Answer:
the correct one is the a, U₂ = 2 U₁
Explanation:
The gravitational potential energy is
U = m g h
if the stones reach the same height, the energy of the first stone is
U₁ = m₁ g h
The second stone is twice the mass and reaches the same height
m₂ = 2 m₁
potential energy is
U₂ = m₂ g h
U₂ = 2 m₁ g h
U₂ = 2 U₁
therefore the energy is double.
When reviewing the statements, the correct one is the a
In performing rotational motion in an ice capade, which skaters must skate faster, those further in or those further out? Explain the reasoning for your conclusion using concept of rotational inertia.
Answer:
if the angular momentum is constant, the skater is closer, going faster.
w₂ = r₁² / r₂² w₁
Explanation:
For the skaters to perform in the turn in l, the angular number of the same must be equal, so we stammer the concept of conservation of angular momentum
L₁ = L₂
the angular momentum is
L = I w
we substitute
I₁ w₁ = I₂ w₂
w₂ = [tex]\frac{I_{1} }{I_{2} }[/tex] w₁
if we consider the skater as a particle, his moment of inertia is
I = m r²
we substitute
w₂ = r₁² / r₂² w₁
therefore, if the angular momentum is constant, the skater is closer, going faster.
For an object like a planet, with a typical temperature of a few hundred kelvin, what kind of blackbody radiation would it principally emit
Answer:
Low-temperature blackbody
Explanation:
There are 3 types of blackbody temperatures.
Low-temperature blackbody
High temperature extended area blackbody
High-temperature cavity blackbody
A Low-temperature blackbody is a type of black body radiation that has the range of -40° C to 175° C, typically between 233 K and 448 K. A perfect fit for the temperature range mentioned in the question, "a few hundred Kelvin". Therefore, it's the kind of blackbody temperature that the object would emit.
PLEASE HELP ME!!!!!!!!
Answer:
I believe C
Explanation:
i never learned this sorry
A potter's wheel moves uniformly from rest to an angular speed of 0.17 rev/s in 32.0 s.
a. Find its angular acceleration in radians per second per second.
b. Would doubling the angular acceleration during the given period have doubled final angular speed?
Answer:
a) α = 0.0334 rad / s² , b) w = 2.14 rad/s see that the angular velocity doubles.
Explanation:
This is a magular kinematics exercise
Let's reduce the magnitudes to the SI system
w = 0.17 rev /s (2π rad / 1rev) = 1.07 rad / s
a) as part of rest its initial velocity is zero w or = 0
w = w₀ + α t
α = [tex]\frac{\omega -\omega_{o} }{t}[/tex]
α = [tex]\frac{1.07-0}{32}[/tex]
α = 0.0334 rad / s²
b) If we double the angular relation what will be the final velocity
w = w₀ + (2α) t
w = 0 + 2 0.0334 32
w = 2.14 rad/s
We see that the angular velocity doubles.
A 200N lamp is suspended from three cables as shown in the figure below. Find the tensions in each of the three cables.
Answer:
66.6N
Explanation:
Step one;
given data
the mass of the lamp = 200N
we are told that it is suspended by 3 cables.
Now we know that the weight will be distributed equally on the cables
Step two:
so, let the tension in each cable be T
T+T+T= 200
3T=200
T=200/3
T=66.6N
The tenion on each cable is 66.6N
Which statement describes a climate condition?
Answer:
While there is no text here are some climate conditions you could go off of, tropical, dry, temperate, cold, and polar, hope this helps you with whatever your trying to do
Explanation:
15. A vessel containing a liquid 'L' is balanced by a solid 'S' as shown below. Now, two identical pieces of cork (which float on the liquid) are placed gently, one on the solid and one in the liquid. What will happen to the balance?
Answer:
C) There will be no change in the balance
Explanation:
Before and after the cork is placed, the masses in each pan are the same. There will be no change in the balance.
