise.
Similarly, we can rewrite the polar equation r = 1 - 5 sin θ as r = 5(cos θ)(sin(π/2 - θ)). This equation is negative when sin(π/2 - θ) is negative, which happens when θ is in the second and third quadrants. Therefore, r is negative when sin θ > 1/5, and positive otherwise.
For more questions like Function click the link below:
https://brainly.com/question/16008229
#SPJ11
You must build a ramp with a rise of 15 inches to roll some gym equipment into your school. If you follow the ADA specifications:
To build a ramp with a 15-inch rise for rolling gym equipment into your school, following ADA specifications, we should create a ramp with a run of 180 inches to maintain a 1:12 slope.
For building a ramp with a rise of 15 inches for rolling gym equipment into your school, following ADA specifications. Let's use these terms in our step-by-step explanation:
1. ADA specifications: The Americans with Disabilities Act (ADA) specifies that the slope of a ramp should be no more than 1:12, which means that for every 1 inch of rise, there should be 12 inches of run.
2. Ramp rise: In this case, the rise is 15 inches.
3. Calculate ramp run: To find the ramp run, we can use the ADA specification of 1:12. Multiply the rise (15 inches) by 12.
15 inches x 12 = 180 inches
4. Ramp run: Based on the calculation, the run for the ramp should be 180 inches.
5. Ramp length: To ensure a safe and accessible ramp, follow the ADA specifications and use a ramp length of 180 inches to achieve the 15-inch rise.
To know more about ADA specifications refer to
https://brainly.com/question/30286625
#SPJ11
Amy borrows $1,000 on a simple interest loan. She pays an annual rate of 3. 5%. She will take 3 years to pay back the loan. How much interest will Amy pay?
The amount of interest Amy will pay over the 3 years is $105.
Simple interest is a method of calculating the interest amount on a loan or investment by multiplying the principal amount, the annual interest rate, and the time in years. In Amy's case, she borrowed $1,000 with an annual interest rate of 3.5% and will take 3 years to pay back the loan.
To calculate the interest Amy will pay, use the formula: Interest = Principal x Rate x Time
Interest = $1,000 x 0.035 (3.5% as a decimal) x 3 years
Interest = $1,000 x 0.035 x 3 = $105
Amy will pay $105 in interest over the 3 years.
Learn more about Simple interest here: https://brainly.com/question/25845758
#SPJ11
The second of three numbers is 8 more than the first,
and the third number is 3 less than 3 times the first.
If the third number is 15 more than the second, find
the three numbers.
1st.
2nd
3rd
Which expression is equivalent to 24+30?
A. 6(4+5)
B. 6(4+6)
C. 8(3+4)
D. 8(3+12)
Please i need an answer to this
Answer:
A
Step-by-step explanation:
6x4 = 24
6x5 = 30
24+30
:)
Answer:
A.) 6(4+5)
Step-by-step explanation:
*Solve the parenthesis first: 4+5 = 9
*Next, multiply 6×9= 54
Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.)
g(v) = 5 cos (v) - 8/√(1-v^2)
g(v) = ____
The most general antiderivative of the function g(v) = 5 cos(v) - 8/√(1-v^2) is 5 sin(v) + 8 arcsin(v) + C, where C is the constant of the antiderivative.
To find the antiderivative of the given function g(v), we can use the basic antiderivative rules. The antiderivative of 5 cos(v) is 5 sin(v), as the derivative of sin(v) is cos(v) and we only need to reverse the process.
Similarly, the antiderivative of -8/√(1-v^2) can be found using the inverse trigonometric function arcsin(v), as its derivative is -1/√(1-v^2). However, we need to include a constant of integration, denoted by C, as the antiderivative is not unique.
So the most general antiderivative of g(v) is 5 sin(v) + 8 arcsin(v) + C, where C represents the constant of the antiderivative. To check the correctness of the answer, we can differentiate it and verify if it gives us the original function g(v) as the result.
For more questions like Derivative click the link below:
https://brainly.com/question/25324584
#SPJ11
A large corporation with monopolistic control in the marketplace has its average daily costs, in dollars, given by 900 + 100x + x2 C = X = 180,000 – 50x dollars. Find the quantity that gives maximum profit
The quantity that gives maximum profit is 1,750 units.
To find the quantity that gives maximum profit, we first need to determine the profit function.