Vector A with arrow lies in the xy plane. Both of its components will be negative if it points from the origin into which quadrant? A. the first quadrant B. the second quadrant C. the third quadrant D. the fourth quadrant E. the second or fourth quadrants
Answer:
C
Explanation:
From the question we are told that a vector on the x and y plane face their negative axis
Generally in the x and y plane thr negative y axis is made to face down opposite the positive y axis
Whilst the negative x axis faces the left which is also alternate to the positive x axis
Generally A vector pointing towards the x and y negative axis fro the origin (0) will definitely be in the third quadrant
A satellite travels with a constant speed |v| as it moves around a circle centered on the earth. How much work is done by the gravitational force F on the satellite after it travels half way around the earth in time t?
Answer:
W = 0
Explanation:
As the satellite moves in a circle the force is perpendicular to the path, therefore the work that is defined by
W = F. r = f r cos θ
Since the force and the radius are perpendicular, the angle θ = 90º and the cosine 90 = 0, therefore there is no work for the circular motion.
W = 0
If -->B is added to -->A , under what conditions does the resultant vector have a magnitude equal to A + B? Under what conditions is the resultant vector equal to zero?
Answer:
See explanation below
Explanation:
For two vectors A and B to have a positive resultant, they must both move in the positive direction i.e along the positive x axis
For two vectors A and B to have a zero resultant, they must both have the same magnitude but move in the opposite direction i.e one in the positive direction while the other in the negative direction.
Fie example if A = +5N, B = -5B
So that A+B = +5-5 = 0N
What magnitude point charge creates a 9,000 N/C electric field at a distance of 1.00 m? a. 1.00 C b. 1.00 mC c. 1.00 ?C d. 1.00 nC
Answer:
1 µC
Explanation:
From the question given above, the following data were obtained:
Electric field intensity (E) = 9000 N/C
Distance (r) = 1 m
Charge (Q) =?
NOTE: Electric force constant (K) = 9×10⁹ Nm²C¯²
The magnitude of the point charge can be obtained as follow:
E = KQ/r²
9000 = 9×10⁹ × Q / 1²
9000 = 9×10⁹ × Q
Divide both side by 9×10⁹
Q = 9000 / 9×10⁹
Q = 1×10¯⁶ C
Recall:
1 micro charge (µC) = 1×10¯⁶ C
Hence, the magnitude of the point charge is 1 µC
Answer:
1ηCExplanation:
The magnitude of the point charge is expressed as;
V = kQ/r
k is the coulombs constant = 9.0×10^9 N⋅m²/C²
V is the electric field = 9000N/C
Q is the charge
r is the distance = 1.00m
Get the required charge
Substitute the given parameters into the formula;
9000 = 9.0×10^9Q/1.0
9000 = 9.0×10^9Q
Q = 9000/9.0×10^9
Q = 9.0×10^3/9.0×10^9
Q = 9.0/9.0×10^(3-9)
Q = 1.0×10^6C
Q = 1ηC
hence the magnitude of the point charge is 1ηC
As a projectile moves in its path, is there any point along the path where the velocity and acceleration vectors are:(a) perpendicular to each other (b) Parallel to each other
Answer:
at the highest point the velocity and acceleration are perpendicular but when projectile starts to move are said to be parallel to one another
Explanation:
the clear explanation is shown above.
In introductory physics laboratories, a typical Cavendish balance for measuring the gravitational constant G uses lead spheres with masses of 1.60 kg and 16.0 g whose centers are separated by about 3.30 cm. Calculate the gravitational force between these spheres, treating each as a particle located at the center of the sphere.
Answer:
The value is [tex]F = 1.568 *10^{-9} \ N[/tex]
Explanation:
From the question we are told that
The mass of the first lead sphere is [tex]m = 1.60 \ kg[/tex]
The mass of the second lead sphere is [tex]M = 16 \ g = 0.016 \ kg[/tex]
The separation between masses is [tex]r = 3.30 \ cm = 0.033 \ m[/tex]
Generally the gravitational force between each sphere is mathematically represented as
[tex]F = \frac{G * m * M }{r^2 }[/tex]
Here G is the gravitational constant with value [tex]G = 6.67 *10^{-11 } \ m^3 \cdot kg^{-1} \cdot s^{-2}[/tex]
[tex]F = \frac{6.67 *10^{-11 } * 1.60 * 0.016 }{0.033^2 }[/tex]
=> [tex]F = 1.568 *10^{-9} \ N[/tex]
A woman exerts a horizontal force of 113 N on a crate with a mass of 31.2 kg.
a. If the crate doesn't move, what's the magnitude of the static friction force (in N)?
b. What is the minimum possible value of the coefficient of static friction between the crate and the floor?
Answer:
a) 113N
b) 0.37
Explanation:
a) Using the Newton's second law:
\sum Fx =ma
Since the crate doesn't move (static), acceleration will be zero. The equation will become:
\sum Fx = 0
\sumFx = Fm - Ff = 0.
Fm is the applied force
Ff is the frictional force
Since Fm - Ff = 0
Fm = Ff
This means that the applied force is equal to the force of friction if the crate is static.
Since applied force is 113N, hence the magnitude of the static friction force will also be 113N
b) Using the formula
Ff = nR
n is the coefficient of friction
R is the reaction = mg
R = 31.2 × 9.8
R = 305.76N
From the formula
n = Ff/R
n = 113/305.76
n = 0.37
Hence the minimum possible value of the coefficient of static friction between the crate and the floor is 0.37
A plane is flying 700 km/hr to the east into a head wind that is moving at 20 km/hr west.
Calculate the planes velocity.
O 720 km/hr
680 km/hr
0-680 km/hr
0 -720 km/hr
Answer:
getc+d
Explanation:
gger
Determine the displacement and distance covered by a man if he walks 10 m north, turns east and walks 20 m, and then turns right and walks 10 m.
Answer:
20m
Explanation:
The two tens cancel each other out, as they are in opposite directions. Now we only care about the 20m, which if we have no 10's, will end up 20m away.
The distance covered by man is 40 m and the displacement is 20 m towards the east.
Distance and DisplacementThe distance can be defined as the measurement of the total ground covered by an object during its motion. It is a scalar quantity.
The displacement can be defined as the measurement of the shortest path over the ground is covered by an object during its motion. It is a vector quantity.
Given that a man starts walking towards the north and covered 10 m. he turns east and walks for 20 m then turns right and walks for 10 m. The attachment shows the total ground area covered by the man.
The total distance covered by the man is given below.
[tex]D = 10 + 20 + 10[/tex]
[tex]D = 40 \;\rm m[/tex]
The displacement of the man is the difference between its final position and initial position.
[tex]d = 20 - 0[/tex]
[tex]d = 20 \;\rm m[/tex]
Hence we can conclude that the distance covered by man is 40 m and the displacement is 20 m towards the east.
To know more about distance and displacement, follow the link given below.
PLEASE ANSWER ASAP BEFORE MY TEACHER AND MY MOM KILLES ME PLEASE ASAP
The first person with the right answer gets to be a brainlest
In the attachment there is a density column where there is colour
Question: tell me why is the red at the bottom of the density column if it is the least dense
Answer:
As you know, the denser objects have more weight per unit of volume, this will mean that the force that pulls down these objects is a bit larger.
This will mean that the denser objects will always go to the bottom.
This clearly implies that the red liquid, the one with one of the smaller densities, can not be at the bottom.
There are some cases where a liquid with a small density may become a lot denser as the temperature or pressure changes, and in a case like that, we could see the red liquid at the bottom, but for this case, there is no mention of changes in the temperature nor in the pressure, so this can be discarded.
The only thing that makes sense is that the red part at the bottom is the base of the tube, and has nothing to do with the red liquid.
HELPPPPP fasttttt
Do you think an object can travel faster than the speed of sound? Explain your thinking.
Answer: Depends on the context.
Explanation: While simply throwing a football won’t breach the sound barrier, a specialized jet can breach it easily. It all just depends on your definition of an object. Hope this helps!
A basketball is rolling rightward onto the court with a speed of 4.0 m/s and slows down with a consta leftward acceleration of magnitude 0.50 m/s^2 over 14 m.
What is the velocity of the basketball after rolling for 14 m?
a. 2.0 m/s
b. 5.5 m/s
c. 7.5 m/s
d. 1.4 m/s
Answer:
d. 1.4 m/s
Explanation:
Given;
initial velocity of the `basketball, u = 4.0 m/s
acceleration of the basketball, a = -0.5 m/s² (leftward)
distance the basketball traveled, d = 14 m
the final velocity of the basketball, v = ?