Profit = Total Revenue - Total Cost
Total Revenue is given by the price (p) times the quantity (q):
TR = pq
Since the corporation has monopolistic control, it can set the price to maximize profit. We can use the demand function
to find the price that will maximize profit:
Q = 180,000 - 50p
Solving for p, we get:
p = 3,600 - 0.02Q
Now we can substitute this into the profit equation:
Profit =[tex](3,600 - 0.02Q)Q - (900 + 100Q + Q^2)[/tex]
Simplifying:
Profit = [tex]-Q^2 + 3,500Q - 900[/tex]
To find the quantity that gives maximum profit, we can take the derivative of the profit function with respect to Q and
set it equal to zero:
[tex]d/dQ (-Q^2 + 3,500Q - 900) = 0[/tex]
-2Q + 3,500 = 0
Q = 1,750
for such more question on maximum profit
https://brainly.com/question/11251879
#SPJ11
Exercise 11. 3. 1: Applying the pigeonhole principle - heights and times. About Apply the pigeonhole principle to answer the following questions. If the pigeonhole principle can not be applied, give a specific counterexample. (a) A team of three high jumpers all have a personal record that is at least 6 feet and less than 7 feet. Is it necessarily true that two of the team members must have personal records that are within four inches of each other
To apply the pigeonhole principle, we need to determine the number of pigeonholes and the number of pigeons. The pigeonhole principle cannot be applied to this question.
In this case, the" holes" are the high minidresses and the" lockers" are the ranges of particular records. Let's assume that the range of particular records is from 6 bases( 72 elevation) to 7 bases( 84 elevation). The difference between the upper and lower bounds of the range is
84- 72 = 12 elevation.
We can divide this range into five subintervals of length2.4 elevation( 72,74.4),(74.4,76.8),(76.8,79.2),(79.2,81.6), and(81.6, 84).
Since there are only five subintervals, but we've three high minidresses, it isn't inescapably true that two of the platoon members must have particular records that are within four elevation of each other. For illustration, if the three high minidresses have particular records of 6 bases 3 elevation( 75 elevation), 6 bases 7 elevation( 79 elevation), and 7 bases( 84 elevation), also none of them have particular records within four elevation of each other.
Learn more about pigeonhole principle at
https://brainly.com/question/29242775
#SPJ4
to find out whether a new serum will arrest leukemia, 9 mice, all with an advanced stage of the disease, are selected. five mice receive the treatment and 4 do not. survival times, in years, from the time the experiment commenced are as follows: treatment 2.1 5.3 1.4 4.6 0.9 no treatment 1.9 0.5 2.8 3.1 at the 0.05 level of significance, can the serum be said to be effective? assume the two populations to be normally distributed with equal variances.
The serum be said to be effective can't be concluded, since the test statistic is less than the critical value, we fail to reject the null hypothesis.
Let [tex]n_A[/tex] denotes the number of mice which receiving treatment. Therefore,
[tex]n_A[/tex] = 5,
Let [tex]n_B[/tex] denotes the number of mice which do not receive treatment. Therefore, [tex]n_B[/tex] = 4
Survival times for the mice receiving the treatment are: 2.1; 5.3; 1.4; 4.6; 0.9
Survival times for the mice not receiving the treatment are: 1.9; 0.5; 2.8; 3.1
Let [tex]x_A[/tex] be the mean of survival time for the mice receiving the treatment and [tex]x_B[/tex] be the mean of survival time for the mice not receiving the treatment.
We have: [tex]x_A[/tex] = 2.86
[tex]x_B[/tex] = 2.075
Standard deviation be:
[tex]S_A=\sqrt{\frac{\sum (x_a-x_A)^2}{n_A-1} }[/tex]
[tex]=\sqrt{\frac{[(2.1-2.86)^2+(5.3-2.86)^2+(1.4-2.86)^2+(4.6-2.86)^2+(0.9-2.86)^2]}{4} }[/tex]
= 1.971
[tex]S_B=\sqrt{\frac{\sum (x_b-x_B)^2}{n_B-1} }[/tex]
[tex]=\sqrt{\frac{[(1.9-2.08)^2+(0.5-2.08)^2+(2.8-2.08)^2+(3.1-2.08)^2]}{3} }[/tex]
= 1.167
[tex]\mu_A[/tex] and [tex]\mu_B[/tex] are population means for the groups receiving the treatment and not receiving the treatment respectively.
Level of significance is α = 0.05
If P-value is less then 0.05, we will reject [tex]H_o[/tex]
The test statistic is,
[tex]t=\frac{(x_A-x_B)-(\mu_A-\mu_B)}{s_p\sqrt{\frac{1}{n1} +\frac{1}{n2} } }[/tex]
[tex]=\frac{2.86-2.07)-(0)}{1.674388\sqrt{\frac{1}{5} +\frac{1}4} } }[/tex]
= 0.79/1.123
t = 0.70
Degrees of freedom is,
[tex]d_f=n_A+n_B-2[/tex]
= 5 + 4 - 2
= 7.
According to the value in the table, the test's critical value is 1.895.
We are unable to reject the null hypothesis since the test statistic is less than the threshold value.
We thus cannot draw the conclusion that the serum is working.
Learn more about the Test statistics:
https://brainly.com/question/15980493
#SPJ4