(this final velocity should be less than the initial velocity since the ball is slowing down at a constant rate)
Apply the following the kinematic equation;
v² = u² + 2ad
v² = 4² + 2(-0.5)14
v² = 16 - 14
v² = 2
v = √2
v = 1.41 m/s
Therefore, the final velocity of the basketball is 1.4 m/s.
At a distance of 10 km from a radio transmitter, the amplitude of the E-field is 0.20 volts/meter. What is the total power emitted by the radio transmitter
Answer:
The total power is [tex]P = 6.665 *10^{4} \ W[/tex]
Explanation:
From the question we are told that
The distance is [tex]r = 10 \ km = 1000 \ m[/tex]
The amplitude of the electric field is [tex]E = 0.20 \ volt/meter[/tex]
Generally the average intensity of the electromagnetic field from the radio transmitter is mathematically represented as
[tex]I = \frac{E^2}{ 2 \mu_o * c }[/tex]
Here c is the speed of light with value [tex]c = 3.0 *10^{8} \ m/s[/tex]
[tex]\mu_o[/tex] is the permeability of free space with value [tex]\mu_o = 4\pi *10^{-7} \ N/A^2[/tex]
So
[tex]I = \frac{0.2^2}{ 2 * 4\pi *10^{-7} * 3.0*10^{8} }[/tex]
=> [tex]I = 5.307 *10^{-5} \ W/m^2[/tex]
Generally this intensity can also be mathematically represented as
[tex]I = \frac{P }{ 4 \pi r^2 }[/tex]
=> [tex]P = I ( 4 \pi r^2 )[/tex]
=> [tex]P = 5.307 *10^{-5} ( 4 * 3.142 * 1000^2 )[/tex]
=> [tex]P = 6.665 *10^{4} \ W[/tex]
The total power emitted by the radio transmitter is [tex]6.67\times 10^4 \ W[/tex].
The given parameters;
amplitude of the electric field, E = 0.2 V/mdistance of the transmitter, = 10 km = 10,000 mThe intensity of the radio wave from the transmitter is calculated as follows;
[tex]I = \frac{E^2}{2\mu_0 c} \\\\I = \frac{0.2^2 }{2\times 4\pi \times 10^{-7} \times 3\times 10^8} \\\\I = 5.305 \times 10^{-5} \ W/m^2[/tex]
The total power emitted by the radio transmitter is calculated as follows;
[tex]I = \frac{P}{A} \\\\P = IA\\\\P = I \times 4\pi r^2\\\\P = (5.305\times 10^{-5} )\times 4\pi \times (10,000)^2\\\\P = 6.67\times 10^{4} \ W[/tex]
Thus, the total power emitted by the radio transmitter is [tex]6.67\times 10^4 \ W[/tex].
Learn more here:https://brainly.com/question/19340071
An object is placed at O ona number line. It moves 3 units to the right, then 4 units to the left, and then 6 units to
the right. What is the displacement of the object?
Answer:
You have a displacement of 5 units to the right.
Explanation:
First you go three to the right which lands on the 3 mark. Then you move it 4 to the left which substracts 4, landing the object at -1. Finally you move 6 to the right, and you finish at marker 5. Since displacement is not total distance but just final distance from the start point directly to end point, it is only a displacement of 5.
Answer:
I think it would be +5
Explanation:
I looked on a number line and started at 0.
I then moved the object 3 units to the right and got 3.
I then moved the object 4 units the the left and got -1.
I then moved the object 6 units to the right and my final answer was positive 5. (+5 or just 5)
I hope I was right and helped
How many words can be made with five letters
Answer:
agree eager eagre ragee
Explanation:
hope this help
30 points? I have no clue
Answer:
The second graph, B
Explanation
A vehicle hits a bridge abutment at a speed estimated by
investigations as 20kmph. Skid marks of 30m on pavement
(f=0.35) followed by skid marks of 60m.on the gravel shoulder
approaching the abutment (f=0.50).What was the initial speed of vechile
Answer:
54.5 kmph
Explanation:
From work-kinetic energy principles, work done by friction on both pavement and gravel shoulder = kinetic energy change of vehicle
ΔK = W = -(f₁d₁ + f₂d₂) where f₁ = frictional force due to pavement = μ₁mg where μ₁ = coefficient of friction of pavement = 0.35, m = mass of vehicle and g = acceleration due to gravity = 9.8 m/s² and d₁ = distance moved by vehicle across pavement = 30 m and
f₂ = frictional force due to gravel shoulder = μ₂mg where μ₂ = coefficient of friction of pavement = 0.50, m = mass of vehicle and g = acceleration due to gravity = 9.8 m/s² and d₂ = distance moved by vehicle across gravel shoulder = 60 m
ΔK = 1/2m(v₁² - v₀²) where v₀ = initial velocity of vehicle, v₁ = final velocity of vehicle = 20 kmph = 20 × 1000/3600 = 5.56 m/s and m = mass of vehicle
So,
ΔK = -(f₁d₁ + f₂d₂)
1/2m(v₁² - v₀²) = -(μ₁mgd₁ + μ₂mgd₂)
1/2(v₁² - v₀²) = -(μ₁gd₁ + μ₂gd₂)
v₁² - v₀² = -2g(μ₁d₁ + μ₂d₂)
v₀² = v₁² + 2g(μ₁d₁ + μ₂d₂)
v₀ = √[v₁² + 2g(μ₁d₁ + μ₂d₂)]
substituting the values of the variables into the equation, we have
v₀ = √[(5.56 m/s)² + 2 × 9.8 m/s²(0.35 × 30 m + 0.5 × 60 m]
v₀ = √[30.91 (m/s)² + 4.9 m/s²(10.5 m + 30 m]
v₀ = √[30.91 (m/s)² + 4.9 m/s²(40.5 m]
v₀ = √[30.91 (m/s)² + 198.45 (m/s)²]
v₀ = √[229.36 (m/s)²
v₀ = 15.14 m/s
v₀ = 15.14 × 3600/1000
v₀ = 54.5 kmph
So, the initial speed of the vehicle is 54.5 kmph
This table shows statistics about the US population in 2010. Which demographic trend does this table best support? People are marrying later than they used to. There are more single-parent families. The American population is more diverse. There are fewer younger adults than older adults.
Answer:
D. There are fewer younger adults than older adults.
Explanation:
Failed the assignment but got this answer correct.
Answer:
D is correct
Explanation:
Which option is an element? A. water B.Sodum cloride C.oxygen.D air
Answer:
C. Oxygen
Explanation:
Oxygen is the 8th element.
A 10-KG mass is lifted upward, by a light cable . what is the tension in the cable if the acceleration is (A) zero, (B) 6m/s2 upward , and (C) 6m/s2 downward
Answer:
(a) 98 N
(b) 158 N
(c) 38 N
Explanation:
Part (a)When the acceleration is 0 m/s², the net force on the mass is 0 N. Therefore, the tension force is equal to the weight force due to Newton's Second Law:
∑F_y = T - w = ma_y ∑F_y = T - w = m(0 m/s²)∑F_y = T - w = 0 ∑F_y = T = wSince the tension in the cable and the weight of the mass are equal to each other, we can solve for the weight force of the mass by using:
w = mg w = (10 kg)(9.8 m/s²)w = 98 NSince T = w, we can say that T = 98 N.
Part (b)Let's set the upwards direction to be positive and the downwards direction to be negative. We can use Newton's Second Law to solve for the tension in the cable if the acceleration is 6 m/s² upward:
∑F_y = T - w = ma_y∑F_y = T - mg = m(6 m/s²)∑F_y = T - mg = 6mPlug the known values into the equation and solve for T.
T - mg = 6mT - (10 kg)(9.8 m/s²) = 6(10 kg) T - 98 = 60 T = 158 NThe tension in the cable if the acceleration is +6 m/s² is 158 N.
Part (c)The process is the same, but this time acceleration is -6 m/s².
∑F_y = T - w = ma_y∑F_y = T - mg = m(-6 m/s²)∑F_y = T - mg = -6mPlug known values into the equation and solve for T.
T - mg = -6mT - (10 kg)(9.8 m/s²) = -6(10 kg) T - 98 = -60 T = 38 NThe tension in the cable if the acceleration is -6 m/s² is 38 N.
Which statements explain the special theory of relativity? Check all that apply.
- Time and space are relative.
- The speed of light in a vacuum is constant for all observers.
- Physical laws change based on an observer's motion.
- Physical laws remain constant regardless of an observer's motion.
- The special theory of relativity applies to objects with constant velocity.
- The special theory of relativity applies to accelerating objects.
Answer:
A. Time and space are relative.
B. The speed of light in a vacuum is constant for all observers.
D. Physical laws change based on an observer's motion.
E. Physical laws remain constant regardless of an observer's motion.
Explanation:
The statements that explain the special theory of relativity are a),b) and e) respectively.
The special theory of relativity, developed by Albert Einstein, is based on the idea that the laws of physics are the same for all observers who are moving uniformly relative to each other. This means that there is no "absolute" or "preferred" frame of reference in the universe. Instead, all frames of reference are equally valid, and any observer can use their own frame of reference to describe physical phenomena.
One consequence of this idea is that time and space are relative. This means that the measurements of time and distance depend on the observer's frame of reference. For example, if two observers are moving relative to each other, they will measure different lengths and times for the same event. This effect is known as time dilation and length contraction.
Finally, the special theory of relativity applies only to objects with constant velocity. It does not apply to accelerating objects, which require the more general theory of relativity. The special theory of relativity is a fundamental theory in modern physics, and it has important implications for our understanding of space, time, and the nature of reality.
Learn more about relativity here:
https://brainly.com/question/13105186
#SPJ2
The correct question is :
Which statements explain the special theory of relativity? Check all that apply.
a) Time and space are relative.
b) The speed of light in a vacuum is constant for all observers.
c) Physical laws change based on an observer's motion.
d) Physical laws remain constant regardless of an observer's motion.
e) The special theory of relativity applies to objects with constant velocity.
f) The special theory of relativity applies to accelerating objects.
The small size of cells _____.
allows for efficient transport of materials
causes food to be broken down slowly
slows down the removal of wastes
allows for fewer cell organelles
Answer:
allows for efficient transport of materials
Explanation:
Living cells relatively have a small size, so small that a microscope is needed to see their structure. However, this small size is for their benefitting as it increases their surface area to volume ratio (SA:V).
A large surface area to volume ratio (SA:V) enables easy movement of molecules to and fro the cell membrane via the process of DIFFUSION. Therefore, having a small size allows for efficient transport of materials needed in the cell.
You hold your physics textbook in your hand. (Assume that no other objects are in contact with the book.)
1. Identify the forces acting on the book.
a. book on hand.
b. hand on book.
c. floor on book.
d. earth on book.
2. For each force you identified in part 1), indicate the direction.
a. book on hand
b. hand on book
c. floor on book
d. earth on book
3. Identify the forces acting on your hand.
a. book on hand
b. hand on book
c. floor on hand
d. earth on hand
4. For each force you identified in part 3), indicate the direction.
a. book on hand
b. hand on book
c. floor on hand
d. earth on hand
5. Identify the forces that form the action-reaction pair as defined by Newton's third law.
a. earth on hand
b. hand on book
Answer:
1) the correct answer is b and d
2) For force b its direction is vertical up
for the force d its direction is vertical down
3) the correct answers are: a, c and d
4) Force a is vertical down , force c is vertical up and force d is vertical down
5) the correct answer which is b
Explanation:
In this exercise it is asked to identify the forces, fundamentally on the free there are the forces of gravity and the support force of the hand, with these facts we answer the questions
1) the correct answer is b and d
the hand acts on the book with a contact force and the Earth acts on the book with the force of gravity.
2) For force b its direction is vertical up
for the force d its direction is vertical down
3) The forces on the hand are the weight of the book. The force of gravity due to the mass of the hand. As the hand is in balance, there must be a force applied by the arm to keep the hand in position; assuming the hand is in the air, if the hand is resting on the floor the force of the floor on the hand can perform this function
therefore the correct answers are: a, c and d
4) Force a is vertical down
force c is vertical up
force d is vertical down
5) The action and reaction forces are forces of equal magnitude, each applied to one of the bodies, we have
* the force of the hand on the free and its reaction the force of the book on the hand
* The force of the Earth on the book and the hand, giving the weight of each one and the relationship is the force of the book and the hand on the Earth
the correct answer which is b